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Abstract

Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake
evolving in a stably stratified background. A large initial Froude number is chosen to allow
the wake to become fully turbulent and axisymmetric before stratification affects the spread-
ing rate of the mean defect. The uncertainty introduced by the finite sample size associated
with gathering statistics from a simulation of a time-dependent flow is reduced, compared to
earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbu-
lence structure, as well as to the mean-defect history and the terms in the mean-momentum
and turbulence-kinetic-energy budgets, that characterize the various states of this flow –
namely the three-dimensional (essentially unstratified), non-equilibrium (or ‘wake-collapse’)
and quasi-two-dimensional (or ‘two-component’) regimes observed elsewhere for wakes em-
bedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is
not accompanied by transfer (or ‘reconversion’) of the potential energy of the turbulence
to the kinetic energy of the turbulence, implying that this is not an essential feature of
stratified-wake dynamics. The dependence upon Reynolds number of the duration of the
wake-collapse period is demonstrated, and the effect of the details of the initial/near-field
conditions of the wake on its subsequent development is examined.

1 Background and objectives

This study is concerned with the effects of stable buoyancy upon the evolution of a turbulent
wake. These effects can be parameterized by the Froude number F = U/NL, where U and
L are relevant velocity and length scales and N = [−g(dρ/dz)/ρ∞]1/2 is the Brunt-Väisälä
frequency (where g is the gravitational acceleration, z is the vertical coordinate, ρ is the
mean background density and ρ∞ is a characteristic/reference density). The Froude number
is an inverse measure, being small when buoyancy is important and large when it is not.
For the flow over a wake-generating body, an appropriate Froude number can be defined as
F∞ = 2U∞/ND, where U∞ and D are the speed and effective cross-sectional diameter of the
wake-generating body. A local, time-dependent, alternative is the deficit Froude number,
Fd = 2Ud/Nδ, where Ud and δ are the maximum mean wake-velocity deficit and mean wake
width. Since the velocity deficit decreases with distance from the body while the wake width
increases, the wake Froude number strictly decreases with distance. This implies all wakes
in stratified fluids will be affected by buoyancy at some point in their development.

Here we consider the weakly stratified case with initially high Froude number (Fd ≫ 1),
such that the wake is largely unaffected by buoyancy for some distance downstream of
the body. Weakly stratified wakes evolve through three distinct regimes, which Spedding
[1] referred to as the three-dimensional (3D), non-equilibrium and quasi-two-dimensional
states. A review of the towed-wake experiments from which this picture derives is given
by Diamessis, Spedding & Domaradzki [2], while a model that recovers the three regimes,
along with two others, is presented by Meunier, Diamessis & Spedding [3].

During the 3D regime the high-F∞ wake is initially unaffected by buoyancy and thus
produces fully three-dimensional turbulent motions for a period of time, while the wake-
defect Froude number remains greater than order 1. The mean and turbulence statistics
are consistent with unstratified flows during this time and exhibit self-similar behavior
indistinguishable from that observed in unstratified wakes (Tennekes & Lumley [4], Bevilaqu
& Lykoudis [5]). This situation is in contrast to flows with initial Fd of order one or smaller,
which are immediately altered by stratification, so that the canonical self-similar state is
never realized. In the extreme initial-Fd → 0 case, buoyancy suppresses vertical motion
to the extent that three-dimensional turbulence never appears (Chomaz et al. [6], Riley &
Lelong [7]). For towed-sphere experiments, the critical value below which the 3D regime
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does not exist is F∞ ≈ 4; cf. Dommermuth et al., [8].
When the initially three-dimensional turbulence in the high-F∞ wake begins to ‘feel’ the

effects of buoyancy, the non-equilibrium (NEQ) (also known as ‘vertical collapse’) regime
begins. (The term ‘non-equilibrium’ can be viewed as a synonym for ‘intermediate’ or
‘transitional’, and should not be interpreted literally: it does not imply, for example, that
in the pre-NEQ state the rates of production and dissipation of turbulence kinetic energy
balance, since this type of equilibrium does not happen even in the purely unstratified self-
similar benchmark.) When the wake enters the NEQ phase, it ceases to spread vertically;
in fact, the height has been observed in some cases to slowly decrease with time during
this period (Brucker & Sarkar [9]; Diamessis et al. [2]; Lin & Pao [10], the latter for the
self-propelled case), although this may be at least in part a consequence of how the height
is defined. As we will see below, a distinction should be made between the heights based on
the mean defect (typically measured using a Gaussian curve fit) and on the extent of the
wake turbulence (revealed for example by shadowgraph or dye visualizations).

As the wake stops spreading vertically, its lateral growth continues at roughly the same
rate observed during the 3D phase (Diamessis et al. [2]). (We reserve the term ‘lateral’ to
indicate the direction aligned with the axis orthogonal to the streamwise-vertical plane.)
Whether the rate of lateral spreading remains exactly or only approximately constant as
the flow passes from the 3D to NEQ states is an open question. Brucker & Sarkar [9] cite
different power-law exponents for the mean-defect width during the different regimes, while
Diamessis et al. [2] find t1/3 behavior for the entire wake history.

The NEQ period is also characterized by a large reduction in the rate of decay |dUd/dt|
of the maximum mean defect velocity Ud, and also the rate of decay of the turbulence
kinetic energy. Spedding [1] and others (e.g. Dommermuth et al. [8]; Diamessis et al. [2])
have described these as ‘re-stratification’ effects, attributed to the transfer of potential
to kinetic energy, as the wake turbulence collapses, and heavy/cold fluid parcels fall, and
light/warm ones rise, towards their original positions. Although this explanation is plausible
and consistent with the behavior of the mean defect, it is not the only possibility, since the
mean and turbulence kinetic energy can also be enhanced by alterations to the production
and dissipation processes (cf. Brucker & Sarkar [9]). We shall present evidence for a picture
of NEQ dynamics that is not based on the net transfer of potential to kinetic energy, which
for the turbulence is consistently in the opposite direction and for the mean does not act
directly upon the streamwise component.

