
1

The Use of Software Agents for Autonomous
Control of a DC Space Power System

Ryan D. May

Vantage Partners, LLC.

Cleveland, Ohio, USA

ryan.d.may@nasa.gov

Dr. Kenneth A. Loparo

Case Western Reserve University

Cleveland, Ohio, USA

kal4@case.edu

Abstract—In order to enable manned deep-space missions,
the spacecraft must be controlled autonomously using on-board
algorithms. A control architecture is proposed to enable this
autonomous operation for an spacecraft electric power system
and then implemented using a highly distributed network of
software agents. These agents collaborate and compete with each
other in order to implement each of the control functions. A
subset of this control architecture is tested against a steady-
state power system simulation and found to be able to solve
a constrained optimization problem with competing objectives
using only local information.

Index Terms—cyber-physical systems, energy management,
microgrids, power system control, power system simulation,
software agents

I. INTRODUCTION

As mankind begins to develop spacecraft capable of moving

out of the Earth-Moon system, the need for autonomous

control of the spacecraft becomes critical. Past and current

systems have relied on continuous support from an army

of personnel at Mission Control and other locations for

even typical day-to-day operation. Because communication

latencies for all previous missions have been less than two

seconds, this type of off-board control has been feasible.

However, missions to Mars will have a communication latency

that varies between approximately 6 minutes and 44 minutes

round trip; this latency makes direct system control by ground

support infeasible. In addition, the current approach places the

astronauts in a very challenging position if there should ever

be a loss, even momentarily, of communication.

The goal of developing a manned spacecraft capable of

autonomous, or semi-autonomous, control is too broad in

scope to tackle at once. Thus this work focuses on developing

an approach to autonomously control the vehicle’s electric

power system (EPS) under the guidance of a vehicle Mission

Manager. The mission manager coordinates all of the various

sub-systems on the spacecraft, such as life support, ther-

mal, communications, and power to best achieve the desired

mission objectives given operational constraints. A simple

version of this architecture has been demonstrated on the

NASA Habitat Demonstration Unit [1], [2] and work towards

developing a prototype for interfacing with an autonomous

power system is currently ongoing [3]. Further complicating

the picture is that many proposed future spacecraft are actually

This work was funded by the NASA Advanced Exploration Systems
Project’s Modular Power Systems Task.

multiple spacecraft that can berth and unberth as needed to

achieve mission objectives. When docked, the power systems

of the vehicles can be connected into a single power system

that must operate appropriately.

All of these design and mission concepts lead towards

requiring a power system that is highly robust, adaptable,

and reconfigurable in an autonomous or semi-autonomous

manner. This paper will begin to develop a control system

that can operate an electric power system to achieve these

characteristics. To enable the desired plug-and-play capability

as well as improve system robustness, the control system will

be a decentralized system comprised of software agents that

communicate in a peer-to-peer fashion.

This paper will present a functional hierarchy that can

enable autonomous control of an electric power system. A

subset of this architecture is then implemented using software

agents that are then inserted into a MATLAB steady-state

simulation of the power systems of two generic spacecraft. The

two spacecraft share a power interconnect to allow the systems

to exchange power when it is mutually beneficial. A simple

mission manager determines the priorities of the loads on the

two power systems and passes that information to the software

agents. The agents then interact in a peer-to-peer topology to

solve and implement an optimal power allocation problem.

The proposed functional control architecture of an au-

tonomous space power system is discussed in Section II. A

brief description of software agents is presented in Section

III followed by a description of how agents can be used to

implement the functions of the control system. Some initial

simulation results will be given in Section V. Finally, Section

VI will highlight conclusions and discuss future work.

II. PROPOSED CONTROL ARCHITECTURE

The proposed control architecture, shown in Figure 1,

is inspired by the approach taken by terrestrial Regional

Transmission Organizations. The architecture is split into four

hierarchical layers based on the required time-to-respond of

the particular operation. From bottom (fastest) to top (slowest)

these layers are: the hardware reactive layer, the software

reactive layer, the optimization layer, and the coordination

layer.

https://ntrs.nasa.gov/search.jsp?R=20140012640 2019-08-31T18:50:47+00:00Z



2

Figure 1. Proposed functional architecture for an Autonomous EPS Controller

The hardware reactive layer (also referred to as the direct

control layer) is comprised of the fastest reacting devices

in the system, typically the hardware protection system and

all device-level control loops. Components include breakers,

battery charging hardware, and voltage regulating devices.

