
Prototype and Metrics for Data
Processing Chain Components of IPM

 Vuong Ly

HyspIRI Symposium
Intelligent Payload Module
Session
June 5, 2014

https://ntrs.nasa.gov/search.jsp?R=20140012670 2019-08-31T18:48:47+00:00Z

brought to you by
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by N
A

S
A

 T
echnical R

eports S
erver

https://core.ac.uk/display/42724801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Representative IPM Data Processing Chain

ChaiV640
on Bussmann

Helicopter
~350 Mbps

EO-1 Hyperion
Simulated data

rate

Ingest/
Level 0 Level 1R FLAASH

AC
Level

1G
WCPS

Level 2
SAM

Level 2
Vectori

zer

ChaiV640
on UC-12
Langley

~350 Mbps

GliHT
on UC-12
Langley

~350 Mbps

AMS
on Citation

Forest Service
~Data TBS

Test Data Source

2

Radiometric
Correction

Atmospheric
Correction

Geometric
Correction

Classifiers
& Other
Algorithms

Platforms and Algorithms

Platforms
Ground

Level 0 Level 1R FLAASH
Atm Corr

Level 1G
Geocorr

GCAP
Geocorr

Coreg
Geocorr

WCPS
SAM

WCPS
Potrace

Maestro
Multicore

Tilera 64
Multicore

Tilera Pro
Multicore

TileGX
Multicore

SpaceCube
1.5

Csp
ARM/FPGA

Tested
In process

Platforms and Algorithms

Platforms
Airborne

Level 0 Level 1R FLAASH
Atm Corr

Level 1G
Geocorr

GCAP
Geocorr

Coreg
Geocorr

WCPS
Hot Pixel

WCPS
Potrace

AMS/IPM/
Citation

Platforms
Airborne

Level 0 Level 1R FLAASH
Atm Corr

Level 1G
Geocorr

GCAP
Geocorr

Coreg
Geocorr

WCPS
SAM

WCPS
Potrace

GliHT/IPM
Cessna

ChaiV640/
IPM/Heli

ChaiV640/
IPM/B200

Platforms
Airborne

Frame
Grabber

Jellyfish
Det

Autonom
Navigation

Camera/
MiniIPM/
UAV Heli

Tested
In process

Overview of Effort

• Year 1 Build hardware, begin writing software and
arrange flights

• Year 2 Run simulated science scenarios (e.g.
instrument calibrations)

• Year 2 Begin Flight tests
• Year 2 Investigate software benchmarks
• Year 3 More flight tests and benchmarks based on

results of year 2
• Year 3 Recommendations for future missions

5

Key Methods to Accelerate Onboard
Computing for a Space Environment

• Intelligent onboard data reduction
• Parallel processing, multicore processors
• Use of FPGA as co-processor to accelerate portion

of algorithms

6

Example 1 of Intelligent Onboard
Data Reduction: Autonomous

Modular Sensor Onboard
Processing

7

DC Radiance

Reflectance

 Temp. Hot
 Spots.

Scaled
Visual
Product.

FRP

Normalized
Difference

Multi-
Class
Shapefile

Raw data

Intermediate

Derived
Output

“Real”
Output

Existing Autonomous Modular Sensor (AMS)
Pre-processing/Product Relationships

8

Burn Area Emergency Rehabilitation Imagery

BAER Bands:
10 – 7 - 9
Linear Stretched 2%

9

CCRS (Hot Pixels Algorithm)
Provided OriginalWCPS Generated

10

Hot Pixels as Topojson on Github

http://geojson.io/#id=gist:cappelaere/770dc8388c021ca6091b&map=14/33.3553/-116.5015

Vectorized Hot Pixs to
Topojson format (50%
simplification)
File Size: 6KB (2KB
.tgz)

Topojson converted to
C++ from javascript

Potrace integrated into
WCPS

Displayed on MapBox
TopoMap

Can be shared on
Facebook/Twitter…
All Open Source

11

Metrics

• Original AMS files size 3.1 Mbytes
• Potrace – converts to raster to vector with the output being GeoJSON

– Geographic Javascript Object Notation (GeoJSON) file size is 31 kbytes
• Topographic Javascript Object Notation (TopoJSON) converts GeoJSON to

TopoJSON format
– file size is 6 kbytes (choose 50% simplification of vectors)
– User selectable to about 90%

• Compress TopoJSON using ZIP
– Compressed size is 2 kbyte

• Compression of 1000:1
• Download 2 kbyte GitHub then can visualize on built in map visualized (Mapbox)

– OpenStreetMap compatible
– Viewable in browser
– Shareable on Facebook and other social media
– Github is used for versioning on maps and thus will store user annotation to

map

12

Example 2 for Intelligent Onboard
Data Reduction: Running
Coregistration with Chips

13

Global Land Survey Maps

• A collection of Landsat-type satellite images
from USGS
• Near complete global coverage
• Orthorectified
• Each image has cloud cover of less than 10%
• Four versions: 1970, 1990, 2000, and 2005

• Ground truth for the registration programs was
drawn from the GLS 2000 and can be updated
when the GLS 2010 is completed

• http://landsat.usgs.gov/science_GLS.php
14

Chip Registration

Overlapping chip
from database

Chip extracted
from EO1 scene

Area in EO1 scene where chip was extracted

Currently “chip database” created (in a brute-force fashion) by extracting
successive 256x256 sub-images of all GLS scenes and storing them

according to path and row 15

Automatic Registration of EO1 Scenes
Using Global Land Survey (GLS) Database

Landmar
k

Chip
Database
Extracte

d
from
GLS

Database

UTM of 4 Scene Corners Known
from Systematic Correction

Input Scene

1. Find Chips that correspond
to the Incoming Scene

2. For Each Chip, Extract
Window from input scene
using UTM coordinates

3. Eliminate Windows with
insufficient information

4. Smooth and Normalize gray
values of both Chip and
Window using a Median Filter

5. Register each (Chip,Window)
Pair using a wavelet-based
automatic registration: get a
local rigid transformation for
each pair

6. Eliminate Outliers
7. Compute Global Rigid

Transformation as the
median transformation of all
local ones

8. Compute Correct UTM of 4
Scene Corners of input
scene

9. If desired, Resample the
input scene according to the
global transformation

. . .