The NEQ phase is observed to begin at roughly two buoyancy periods (Nt ≈ 2) for a
wide range of F∞ > 4 (Spedding [1]). Its duration, on the other hand, has been predicted by
Meunier et al. [3], and demonstrated by the DNS of Brucker & Sarkar [9] and the large-eddy
simulations (LES) of Diamessis et al. [2], to increase with Reynolds number R∞ = U∞D/ν.
While the evidence for this Reynolds-number dependence is strong, it remains at present
rather qualitative, since it is influenced by the statistical uncertainty associated with finite-
domain numerical simulations (see below).

After the NEQ phase, the wake enters the quasi-two-dimensional (Q2D) state, char-
acterized by the emergence of large-scale coherent structures. (Godeford & Cambon [11]
point out that ‘quasi-two-component’ is a more accurate description of flows like this, whose
vertical motions have been strongly attenuated by stable buoyancy, since significant vertical
variations of the other two components are not necessarily negligible. Nevertheless, to be
consistent with previous studies, we shall continue to use ‘Q2D’ to refer to this aspect of
the wake evolution.) The towed-sphere measurements of Chomaz et al. [6] revealed that
flattened ‘pancake-like’ eddies eventually appear for both weak and strong stratification (cf.
Spedding [12]). The maximum mean velocity begins to decrease more quickly than it did
during the NEQ regime, while the mean defect spreads laterally at a rate comparable to
the 3D value. The vertical spreading also begins again, growing at a rate consistent with
viscous diffusion (Meunier et al. [3], Brucker & Sarkar [9], Diamessis et al. [2]).
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While the effects of buoyancy that lead from the 3D to the NEQ and then the Q2D
regimes are well-understood on a qualitative level, there is lesser understanding of the de-
tailed turbulent processes that drive the regime changes. Our aim in the present study is
to use numerical simulation to quantify the mechanisms involved, and thereby provide an-
swers to questions such as the one mentioned above regarding the hypothesized transfer of
potential to kinetic energy during the NEQ regime. Nearly all wake simulations performed
to date have made use of the temporal idealization where a fixed streamwise segment of the
wake is evolved in a reference frame attached to the undisturbed fluid. The weak streamwise
variation of statistics is ignored so that periodic boundary conditions can be used in the
streamwise direction. This configuration allows for very efficient numerical procedures and
has proven to yield results that are in reasonable agreement with laboratory measurements
(cf. Gourlay et al. [13]). Although we employ the same temporal idealization as those before
us, we have chosen a longer streamwise domain than has been used in prior studies. Since
the streamwise direction is assumed to be homogeneous, it forms the basis for computing
the (time-dependent) turbulence statistics. While relatively short domains require fewer
mesh points and proportionally less computer time, they provide a smaller averaging base
at each time; a domain of minimal size may contain only one or two of the large-scale turbu-
lent structures present at that instant in time. While such a simulation progresses without
difficulty, there can be large uncertainty, which increases in time, in the computed statistics
due to inadequate sample. Here we use a streamwise domain size that is between 1.2 and
5.6 times longer than those employed in previous wake simulations (cf. Gourlay et al. [13],
Brucker & Sarkar [9], and Diamessis et al. [2]). This extended streamwise domain allows
for a greater population of ‘large-eddy samples’ and provides less uncertain statistics. This
strategy leads to resolution of earlier discrepancies, such as that in the lateral spreading rate
during the NEQ regime reported by [9] and [2].

As with the discrepancy in the lateral wake spreading rate, there is no consensus on
the Reynolds-number dependence of the duration of the NEQ regime. This feature is also
influenced by statistical uncertainty, and prior results reported by Brucker & Sarkar [9] and
Diamessis et al. [2] have relatively high uncertainty due to limited large-eddy samples. The
increased domain size and a separate numerical experiment (discussed in detail below) will
be used to demonstrate the factors affecting the time at which the NEQ state begins to
transition to the Q2D regime.

Finally, the initial-condition dependence of the wake development will be examined, in
light of the non-universality of the self-similar states observed for late axisymmetric wakes
in unstratified media. The non-universality of the unstratified case is exemplified by mean
spreading rates and turbulence-to-mean ratios that vary with the shape of the wake-creating
object (Bevilaqua & Lykoudis [5]) (although they eventually, at distances corresponding to
1000s of body sizes downstream, relax to a universal value; see Redford et al. [14], referred
to hereinafter as RCC). This non-universality has been traced to differences in the near-field
turbulence structures shed from bodies of different shape. For the stratified counterpart,
the available data suggest that the structures of the early and late wake are unrelated, with
pancake eddies ultimately resulting from a wide variety of initial states, some of which are
non-turbulent or even non-wake-like [2,13,15,16]. Furthermore, Spedding [1] showed that for
sphere wakes, nominal universality is obtained for the mean-defect history Ud(t)/V∞ when

weighted by F
2/3
∞ . This scaling was generalized to bodies of various shapes by Meunier &

Spedding [17] (see also [3]) by accounting, via an effective diameter, for the net momentum
extracted by the body. The founding assumption of their model will be assessed below.

The issues raised above will be addressed using DNS of a wake at high F∞ and relatively
high R∞. To put this simulation in context, we mention the earlier numerical studies of
stably stratified wakes generated by constant-velocity axisymmetric towed bodies performed,
for high-F∞, by Gourlay et al. [13] (via DNS), Diamessis et al. [2] (LES) and Brucker &
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Sarkar [9] (DNS), the latter as part of a study of differences between wakes downstream of
towed- and self-propelled bodies in high- and low-F∞ backgrounds (de Stadler & Sarkar’s
[18] DNS includes the effect of body acceleration for moderate stratification). Lower F∞

cases have been simulated by Dommermuth et al. [8], using LES, and (for a range of
Prandtl numbers) de Stadler et al. [19], using DNS. Provided it can reach relevant Reynolds
numbers (and produce accurate statistics), a numerical approach has many advantages,
supplying detail not available from experiment. For example, Gourlay et al.’s , [13] DNS
revealed the vortex-ring structure underlying the Q2D pancake eddies, while the LES of
Diamessis et al. [2] documented the presence of small-scale Kelvin-Helmholtz instabilities
during the NEQ regime and its Reynolds-number dependence. Dommermuth et al.’s [8]
low-F∞ LES quantified the relative importance of the terms in the mean- and turbulence-
kinetic-energy budgets, during the NEQ and Q2D regimes, that ensue when the turbulence is
immediately affected by buoyancy. Similar exercises were performed by Brucker & Sarkar [9]
and deStadler & Sarkar [18] for their towed- and self-propelled-body flows.