The software reactive layer includes software or communi-

cation actions that do not need to coordinate with other devices

in the control system. An example is a component declaring

that a fault has been detected. This action would occur as soon

as the detection logic determines that a fault has occurred; a

much slower process than a breaker tripping, but likely much

faster than a process that requires communication between

various nodes throughout the system. Another example is that

a hardware setpoint may be changed in response to new data

(either via sensor or obtained via communication channel).

Again, the decision to make the change in setpoint can be

made locally without coordinating with others.

The optimization layer is the first layer in which collabora-

tion between devices in the system is required, and thus, it can

only respond to and solve problems on a longer time-scale (i.e.

minutes). The functions in this layer need information beyond

what is locally available in order to take the proper action and

so collaboration is required.

The top layer shown here is the coordination layer which

enables systems to work together when needed. Again, col-

laboration and communication is required and thus long time-

scales are of interest. This layer will act to modify the goals,

objective functions, or constraints of the functions in the

optimization layer to enable cooperation between systems.

It is foreseeable that additional “coordination layers” may

be added to the top of this architecture. For example, to control

a “grid of microgrids” each of the microgrids would have

at least one coordination layer to enable the microgrids to

work together. If the “grid of microgrids” wanted to operate

alongside another such system, then another coordination layer

would be used to allow the two systems to operate together

while each maintains their sovereignty.

The following subsections will discuss each of the func-

tional blocks shown in Figure 1. For this work, the Interchange

Scheduler, Look-Ahead Market, and a simple version of the

Feasibility Analysis function are implemented and so are

discussed in more detail.

Look-Ahead Market: The purpose of the Look-Ahead Mar-

ket is to solve the power allocation problem for a future

window of time. Generators and loads are required to predict

their generation capacity/demand during the defined period of

time. This information is then used to determine the output of

each generator, the state of any network switches, state of all

storage devices, power allocated to each load, and load trip

points. In cases when there is not enough generation to meet

the expected load, the loads with the highest priority will be

served first.

It is easy to determine if a proposed solution is optimal.

When there is not enough supply to meet the desired loads,

the optimal solution will have the battery state-of-charge

constraint active, meaning that the system will allocate the

least amount of power possible to the battery to meet the SOC

constraint. The optimal power allocation will give 100% of the

desired allocation to the loads in priority order until there is no

more power available. The same logic is true for the optimal

supply allocation. When there is enough supply, the optimal

solution is to provide power to all loads using the highest

priority generators.

Feasibility and Contingency Analysis: The solution arrived

at by the Look-Ahead Market needs to be examined to

determine if it is feasible and secure. Security is determined

by running a contingency analysis in which the system is

simulated and component failures are introduced in order to

determine if the system remains stable and within constraints

immediately after the failure. If the system is not secure, then

the Feasibility and Contingency Analysis block will modify

the objective function used in the Look-Ahead Market to drive

the next solution to be more secure. This loop will repeat until

a secure solution is achieved or a time-out occurs, at which

point the “best” solution found will be issued to the lower

layer.

Interchange Scheduler: If the Feasibility Analysis deter-

mines that there is not enough generation capability in the

system to supply the forecast load, the Interchange Scheduler

will be notified. The Interchange Scheduler will then go to

other Interchange Schedulers to determine if they have excess

power that they can sell. If so, an agreement will be reached

between the two Schedulers and the Look-Ahead Market

in each system will be sent new boundary conditions (the

scheduled power flow across the system boundary) from which

to develop a solution.

Real-Time Market: The Real-Time Market is envisioned to

be a function by which agents at the loads respond to signals

from generators, storage devices, or network devices about

small changes in power availability in order to account for

small deviations from the predictions used in the Look-Ahead



3

Market.

State Estimation: The purpose of State Estimation is to

use the available sensor data to determine the most likely

system state that produced those measurements. This process

can remove faulty sensor data, reduce measurement noise, and

detect failed sensors.

Fault Annunciation: In the envisioned cyber-physical sys-

tem, each device will be capable of detecting failures and faults

of its own operation as well as unexpected input and output

measurements. The device would then announce this fault so

that the system can take the appropriate action.

Fault Classification: The Fault Classification function

serves to take all of the fault announcements from devices

across the system as well as the state estimation results and

put them together to determine what failure or series of

failures occurred. This information can be used to make more

informed decisions as to how to restore the system to maximal

capability.

