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Representative IPM Data Processing Chain 
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Platforms and Algorithms 
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Platforms and Algorithms 
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Overview of Effort 

• Year 1 Build hardware, begin writing software and 
arrange flights 

• Year 2 Run simulated science scenarios (e.g. 
instrument calibrations) 

• Year 2  Begin Flight tests 
• Year 2  Investigate  software benchmarks 
• Year 3  More flight tests and benchmarks based on 

results of year 2 
• Year 3  Recommendations for future missions 

5



Key Methods to Accelerate Onboard 
Computing for a Space Environment 

• Intelligent onboard data reduction 
• Parallel processing, multicore processors 
• Use of FPGA as co-processor to accelerate portion 

of algorithms 
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Example 1  of Intelligent Onboard 
Data Reduction:  Autonomous 

Modular Sensor Onboard 
Processing 
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Burn Area Emergency Rehabilitation Imagery 

BAER Bands:
10 – 7 - 9
Linear Stretched 2%
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CCRS (Hot Pixels Algorithm) 
Provided OriginalWCPS Generated
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Hot Pixels as Topojson on Github 

http://geojson.io/#id=gist:cappelaere/770dc8388c021ca6091b&map=14/33.3553/-116.5015

Vectorized Hot Pixs to 
Topojson format ( 50% 
simplification)
File Size: 6KB (2KB 
.tgz)

Topojson converted to 
C++ from javascript

Potrace integrated into  
WCPS

Displayed on MapBox 
TopoMap

Can be shared on 
Facebook/Twitter…
All Open Source
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Metrics 

• Original AMS files size 3.1 Mbytes 
• Potrace – converts to raster to vector with the output being GeoJSON 

– Geographic Javascript Object Notation (GeoJSON) file size is 31 kbytes 
• Topographic Javascript Object Notation (TopoJSON) converts GeoJSON to 

TopoJSON format 
– file size is 6 kbytes (choose 50% simplification of vectors) 
– User selectable to about 90% 

• Compress TopoJSON using ZIP 
– Compressed size is 2 kbyte 

• Compression of 1000:1 
• Download 2 kbyte GitHub then can visualize on built in map visualized (Mapbox) 

– OpenStreetMap compatible  
– Viewable in browser 
– Shareable on Facebook and other social media 
– Github is used for versioning on maps and thus will store user annotation to 

map 
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Example 2 for Intelligent Onboard 
Data Reduction:  Running 
Coregistration with Chips 
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Global Land Survey Maps

• A collection of Landsat-type satellite images 
from USGS
• Near complete global coverage
• Orthorectified
• Each image has cloud cover of less than 10%
• Four versions: 1970, 1990, 2000, and 2005

• Ground truth for the registration programs was 
drawn from the GLS 2000 and can be updated 
when the GLS 2010 is completed

• http://landsat.usgs.gov/science_GLS.php
14



Chip Registration

Overlapping chip 
from database

Chip extracted 
from EO1 scene

Area in EO1 scene where chip was extracted

Currently “chip database” created (in a brute-force fashion) by extracting 
successive 256x256 sub-images of all GLS scenes and storing them 

according to path and row 15



Automatic Registration of EO1 Scenes 
Using Global Land Survey (GLS) Database 
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Window using a Median Filter
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Scene 1 Before Automatic Registration 
Superimposed onto Goggle Earth 
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Scene 1 After Automatic Registration 
Superimposed onto Goggle Earth 
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Scene 2 Before Automatic Registration 
Superimposed onto Goggle Earth 
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Scene 2 After Automatic Registration 
Superimposed onto Goggle Earth 
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Conclusions and Future Work
� Results visually acceptable

� Computations very fast and real-time

� RMS still too high (Translation errors between 0.4 and 2.5 pixels) because:

1. Chips and windows need to be pre-selected based on the information 
content (e.g., using an entropy measure) 

� Registration would be more accurate because transformation would 
only be computed on pairs that have a significant amount of features

� Registration would be faster because less local registrations

� Chip database would be smaller to be stored onboard

2. Global transformation should be computed by taking the list of original 
corners coordinates of each window and their corresponding corrected 
coordinates, and treat them as a list of ground control points and their 
corresponding points => after outlier elimination, global transformation can 
be computed using a rigid, an affine or a polynomial transformation.

3. Masks for clouds and water should be included, so registration would not 
use cloud or water features that are often unreliable

• Onboard, computations can be performed on SpaceCube or hybrid processor 21



Representative IPM Data Processing 
Chain & Metrics 

Building to Helicopter Experiment 



Hyperspectral Image Processing 
Radiometric 
Correction 
(CHAI data) 

*Atmospheric 
Correction 
(FLAASH) 
(EO1 Hyperion 
data)  

Geometric 
Correction 
(GCAP) 
(GLiHT data) 

*WCPS 
(vis_composite) 
(EO1 Hyperion data) 

864 MHz TILEPro64  
(1 core) 

121.95 2477.74 183.42 72.39 

864 MHz TILEPro64  
(49 cores) 

23.83 1744.13 4.59 21.63 

1.0 GHz 
TILE-Gx36 
(1 core) 

57.22 897.71 28.51 19.93 

1.0GHz  
TILE-Gx36 
(36 cores) 

9.21 588.71 1.41 8.72 

2.2GHz Intel Core I7  2.09 58.29 0.169 2.26 

Virtex 5 FPGA TBD TBD TBD TBD 
Image data: 
GLiHT       1004 x 1028 x 402  (829,818,048 bytes)
Hyperion (EO1H1740732001151111K3) 
                  256 x 6702 x 242    (830,404,608 bytes)
Chai640   696 x 2103 x 283    (828,447,408 bytes)

Notes: Unit is in seconds
TILEPro64 – No floating point support
TILEGx36 – Partial floating point support
* Indicates time includes file I/O
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FLAASH Parallelization Effort 
wall system user notes Parallelized?

Original 
Walltime

Parallel 
Speedup

Surf reflectance 32.7952 5.1398 27.6554
Reflect::

RadtoRef YES 197.317 6.016642679

Cube smoothing 145.741 18.1373 127.6037
mini_cube-

>Smooth; FFT

Cube reduction 112.363 13.9834 98.3796
mini_cube-
>Condense

Cube load & distrib 89.0128 11.0775 77.9353

Cube gather & write 83.2988 10.3664 72.9324

Aerosol Retrieval 52.6236 6.54892 46.07468

Water col retrieval 34.7984 4.3306 30.4678

Spectral Polishing 33.5795 4.17891 29.40059

Sensor calibration 28.5097 3.54799 24.96171

Images and Masks 17.1781 2.13779 15.04031

Spectral Resampling 8.72743 1.08611 7.64132
Smile_Resampl
er::Cube_Copy YES 241.669 27.69074057

Cloud Masking 5.93287 0.738336 5.194534

Sensor slit function 0.764612 0.0951547 0.6694573

Modtran Tables 0.416416 0.0518223 0.3645937

un-categorized 0.0397966 0.00495262 0.03484398

Flaash setup 0.000163794 2.04E-05 1.43E-04

total time 645.7813884 81.425006 564.3563824 1.641422344

total time (h:m:s) 0:10:46 0:01:21 0:09:24

Original Wall time: 1060

0:17:40
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Conclusion
� Examining a variety of methods to speed up onboard 

processing chain to meet needs of low latency users

� Dovetailing efforts and metrics with High Performance Space 
Computing (HPSC) effort sponsored by NASA Office Chief 
Technologist

� IPM data processing effort applied to multiple future mission 
needs
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