To summarize, we will use DNS to:

1. Obtain results with improved ‘eddy sample size’ (via increased streamwise domain
length), to reduce the uncertainty of the statistics, especially the mean wake spreading
rate.

2. Assess more completely how the effects of buoyancy alter the wake’s mean momentum
and turbulence energy budgets.

3. Determine whether or not there is a net transfer of potential to kinetic energy during
the wake collapse in the NEQ regime.

4. Quantify the Reynolds-number dependence of the duration of the NEQ regime.

5. Demonstrate how the wake development is affected by the details of the initial con-
dition used in the numerical simulation, comparing with earlier simulation results to
explore the extent to which mean-defect histories exhibit universality.

In § 2, the numerical approach, initialization strategy, and DNS parameters are described.
Section 3 documents the wake development in terms of flow visualisations, mean-flow statis-
tics, and the budgets of mean momentum, and mean and turbulence kinetic energy. Closing
comments and conclusions are summarized in § 4.

2 Problem formulation, numerical strategy and param-

eters

Following Gourlay et al. [13] (cf. [2,8,9,18,19]), we (as in RCC) invoke a Galilean transfor-
mation, and emulate the actual, spatially developing wake with a parallel-flow, temporally
developing idealization. The resulting streamwise homogeneity allows efficient DNS with a
standard triply periodic FFT-based pseudo-spectral method [20].

For the high-Froude-number flow studied here, vertical density variations are negligi-
ble compared to the background reference density ρ∞, allowing stable stratification to be
accounted for with the Boussinesq (divergence-free velocity) approximation. Molecular dif-
fusion of the (temperature-dependent) density field is matched to that for the velocity field
by assuming the Prandtl number ν/α = 1 (cf. [19]), where ν is the kinematic viscosity and
α is the thermal diffusivity, both of which are assumed constant in space and time (and
therefore independent of temperature). The pressure variable in the incompressible Navier-
Stokes equations is eliminated using a velocity-vorticity formulation [21]. A low-storage
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third-order temporal discretization [22] is applied to the nonlinear terms, while the viscous
terms are treated analytically [23].

The coordinate x = x1 denotes the streamwise/longitudinal direction, along the wake
axis, with u = u1 the corresponding streamwise velocity, defined such that positive values
point ‘upstream’ and the maximum occurs at the centerline (figure 9). Because of the
parallel-flow assumption, the uniform background/freestream velocity V∞ amounts to an
arbitrary Galilean shift; we chose V∞ = 0, which implies u→ 0 far from the wake centerline.
The lateral (‘spanwise’) and vertical directions are respectively y = x2 and z = x3 (positive
upwards), with velocities v = u2 and w = u3, such that x-y planes are normal to the gravity
vector gi = −gδi3.

Before discussing the numerical parameters, we describe the three types of averaging used
in this paper. The Reynolds decomposition is defined with respect to the mean (denoted by
an overbar) formed by averaging over the homogeneous streamwise direction x; this mean
thus varies with lateral and vertical position, and time: e.g. u = u(y, z, t). (Note that,
unlike for the unstratified wake simulated in RCC, averaging over the azimuthal direction is
not appropriate.) A prime (′) indicates a deviation from this mean, such that the Reynolds
stresses, density-fluctuation variance and turbulent buoyancy flux are written respectively
as −u′iu′j, ρ′ρ′ and −ρ′w′. As in Spedding [1], we also examine histories of bulk averages
of Reynolds-averaged quantities, taken across the inhomogeneous directions (y and z) of
the mean defect, over the region where u > 0.05Ud (Spedding’s mean was over horizontal
and vertical planes where u > 0.2Ud). These averages are indicated with angle brackets:

〈k〉 = (1/2)〈u′iu′i〉 = (1/2)
∫ Λz

0

∫ Λy

0 ψ u′iu
′
i dy dz/Ψ, where ψ = ψ(y, z)|u/Ud>0.05 is unity if

u(y, z) > 0.05Ud and zero otherwise, and Ψ =
∫ Λz

0

∫ Λy

0 ψ dy dz. A third type of statistic
(indicated by braces { }) is formed from cross-wake integration (not averaging) over the
entire y-z domain, of Reynolds-averaged quantities; examples include the total/integrated

turbulence kinetic energy (TKE) {k} = (1/2)
∫ Λz

0

∫ Λz

0 u′iu
′
i dy dz and its rate of production

{Ptke} = −
∫ Λz

0

∫ Λz

0 (u′iu
′
j∂ ui/∂xj) dy dz.

Based on our earlier experiences with DNS of unstratified turbulent wakes (RCC), the
wake is initialised as a sequence of vortex rings, identical to Case VR of RCC apart from
the ring spacing (see their figure 1a), embedded in a stably stratified background with
imposed constant/uniform mean-density gradient Γ = (dρ/dz)∞ < 0. This strategy was
found to be an efficient way to produce fully developed wake turbulence containing mature
turbulent structures, which – while not necessarily corresponding to those generated by a
realistic wake-creating body in a real-world application – allows us to perform a numerical
experiment that can be used to address the issues raised above (such as the effect of the
details of the initial conditions on late-wake development).

In order to simulate the wake using periodic boundary conditions, the transported density
variable (= ρ(z, t)+ρ′(x, y, z, t)) is defined as the perturbation from the background density
field ρ∞ + zΓ (where the origin of the z-axis is, say, in the center of the computational
domain).

As in Shariff [24], each ring in the sequence is represented as a circular loop, of radius r0
in y-z planes, of Gaussian azimuthal core vorticity ωθ, with ωθ = (γ/πδ2ω) exp

[
−(s/δω)

2
]
,

where γ is the ring’s circulation, s2 = (x− x0)
2 + (r − r0)

2, r2 = (y − y0)
2 + (z − z0)

2 and
(x0, y0, z0) is the location of the centre of the ring in question. The length-scale δω defines
the thickness of the vortex core (chosen as δω = 0.4r0). The rings are spaced uniformly every
2πr0/3 along the wake axis (x, y0, z0) (RCC used 16πr0/27 ≈ 0.59πr0); the rings combine
to induce an initial mean velocity defect of maximum velocity Udo and width ho, the latter
defined as the radial distance from the wake centreline to the location at which the mean
streamwise velocity u is half of Ud.