III. SOFTWARE AGENTS

The concept of software agents and multi-agent systems

(MAS) were first formally described by Wooldridge in 1992

[4] and further expanded in 1995 [5]. Software agents are

“an encapsulated computer system that is situated in some

environment and can act flexibly and autonomously in that

environment to meet its design objectives” [6]. They have

well-defined boundaries and interfaces and are placed in an

environment where they have, at least, partial controllability

and observability. Crucially, agents have the ability to be

proactive [5]. This capability differentiates them from the

typical “object-oriented” model used in computer science.

Objects are passive, and while they may include “behaviors,”

they do not have the ability to trigger those behaviors [7].

The other significant feature of a software agent is that they

have the ability to interact with other agents through high-

level social interactions [7]. In summary, a software agent

exhibits features such as autonomy, social ability, reactivity,

and pro-activeness. Agents may also exhibit other traits such as

benevolence, rationality, mobility, or intelligence. Regardless

of the specific traits, the key characteristic is the ability of

agents to have “relationships” with other agents in the system.

These agent-to-agent relationships are subject to change based

on the operating situation, local environment, and design

objectives. The agents use these interactions and relationships

to achieve their design objectives through either cooperation

or competition with other agents.

The fundamental challenge when designing a MAS is to

develop a system capable of finding globally optimal (or

near-optimal) solutions using agents with only local infor-

mation. This requires coordination between the individual

agents that is typically achieved through either competition

or cooperation. Competition has typically taken the form of

agents bidding in auctions [8], [9]. Various auction types and

bidding rules from both economics and game theory have been

investigated as a means to enable agent-based dynamic pricing

systems [9]. Most of the agent-based control systems proposed

and implemented utilize some manner of auction, but this

is not necessary. Systems of cooperating software agents are

found most commonly in robotic swarms. The most common

formulation of inter-agent cooperation is to get a number of

disparate agents to agree on a value of interest; this type of

problem is known as a consensus problem [10], [11]. A classic

manifestation of this problem is to enable a swarm of robotic

agents to agree on a direction in which the flock should move.

Other examples include vehicle formations, attitude alignment,

rendezvous problem, coupled oscillators, and robot position

synchronization.

Unfortunately, there is no generally accepted process that

will lead to an optimal (or even a good) design. However,

when developing MAS for solving control problems there are

a number of good “rules of thumb” to follow:

• Software agents are not suited to tasks that require very

fast response; they require time to collaborate/compete

with other agents in the system to arrive at a solution

[12]. Therefore it is often helpful to decompose the

problem according to time-to-respond and delegate agent

functionality at the appropriate levels.

• Functionally decompose systems into components that

have similar objectives [7]. For example, a load in a

power system may have the objective to secure a desired

amount of energy over some specified time window. We

need not be concerned if the load is a washing machine

or a blast furnace, those differences result in different

parameters (e.g. how much energy is desired, ramp char-

acteristics) but they both have the same objective.

• Agents should be both active and autonomous; in par-

ticular, “individual components should localize and en-

capsulate their own control” [7]. This again emphasizes

the desire to localize control as much as possible. As an

example, an appropriate use for an agent would be to

oversee a hardware implementation of a PID controller.

The agent can modify the controller gains, but all high-

bandwidth control decisions should be based on locally

available data.

• MAS are ideal for large, complex systems where central-

ized control would be too “large” of a problem to solve.

However, this complexity means that “it is impossible to

a priori known [sic] about all potential links [between

agents]: interactions will occur at unpredictable times,

for unpredictable reasons, between unpredictable compo-

nents” [7]. The designer must bear this in mind and not

expect that communication will be timely, or the resulting

system will be brittle when implemented. This quote is

hinting at emergent behavior in the network, however

if the agents are limited in scope then it is possible to

ensure that communication only occurs between specific

components. Further, proper scoping can ensure that

the agent interactions occur with reasonably predictable

randomness.

From an engineering design perspective it is critical to limit

the scope and malleability of software agents. A completely

flexible, constantly changing system would be impossible to

test, debug, and validate. The agents should be designed to

have only one goal/objective at any given time, or competing



4

active goals may make the agent behave unpredictably.