16

Scene 1 Before Automatic Registration
Superimposed onto Goggle Earth

17

Scene 1 After Automatic Registration
Superimposed onto Goggle Earth

18

Scene 2 Before Automatic Registration
Superimposed onto Goggle Earth

19

Scene 2 After Automatic Registration
Superimposed onto Goggle Earth

20

Conclusions and Future Work
� Results visually acceptable

� Computations very fast and real-time

� RMS still too high (Translation errors between 0.4 and 2.5 pixels) because:

1. Chips and windows need to be pre-selected based on the information
content (e.g., using an entropy measure)

� Registration would be more accurate because transformation would
only be computed on pairs that have a significant amount of features

� Registration would be faster because less local registrations

� Chip database would be smaller to be stored onboard

2. Global transformation should be computed by taking the list of original
corners coordinates of each window and their corresponding corrected
coordinates, and treat them as a list of ground control points and their
corresponding points => after outlier elimination, global transformation can
be computed using a rigid, an affine or a polynomial transformation.

3. Masks for clouds and water should be included, so registration would not
use cloud or water features that are often unreliable

• Onboard, computations can be performed on SpaceCube or hybrid processor 21

Representative IPM Data Processing
Chain & Metrics

Building to Helicopter Experiment

Hyperspectral Image Processing
Radiometric
Correction
(CHAI data)

*Atmospheric
Correction
(FLAASH)
(EO1 Hyperion
data)

Geometric
Correction
(GCAP)
(GLiHT data)

*WCPS
(vis_composite)
(EO1 Hyperion data)

864 MHz TILEPro64
(1 core)

121.95 2477.74 183.42 72.39

864 MHz TILEPro64
(49 cores)

23.83 1744.13 4.59 21.63

1.0 GHz
TILE-Gx36
(1 core)

57.22 897.71 28.51 19.93

1.0GHz
TILE-Gx36
(36 cores)

9.21 588.71 1.41 8.72

2.2GHz Intel Core I7 2.09 58.29 0.169 2.26

Virtex 5 FPGA TBD TBD TBD TBD
Image data:
GLiHT 1004 x 1028 x 402 (829,818,048 bytes)
Hyperion (EO1H1740732001151111K3)
 256 x 6702 x 242 (830,404,608 bytes)
Chai640 696 x 2103 x 283 (828,447,408 bytes)

Notes: Unit is in seconds
TILEPro64 – No floating point support
TILEGx36 – Partial floating point support
* Indicates time includes file I/O

23

FLAASH Parallelization Effort
wall system user notes Parallelized?

Original
Walltime

Parallel
Speedup

Surf reflectance 32.7952 5.1398 27.6554
Reflect::

RadtoRef YES 197.317 6.016642679

Cube smoothing 145.741 18.1373 127.6037
mini_cube-

>Smooth; FFT

Cube reduction 112.363 13.9834 98.3796
mini_cube-
>Condense

Cube load & distrib 89.0128 11.0775 77.9353

Cube gather & write 83.2988 10.3664 72.9324

Aerosol Retrieval 52.6236 6.54892 46.07468

Water col retrieval 34.7984 4.3306 30.4678

Spectral Polishing 33.5795 4.17891 29.40059

Sensor calibration 28.5097 3.54799 24.96171

Images and Masks 17.1781 2.13779 15.04031

Spectral Resampling 8.72743 1.08611 7.64132
Smile_Resampl
er::Cube_Copy YES 241.669 27.69074057

Cloud Masking 5.93287 0.738336 5.194534

Sensor slit function 0.764612 0.0951547 0.6694573

Modtran Tables 0.416416 0.0518223 0.3645937

un-categorized 0.0397966 0.00495262 0.03484398

Flaash setup 0.000163794 2.04E-05 1.43E-04

total time 645.7813884 81.425006 564.3563824 1.641422344

total time (h:m:s) 0:10:46 0:01:21 0:09:24

Original Wall time: 1060

0:17:40
24

5%

23%

17%

14%

13%

8%

5%

5%

4%

3% 1%

1%
0%

0%
0%

0%

Time spent in FLAASH components

Surf reflectance

Cube smoothing

Cube reduction

Cube load & distrib

Cube gather & write

Aerosol Retrieval

Water col retrieval

Spectral Polishing

Sensor calibration

Images and Masks

Spectral Resampling

Cloud Masking

Sensor slit function

Modtran Tables

un-categorized

Flaash setup

25

Conclusion
� Examining a variety of methods to speed up onboard

processing chain to meet needs of low latency users

� Dovetailing efforts and metrics with High Performance Space
Computing (HPSC) effort sponsored by NASA Office Chief
Technologist

� IPM data processing effort applied to multiple future mission
needs

26