The wake turbulence is the result of a nonlinear/bypass transition, which is triggered
by a ∆r = ±0.004r0 maximum radial displacement of the ring circumference, in the y-z
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plane, for each of the azimuthal modes 5 − 32, with random azimuthal phases, using dif-
ferent random-number seeds for each ring. As the individual vortex rings break down and
disturb their neighbours, a vericose-type instability ensues (see figure 5a of RCC), leading
to fully developed turbulence relatively quickly – much sooner than, for example, when
very-small-amplitude disturbances are added to a mean defect profile, such that transition
is via growth of the helical linear-instability modes (as was done for Case SD of RCC). The
approach used by Gourlay et al. [13] also avoids the need to simulate the natural linear-
instability transition process, by prescribing a Gaussian mean velocity and superimposing
random finite-amplitude perturbations whose magnitudes were set by matching a desired en-
ergy spectrum, and then clipped/filtered in physical space with an axisymmetric/cylindrical
window. Similar procedures were followed by Brucker & Sarkar [9] and Diamessis et al. [2],
although the former’s DNS involved an initial adjustment period during which the mean
flow was held fixed as the fluctuations developed, and the latter’s LES required a precursor
‘relaxation’ simulation, during which the effective gravity was slowly increased. Despite
being necessarily somewhat ‘synthetic’ in nature, those initialization schemes all produced
statistics that very quickly exhibit expected behavior (see figure 21). The primary difference
between the present and earlier strategies is that here coherent structures are ‘hard wired’
into the initial-condition turbulence.

The initial Froude number specified here is quite large, to ensure the wake turbulence
is fully developed and physical when it is first affected by the stratification. The initial
mean-defect Froude number Fdo = Udo/Nho = 23.7; this corresponds to F∞ = 2V∞/ND of
approximately 130, assuming the uniform flow speed V∞ ≈ 5Udo and virtual-body diameter
D ≈ 2ho (see RCC). The initial mean-defect Reynolds number Rdo = Udoho/ν = 2625,
such that the equivalent R∞ = V∞D/ν ≈ 2.6 × 104. This is well above the critical value
of R∞ ≈ 5 × 103, found by Spedding, Browand & Fincham [25] to be required for the
turbulent wake structures and decay rates to exhibit self similarity – although it is not
above the threshold (if one exists) beyond which all features (such as the duration of the
various self-similar regimes) can be expected to be independent of Reynolds number (cf.
Diamessis et al. [2]).

A modified version of this case will also be considered, which is equivalent except that
beginning from Nt = 1.9 the viscosity varies at each time step, such that the mean-defect
Reynolds number, based on the integral scale r∗ = ((ln 2/π)(Id/Ud))

1/2, where Id = {u}
is the volume-flux deficit, remains fixed thereafter at Ud r

∗/ν = 1500; see + symbol in
figure 1c, d. (The regridding/domain-expansion strategy described below was also employed,
although, towards the end of the run, not at identical times.) Results from this ‘artificial’
numerical experiment (cf. [26]), which we shall refer to as Case R1500, will be compared
to those from the primary (constant-viscosity/variable-Renolds-number) DNS, to determine
the Reynolds-number dependence of the mean-defect histories; unless otherwise stated (see
figure 7) all the new simulation results shown below will be from the primary DNS. Two
additional test runs were also performed, to explore numerical-validation issues, as explained
below.

For Gourlay et al. [13], Fdo = 34.0 and Rdo = 1472. The more recent simulations tended
to use lower F and higher R: Brucker & Sarkar’s [9] Case TR50F04 (i.e. F∞/2 = V∞/ND =
4, R∞ = 50 000) corresponds to Fdo ≈ 0.75 and Rdo ≈ 3250 (they assume Udo/V∞ = 0.11
and D ≈ 1.7ho). They also simulated a lower-R, higher-F flow with which we will compare
(their ‘TR10F20’), with (Fdo, Rdo) ≈ (3.75, 650). Comparison will also be made with the
recent F∞ = 64 (Fdo ≈ 14.5), R∞ = 105 (Rdo ≈ 1.1 × 104) LES of Diamessis et al. [2], for
which the eddy-resolving capability was comparable to the present DNS. In fact, although
the smallest resolved scales are not those that actually appear at R∞ = 105, the LES has
the advantage of taking full benefit of the available spatial resolution – since the magnitude
of the subgrid-scale viscosity of the LES can be smaller than the molecular viscosity of the
DNS – and thus has the capacity to capture scales smaller than those of an over-resolved

6



10›1 100 101 102 103

10›2

10›1

100

101

102

U
d
/N

h
z

(a)

10›1 100 101 102 10310›3

10›2

10›1

100

101

102

U
d
/N

h
y

(b)

10›1 100 101 102 103

102

103

104

Nt

U
d
h
z
/
ν

(c)

10›1 100 101 102 103

102

103

104

Nt

U
d
h
y
/
ν

(d)

Figure 1. Mean (a, b) Froude number Fd = Ud/Nh and (c, d) Reynolds number Rd =
Udh/ν histories: , present DNS [(Fdo, Rdo) = (23.7, 2223)]; +, time at which the
variable-viscosity run (Case R1500) first reaches its minimum Reynolds number, Ud r

∗/ν =
1500 (see discussion regarding figure 7); ◦, Gourlay et al. [13] [(Fdo, Rdo) ≈ (34, 1472)]; �,
Case TR50F04 of Brucker & Sarkar [9] [(Fdo, Rdo) ≈ (0.75, 3250)]; •, Case TR10F20 of
Brucker & Sarkar [9] [(Fdo, Rdo) ≈ (3.75, 650)]; ⋄, Case R100F64 LES of Diamessis et al. [2]
[(Fdo, Rdo) ≈ (14.5, 11 000)].
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DNS at smaller Reynolds number, such as is used here.
The variations of the mean-defect-based Froude and Reynolds numbers for the present

and earlier simulations are shown in figure 1, defined in terms of both the wake’s mean height
hz and width hy. Evidence of each of the 3D, NEQ and Q2D regimes can be seen. The
tendency for all the Froude numbers to fall monotonically indicates that all the flows, even
those with very large Fdo, eventually are dominated by buoyancy effects. The anisotropy
introduced by the stable stratification can be inferred in the differences between the Froude
and Reynolds numbers based on hz and hy. The wake evolution is such that the power-law
decay of the height-based Reynolds number Ud hz/ν varies little over the life of the flow,
while Ud hy/ν remains relatively constant, especially during the NEQ phase (cf. Diamessis
et al. [2]). The time required (t ≈ 1/N) for the vortex-ring initialization (solid line) to
produce a fully turbulent state is apparent, which can be contrasted with the approaches
used to define the Nt = 0 state for the other simulations (recall the difficulties involved in
specifying finite disturbances typical of the fully developed wake downstream of a sphere).
The question of appropriate virtual origins, needed when comparing the present and earlier
cases, will be taken up below.