IV. AGENT-BASED IMPLEMENTATION

For this initial work, the agent-based control system is built

in MATLAB. The control system is comprised of five classes

of software agents: load agents, storage agents, supply agents,

network agents, and interchannel coordination agents. Due to

page constraints, it is not possible to cover the details of how

each of these agents is implemented. In general, each of the

agents contains a significant amount of information about the

device with which they are associated. For instance, a supply

agent will have access to all data necessary to estimate the

power output of the generator over any given time window.

The agent also has the capability to control the device; for a

load agent this could be limiting the energy consumption of

the load to remain within the allocated level. Each agent also

has access to all local measurements (current, voltage, etc)

and the ability to control local actuators; however, no agent

has system-level or global knowledge.

As stated earlier, only a subset of the total functional archi-

tecture was implemented for this study. Particular attention

was paid to the Look-Ahead Market and the Interchange

Scheduler as well as a simple Feasibility Analysis function.

For this initial implementation, the Look-Ahead Market is

an economic-based allocation mechanism. Each load agent

submits a bid and each supply agent submits an offer for

power during a ten minute window of time starting ten minutes

in the future. These bids and offers are continuous functions

that are monotonically non-increasing and non-decreasing,

respectively, that can be easily summed and the intersection

found to determine the economic optimal point. One advantage

of this method over auction-type techniques is that there is

no iteration required to arrive at a decision. Note that in

order to ensure that control is truly distributed, each of the

loads and supply agents submit the bid/offer to all connected

network agents who sum the curves and pass the information

along until all nodes have been covered. If a particular line

is constrained to supply a maximum amount of power, the

network agent on that line will modify the load bids to

ensure that the constraint is observed. At the last network

agent, the intersection of the load bids and supply offers will

be computed resulting in the Market Clearing Price and the

quantity of power cleared. This information will be returned to

the loads, supply, and storage agents via the network agents.

Each of these agents will use the information to determine

how much power they have been allocated for the planned

period of time.

After the market clears, any load that was not allocated the

desired amount of power can issue a request to the interchannel

coordination agent. This agent will take all the requests and

seek to find another interchannel coordination agent with

supply available at an acceptable price (i.e. the load bids and

supply offer intersect). If one is found, a deal is made and the

power cross-tie breaker is closed. The Look-Ahead Market

is then rerun with the cross-tie power flow as a constraint

on each of the systems. This constraint is implemented as

new, temporary, load and supply agents that reside at the

interchange connection point. These new agents will bid/offer

the agreed upon power at the highest priority, ensuring that

the agreement is fulfilled by both parties.

V. SIMULATION RESULTS

A steady-state simulation of two generic spacecraft electric

power systems has been developed in MATLAB (The Math-

works). As shown in Fig. 2, each system is independent, but

has a cross-tie to enable the systems to share power when

necessary. Each of the systems has a solar array to provide

power during periods of sunlight (insolation) and a battery to

provide power during eclipse. Each of the loads is a constant

Figure 2. Schematic of the two independent, cross-tied, electrical power
systems modeled in MATLAB.

power load with a priority as assigned by a simplified Mission

Manager. The solar arrays experience periodic eclipses; each

orbit is 90 minutes long with a 35 minute long eclipse.

In order to evaluate the control algorithms, Vehicle 1 is

heavily loaded and the other is lightly loaded. The system is

simulated for 600 minutes, during which the control system

responds to the orbit. The solar array output and battery

SOC for each vehicle are shown in Fig. 3. The control

system successfully meets the SOC constraint by shedding

low priority loads as shown (for a selected time window

during insolation) in Fig. 4. The vertical axis in the Fig.

4 plots is the load allocation as a percentage of the load

desired for each load and battery. As stated earlier, the battery’s

storage agent determines how much power it would like within

charging limit constraints and bids for that amount at a priority

level which is dependent on the remaining time until eclipse

and the current state of charge. The top plot highlights the

fact that Vehicle 1 is overloaded, and in order to meet the

SOC requirement, the storage agent must increase its priority,

driving other loads offline. Loads 3 and 4 are not allocated

any power, and there are periods of time when Load 2 is

only allocated 75% of the desired level so that the battery can

charge at the maximum rate.



5

Figure 3. Solar array output and battery state-of-charge for both vehicles.
The vertical red lines mark the start of eclipse.

Figure 4. Example load allocation when the interconnection breaker is open.