To prepare for the possibility of the wake generating significant internal/buoyancy waves,
a ‘fringe’ region is adopted at the lateral and vertical edges of the periodic domain, to prevent
the energy radiated in the waves from re-entering the domain, and spuriously affecting the
wake dynamics. A forcing term F (similar to that used by de Stadler et al. [19] and
de Stadler & Sarkar [18]) is added to the right-hand-side R of the momentum and scalar
equations

∂q

∂t
= R+ F, (1)

which, in the fringe zone, drives q = (u, v, w, ρ′)T to a mean reference q̂, defined as its
average along the edge of the domain. The fringe forcing is written as F = −σ(y, z)(q− q̂)
where the fringe function

σ(y, z) = Cσ [σy(y) + σz(z)− σy(y)σz(z)] , (2)

for 0 ≤ y ≤ Λy and 0 ≤ z ≤ Λz, with Cσ = 0.04 and

σy(y) = 1− 1

2

{
tanh

[
af

(
2y

λy
− 1

)]
+ tanh

[
af

(
2(Λy − y)

λy
− 1

)]}
, (3)

σz(z) = 1− 1

2

{
tanh

[
af

(
2z

λz
− 1

)]
+ tanh

[
af

(
2(Λz − z)

λz
− 1

)]}
, (4)

where af = 2.5, λy = 30Λy/Ny, λz = 30Λz/Nz and Λy and Λz are respectively the lateral
and vertical domain sizes.

The effectiveness of this scheme was tested by applying it to the internal wave system
created by a point vortex (a multiple-frequency analogue of the vibrating-cylinder, ‘Saint
Andrew’s cross’, experiments of Mowbray & Rarity [27] (also in [28] and [29]), to verify that
the internal waves neither re-entered the domain or reflected off the fringe boundaries. The
energy absorbed by the fringe was calculated during the turbulent wake simulation. The
strongest activity was detected during the NEQ phase of the simulation, when animations of
quantities such as ∂w/∂z (cf. figure 12b) suggest that the waves are generated by individual
turbulent structures (rather than, say, mean collapse of the wake defect associated with entry
into the Q2D regime). For the present high-F flow, the internal-wave energy was found to
be only a small percentage of the overall dissipation (see discussion regarding figure 3b).

Another computational challenge associated with this flow is defining an appropriate
domain. The streamwise two-point correlations in figure 2a indicate that the streamwise
domain size Λx is adequate throughout the simulation, and individual structures fit com-
fortably within the domain (since their streamwise integral scale is much smaller than Λx),
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Figure 2. Evolution of (a) streamwise two-point autocorrelations and (b) streamwise spectra
of streamwise velocity: /◦, Nt = 0.2 (in b only); /�, Nt = 3.2; /⋄,
Nt = 21; /•, Nt = 136; /�, Nt = 587. Straight solid line in (b) indicates

κ
−5/3
x behavior. Spectra Ẽ11 and correlations R̃11 = Q̃11/Q̃11(0) are from averages of
E11 and Q11 over lateral and vertical planes though the wake centerline in regions for
which u ≥ 0.5Ud, where u′u′ =

∑
κx
E11(κx) and Q11(rx) = u′(x)u′(x + rx). Spectra and

wavenumbers in (b) normalized by Ur = 2.09Udo and Lr = ho.

even at very late times. The large-scale waviness during the late stages is due to the rel-
atively low Reynolds number (i.e. narrow range of streamwise scales), and especially the
periodicity of the large pancake-eddy structures present in the Q2D regime (figure 6). How-
ever, the streamwise domain size also directly affects the quality of the mean statistics (and
possibly the dynamics of the merging of the large-scale structures), since it defines the size
of the ‘large-eddy sample’ (which will decrease as time passes) that enters the streamwise
mean. Therefore, the choice was made to have a relatively large streamwise extent, with
Λx/ho = 96π ≈ 302 (cf. Gourlay et al.’s [13] Λx/ho = 245, Brucker & Searcher’s [9]
Λx/ho ≈ 105, and Diamessis et al.’s [2] Λx/ho ≈ 54).

The possibility that the height and especially the width of the wake will outgrow the
periodic domain is of even greater concern. To avoid this problem, without unduly wasting
computational resources, the lateral and vertical domain sizes Λy and Λz are dynamically
increased at appropriate times during the run, by projecting the periodic solutions onto a
domain of greater extent in y, and lesser in z, with the same grid spacing. Details of this
re-projection procedure are given in RCC. The spatial resolution is also reduced at certain
times during the simulations, as allowed by the monotonically decreasing Reynolds number
(see table 1).

The choices for the lateral and vertical domain are tabulated in table 1, with respect to
both the initial ho and local mean lateral hy and vertical hz half-widths. The criterion found
by RCC for the unstratified case, that the lateral and vertical width h must remain less than
0.17 of the corresponding domain size, is satisfied throughout the simulation. Confirmation
that stratification does not significantly alter this guideline is provided in figure 3a, where
the DNS histories are given along with those from a test run identical to the case defined
in table 1, except that the lateral and vertical domain sizes remain fixed at their values at
Nt = 28 (corresponding to the end of the NEQ regime). There is good agreement between
the two runs (including for the maximum Ud, width hy and height hz of the mean defect,
as well as the streamwise u′, lateral v′ and vertical w′ velocity fluctuations) until Nt ≈ 340,
at which point hy/Λy ≈ 0.15 and hz/Λz ≈ 0.12 for the smaller/fixed-domain results. These
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Nt Mx ∆x/ηmin My ∆y/ηmin Λy/ho hy/Λy ∆y/hy Mz ∆z/ηmin Λz/ho hz/Λz ∆z/hz

0 3072 3.8 256 1.0 2π 0.159 0.02 256 1.0 2π 0.159 0.02
0.87 7.0 1.7 0.155 0.02 1.7 0.157 0.02

0.87 384 3π 0.103 0.02 384 3π 0.105 0.02
1.12 6.7 256 2.5 0.112 0.02 256 2.5 0.110 0.02

1.12 384 4.5π 0.075 0.02 384 4.5π 0.073 0.02
2.86 2.9 256 1.6 0.131 0.02 256 1.6 0.120 0.02

2.86 384 6.75π 0.087 0.02 384 6.75π 0.080 0.02
5.38 1.8 256 1.5 0.132 0.02 256 1.5 0.087 0.03

5.38 384 10.13π 0.088 0.02 0.087 0.03
9.72 2560 1.4 256 1.5 0.108 0.02 192 1.3 0.085 0.04

9.72 384 15.19π 0.072 0.02 0.085 0.04
18.6 2304 1.0 256 1.4 0.078 0.03 0.8 0.078 0.05

18.6 384 22.78π 0.052 0.03 0.078 0.05
28.1 1536 1.2 320 1.4 0.057 0.04 128 1.0 0.077 0.07

28.1 480 34.17π 0.038 0.04 192 10.13π 0.052 0.07
35.4 1024 1.7 384 1.6 0.040 0.04 1.0 0.051 0.07
46.1 512 3.3 256 2.4 0.045 0.06 128 1.4 0.051 0.10
66.0 384 4.3 192 3.0 0.051 0.07 96 1.8 0.052 0.13

66.0 256 45.56π 0.038 0.07 128 13.5π 0.039 0.13
109 3.5 192 3.4 0.066 0.05 96 2.0 0.049 0.14

109 256 60.75π 0.050 0.05 128 18.0π 0.037 0.14
215 256 3.1 192 2.6 0.072 0.05 96 1.5 0.056 0.12

215 256 81π 0.054 0.05 128 24π 0.042 0.12
587 1.5 1.3 0.081 0.03 0.8 0.067 0.08
841 1.3 1.1 0.094 0.03 0.6 0.079 0.07

Table 1. Numerical parameters. The numbers of streamwiseMx, lateralMy and verticalMz Fourier-expansion coefficients are two-thirds of the
corresponding collocation/quadrature points: Nx = 3Mx/2, Ny = 3My/2 and Nz = 3Mz/2. Streamwise ∆x, lateral ∆y and vertical ∆z grid
spacings given by Λx/Nx, Λy/Ny and Λz/Nz, respectively. Minimum Kolmogorov length scale ηmin = (ν3/ǫmax)

1/4, where ǫmax is the maximum
of the streamwise-mean rate of dissipation of TKE at each time. The length Λx of the streamwise domain is fixed at 96πho, where ho is the
mean wake half-width/height at Nt = 0, while Λy and Λz increase at times shown (indicated by vertical gaps between rows). Values remain
unchanged until a new entry is given.
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Figure 3. (a) Comparison of results from the present DNS and a fixed-domain test run
beginning from Nt = 28.1, with Λy and Λz maintained at 34.17πho and 10.13πho, respec-
tively, such that the domain is not expanded at Nt = 66, 109 and 215; see table 1): lines,
present DNS; symbols, fixed-domain test run (◦, hy; •, hz; �, Ud; ⋄, 〈u′u′〉1/2; �, 〈v′v′〉1/2;
�, (〈w′w′〉1/2, where streamwise 〈u′u′〉, lateral 〈v′v′〉 and vertical 〈w′w′〉 Reynolds stresses
are cross-wake averages over the region in the y-z plane where u > 0.05Ud). (b) Histories
from the present DNS of the rate of change of integrated TKE {k} and net production
minus dissipation plus buoyancy {Ptke} − {ǫtke} + {Btke} (see § 3.5 for definitions): ,
d{k}/dt; �, {Ptke}− {ǫtke}; ◦, {Ptke}−{ǫtke}+ {Btke}. Budget terms in (b) given in units of
U3
rLr, where reference velocity Ur = 2.09Udo and length Lr = ho.

ratios are larger than those produced by the expansions used for the NEQ and Q2D phases
of the present DNS, which implies the results have not been adversely affected by a too-small
domain.

Table 1 also shows the changes in resolution over the course of the simulation. The
streamwise ∆x, lateral ∆y and vertical ∆z grid spacings are small enough multiples of the
minimum Kolmogrov scale ηmin throughout the simulation (between 1 and 4, except for a
brief period at very early times when ∆x reaches 7ηmin) that we can safely assume the results
faithfully capture all the significant spatial scales of the turbulence. The temporal scales
are resolved by ensuring the Courant-Friedrichs-Lewy (CFL) number does not exceed

√
2.8.

These conclusions are supported by the streamwise spectra in figure 2b. The signature of
the vortex-ring characterize is apparent at Nt = 0.2. The spectra also indicate the moderate
Reynolds number range considered here, in that κ−5/3 behavior is apparent, but only at
early times, bracketing Nt = 3. A more empirical check of the resolution is provided by
the histories in figure 3b, comparing the sum of the production, dissipation and buoyancy
terms (the fringe contribution is not included) in the integrated TKE equation (the open
circles) with its integrated rate of change (solid line). The good agreement between the two
points to the accuracy of the present DNS. It also implies that the energy of the internal
waves generated by the turbulence during the NEQ phase is negligible, since the integral of
the flux-divergence terms is essentially zero compared to that of the production, dissipation
and buoyancy. This is in contrast to the low-F case, where departure from the 3D regime
is accompanied by significant TKE transfer away from the wake (Brucker & Sarkar [9]).

We note that figure 3b also reveals the integrated buoyancy term (the difference between
the solid diamonds and open circles) is negligible except between Nt ≈ 1.5 and 15, and that
during this time it acts solely as a sink of TKE. This provides an answer to the question
raised in the introduction, regarding the defining NEQ mechanism, since it indicates that
the transition from the 3D to the NEQ regime is not accompanied by a net transfer of
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potential to kinetic energy.