Because of how the Interchange Scheduler function is

constructed, each channel will operate independently and seek

additional power as necessary. For the time window above, all

of the power in Vehicle 2 has been allocated internally (6kW to

the loads and 4kW to the battery) and thus there is no more to

“sell” to other channels. During the eclipse periods, Vehicle 2

sends power to Vehicle 1. Since Vehicle 2 has power available

after supplying all of its internal loads (a total of 6kW), it is

clear that this is a good strategy.

For this situation, the solution of the power allocation

problem (as described in Section II) is optimal. The two

batteries obtain the minimal amount of power required to

ensure that they do not violate the SOC constraint. The highest

priority loads on each channel are served first when there is a

shortfall in power availability. Finally, the channels cooperate

to exchange power when one channel has a deficit and the

other a surplus.

VI. CONCLUSIONS

There has been, and will continue to be, considerable inter-

est in the application of software agents to distributed control

problems, particularly in large complex systems such as power

distribution systems. Unfortunately, many of the previously

proposed solutions are not truly distributed and retain much of

the centralized control found in modern systems. In this work,

a control system functional architecture is proposed that can be

implemented using truly distributed software agents. A subset

of this architecture was implemented in MATLAB and inte-

grated with a quasi-steady state simulation of two independent

but coupled, generic spacecraft power systems. The control

was tested and found to be capable of balancing multiple goals

(provide maximal power to loads and ensure that the batteries

are sufficiently charged) while being constructed in such a way

that the amount of data communicated between the agents in

minimized.

It is clear that much work remains to be done in this area.

The remainder of the architecture presented here needs to be

implemented and tested. For future work it is critical that a

more capable and detailed electrical power system simulation

be utilized in order to more accurately determine the control

effectiveness.

ACKNOWLEDGMENT

The authors are grateful for the support of Jim Soeder, Ray

Beach, Nancy McNelis, and Pat George of the NASA Glenn

Research Center.

REFERENCES

[1] D. Lawler, L. Wang, T. Ngo, L. Moreland, D. Carrejo, A. Schram,
T. Matthews, C. Russell, E. Alex, and A. Qaddumi, “Habitat demon-
stration unit core avionics software,” Johnson Space Center Beinnial
Research Report, pp. 138–139, 2011.

[2] S. A. Howe, K. J. Kennedy, T. R. Gill, R. W. Smith, and
P. George, “NASA habitat demonstration unit (HDU) deep space
habitat analog,” in SPACE Conferences & Exposition. American
Institute of Aeronautics and Astronautics, 2013. [Online]. Available:
http://dx.doi.org/10.2514/6.2013-5436

[3] R. D. May, J. F. Soeder, R. F. Beach, P. J. George, J. D. Frank,
M. A. Schwabacher, , S. P. Colombano, L. Wang, and D. Lawler, “An
architecture to enable autonomous control of spacecraft,” to be published
in the Proceedings of the IEEE EnergyTech 2014, 2014.

[4] M. J. Wooldridge, “The logical modelling of computational multi-agent
systems,” Ph.D. dissertation, University of Manchester, August 1992.

[5] M. Wooldridge and N. Jennings, “Intelligent agents: Theory and prac-
tice,” Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152, 1995.

[6] M. Wooldridge, “Agent-based software engineering,” Software Engineer-
ing. IEEE Proceedings, vol. 144, no. 1, pp. 26 –37, Feb 1997.

[7] N. Jennings and S. Bussmann, “Agent-based control systems: Why are
they suited to engineering complex systems?” Control Systems, IEEE,
vol. 23, no. 3, pp. 61 – 73, June 2003.

[8] S. Bussmann and K. Schild, “Self-organizing manufacturing control:
An industrial application of agent technology,” Proceedings of the 4th
International Conference on Multi-Agent Systems, pp. 87–94, 2000.

[9] P. Wurman, “Dynamic pricing in the virtual marketplace,” Internet
Computing, IEEE, vol. 5, no. 2, pp. 36–42, Mar/Apr 2001.

[10] W. Ren, R. Beard, and E. Atkins, “A survey of consensus problems
in multi-agent coordination,” in American Control Conference, 2005.
Proceedings of the 2005, 2005, pp. 1859–1864 vol. 3.

[11] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, 2007.

[12] S. Amin and B. Wollenberg, “Toward a smart grid: power delivery for
the 21st century,” Power and Energy Magazine, IEEE, vol. 3, no. 5, pp.
34–41, 2005.