A final comment regarding the present simulation strategy is warranted: the lateral- and
vertical-domain expansion is accompanied by a coarsening of the resolution across the mean
wake profiles u(y, z0) and u(y0, z), quantified in table 1 by a tendency for ∆y/hy and ∆z/hz
to increase with time. A check was made that the loss of resolution does not compromise the
shape of the u profiles, by repeating the portion corresponding to the largest ∆z (> 0.1hz,
approximately) with doubleMz, and confirming that the u results have negligible differences
compared to those shown below.

3 Results

3.1 Flow visualisation

The turbulence structures associated with the 3D, NEQ and Q2D regimes are shown, respec-
tively, in figures 4, 5 and 6. The weak stratification used here allows the wake turbulence to
develop a mature three-dimensional state before buoyancy begins to alter the flow. At the
time shown in figure 4 (Nt ≈ 3) the stratification causes the height to be slightly smaller
than the width (see also upper right-hand-side inset plot in figure 21b). However, it is evi-
dent that there is a substantial range of scales (cf. figure 2b), and that the wake is to a good
approximation still axisymmetric.

The large-scale lateral oscillation, as well as the flattening and vertical striations, ob-
served in the NEQ structure (figure 5, for Nt ≈ 21) are typical of those found in other
experiments and simulations [2, 12, 30], some of which correspond to lower F∞ and higher
R∞. In contrast to the more isotropic eddies seen at Nt = 3, here the turbulence in figure 5
contains ‘arrowhead’ structures in the vertical plane through the wake centerline that point
in the direction of motion of the virtual body associated with the wake (cf. figures 10–12 of
Diamessis et al. [2]). A visual estimate of the height of the turbulent region (as opposed to
that of the mean profile) indicates it is similar to, perhaps slightly less than, that for the 3D
regime (compare figure 4b). The change in structure corresponds to enhanced production
of TKE and profound anisotropy in its rate of dissipation (figure 16b). The lateral vorticity
contours in figure 5b suggest the presence of Kelvin-Helmholtz (K-H) billows at the top
and bottom of the wake, in the inclined shear layers of the arrowhead structures (e.g. near
x = 90ho). Diamessis et al. [2] discuss the manner in which the characteristics of these
inclined shear layers depend upon Reynolds number, and the associated question of the how
the layers’ overturning via K-H instabilities can contribute to the generation of turbulence
in stably stratified environments at high Reynolds number. For the present case, we show
below that at the time corresponding to figure 5, viscous effects are not insignificant.

The Q2D regime contains flattened, large-scale, pancake- type motions in horizontal
planes, such as those shown for Nt ≈ 587 in figure 6. There are three separate vortical struc-
tures that have the two-layered feature that emerged earlier in the simulation (figure 5c),
which bring to mind Godeford & Cambon’s [11] distinction between two-dimensional and
two-component turbulence (see also Spedding [12]). These two-layer eddies are similar
to those observed by Spedding [1] (for Nt ≥ 50 and F∞ > 10), by Gourlay et al. [13]
(Nt > 100, F∞ > 150), by Brucker & Sarkar [9] (Nt = 125, F∞ = 8), and by Diamessis et
al. [2] (Nt = 70, F∞ = 4). Figure 6 is also consistent with the vertical layering of lateral
vorticity fluctuations seen by Spedding [12] (at Nt = 64 for F∞ = 4). In light of the vortex-
ring initialization used here, which injects structures very different from the helical modes
associated with the towed-sphere wake (cf. figure 5a of RCC), the present results add to the
growing body of evidence that the Q2D eddies are unrelated to the type of instability by
which the wake became turbulent (see also [2, 13]).
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Figure 4. Instantaneous flow at Nt = 3.2 (Nt̃ = Nt − Ntvo = 2.5, end of 3D regime;
virtual origin tvo defined in figure 7). (a) Top and (b) side views of isosurfaces of vorticity
magnitude (|ω| = 0.38Ur/Lr). Mean-flow direction defined as if a virtual wake-creating
body has moved from left to right through the sub-domain shown. Views shown are 8% of
streamwise, and 47% of lateral and vertical, domain.
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Figure 5. Instantaneous flow at Nt = 20.9 (Nt̃ = Nt− Ntvo = 20.2, NEQ regime; virtual
origin tvo defined in figure 7). (a) Top and (c) side views of isosurfaces of vorticity magnitude
(|ω| = 9.7 × 10−4Ur/Lr) . (b) Contours of lateral vorticity ωy in vertical plane through
centerline, in units of 102Ur/Lr. Motion of virtual wake-creating body is from left to right.
Views shown represent subregion of full domain (table 1).
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Figure 6. Instantaneous flow at Nt = 586.9 (Nt̃ = Nt − Ntvo = 586.2, Q2D regime;
virtual origin tvo defined in figure 7). (a) Contours of vertical vorticity ωz in horizontal
plane through centerline, in units of 104Ur/Lr). (b) Top and (c) side views of isosurfaces of
vorticity magnitude (|ω| = 3.1× 10−7Ur/Lr). Motion of virtual wake-creating body is from
left to right. Views shown represent full streamwise, but subregions of lateral and vertical,
domain (table 1).
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3.2 Mean defect history

The history of the maximum mean velocity defect Ud is shown in figure 7a and b. The Ud

variation is smoother than that typically found from simulations, due to the reduced sta-
tistical oscillations associated with the larger-than-usual streamwise domain used here (the
same can be said for the mean-wake height and width histories in figure 7c, d). In contrast
to the unstratified-wake DNS of RCC, for which the difference between the maximum and
the centroid of the mean defect increased with time, and becomes significant at later stages,
here there is essentially no difference between the two, for the time period considered. There
is however a noticeable difference in the location in the y-z plane at which the two occur;
as in RCC, we use the location of the centroid of the mean-velocity distribution u(y, z) to
define the current/local wake centerline coordinates (yc, zc).

Figure 7b also shows histories of the streamwise u′, lateral v′ and vertical w′ velocity
fluctuations at the wake centerline (symbols). These, along with the Ud history, reveal that
it is not until after Nt ≈ 1 that the wake turbulence is fully developed. We therefore view
the early phase, fromNt = 0 until Nt = Ntvo ≈ 1, as effectively a precursor simulation. The

exact virtual-time origin tvo is defined by the unstratified, 3D similarity diagnostic U
−3/2
d

shown in figure 7a, from which we deduce Ntvo = 0.645 (chain-double-dotted line). In order
to remove some of the uncertainty associated with comparing the present results during the
3D and NEQ regimes with those from experiments and other simulations, the histories that
follow will be presented as functions ofNt̃ = Nt−Ntvo = Nt−0.645. Figure 7a also indicates
that Ud continues to exhibit pure-3D behavior until Nt̃ = Nt −Ntvo ≈ 4.8 − 0.645 ≈ 4.2,
since this is when the similarity diagnostic first deviates from the linear variation.

The early wake is well represented by the canonical Ud ∼ t−2/3 history despite not being
fully self similar during this time: although fully turbulent and essentially unstratified and
axisymmetric (figure 8a), the wake’s non-dimensional Reynolds-shear-stress profile in cylin-
drical coordinates −v′xv′r/U2

d (not shown) is not solely a function of the non-dimensional
radius r/h (i.e. with no time dependence). This is consistent with the evolution of the un-
stratified, vortex-ring-initialized, Case VR wake described in RCC, for which (non-universal)
self-similarity did not appear until after the time corresponding to Nt ≈ 11 for the present
simulation – and universal self-similarity not until Nt > 70. (For the present DNS, the
relationship between Nt and the non-dimensional time used in RCC is t/t∗ = 30Nt.) In
fact, in the range corresponding to 1 < Nt < 11, the Ud history for Case VR decays as t−1,
because of the unique turbulence distribution induced by the Case VR rings (which produce
an eddy viscosity profile that is temporally constant and radially uniform; see figures 8a and
9b of RCC). Here the ring initialization, which used somewhat larger streamwise spacing,
2.1ho rather than Case VR’s 1.85ho, is such that Ud ∼ t−2/3 is a better representation than
t−1 for the 3D regime. These observations illustrate the profound impact the initial wake
structure can have upon its development.

As observed elsewhere (e.g. in Spedding’s [1] experiments and Gourlay et al.’s [13]
simulation), the magnitude of the rate of decay |dUd/dt| slows markedly for Nt > 5, as
the flow enters the NEQ phase, such that Ud ∼ t−n with n ≤ 1/4. In this region, the Ud

variation is well represented by the interpolant 0.25(Nt+ 1)−1/4. (It should be mentioned
that power laws with slightly different exponents could also reproduce the Ud decay to good
accuracy, given the flexibility afforded by the use of a finite virtual origin for time.) The
time at which the 3D and NEQ power laws intersect, Nt̃ = Nt − Ntvo ≈ 6 − 0.645 ≈ 5.5,
can be viewed as an estimate of the boundary between the two regimes for the present flow.
The generality of this finding will be discussed in § 3.6.

The Ud history for the variable-viscosity run (Case R1500; see § 2) begins to significantly
differ from the constant-viscosity/variable-Rd result after Nt̃ ≈ 100 (compare dotted and
solid lines in inset plot in figure 7b), which implies non-inertial effects are important after
this time. The NEQ period revealed by the evolution of Ud begins at Nt̃ ≈ .5.5 and
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Figure 7. Histories of (a, b) maximum mean velocity Ud, (c) mean height ℓz and vertical
spreading rate βz and (d) mean width ℓy and lateral spreading rate βy: , present

DNS (with ℓz = r∗z and ℓy = r∗y in c and d, respectively); � (in b only), 0.1(u′u′)
1/2
c /Ud

(arbitrary factor of 0.1 is to aid visibility); ∆ (in b only), 0.1(v′v′)
1/2
c /Ud; H (in b only),

0.1(w′w′)
1/2
c /Ud; (in c and d), hz and hy; (in c and d), r′z and r′y ; ◦ (in d only),

L′
σ/r

∗
y (cf. Meunier & Spedding [17]); • (in d only), L′′

σ/r
∗
y (cf. Meunier & Spedding [17]); �,

(in c) βz = (1/Ud)dr
∗
z/dt and (in d) βy = (1/Ud)dr

∗
y/dt; ⋄, (in c) βz = (1/Ud)dr

∗
z/dt and (in

d) βy = (1/Ud)dr
∗
y/dt for Case R1500 (variable-viscocity (Ud r

∗/ν ≥ 1500) run); ,

curve fits for (a, b) Ud, (c) r
∗
z and (d) r∗y , where in (a) (Ud/Ud(t))

−3/2 = 3.1(Nt−0.645), in (b)

Ud/Udo = 0.47(Nt−0.645)−2/3 for Nt < 10, Ud/Udo = 0.25(Nt+1.0)−1/4 for 3 < Nt < 100,
Ud/Udo = 2.05(Nt−10)−0.85 for Nt > 40, while in (c) and (d) r∗z/ho = r∗y/ho = 1.23(Nt̃ )1/3

for Nt < 10 where Nt̃ = Nt−Ntvo and Ntvo = 0.645 (see figure 21b). ⊕ (in b only), time at
which Case R1500 first reaches its minimum Reynolds number, Ud r

∗/ν = 1500; (inset
plots in b, c, d only), Case R1500 (with ℓz = r∗z and ℓy = r∗y in c and d). At Nt = 0,
r∗z = r∗y = r∗o = 0.865ho. The Ud(t) interpolants intersect at Nt ≈ 6 and 45.
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follows (or remains just above) the NEQ power-law curve fit until about Nt̃ = 30 and
Nt̃ = 50 respectively for the constant- and variable-viscosity (i.e. lower and higher Reynolds
number) cases. The effect of viscosity on the NEQ duration is even more apparent in
the height histories (figure 7c). The Reynolds numbers for both cases are thus too low to
allow an extended NEQ region – and that the period during which significant turbulence
is ‘regenerated’ by Kelvin-Helmholtz instabilities (Diamessis et al. 2011), if it exists at all,
will be quite brief (cf. figure 5b). (see instantaneous lateral vorticity contours at Nt̃ = 20 in
figure 5 of Redford et al. 2014). The Reynolds-number dependence of the duration of the
NEQ regime will be considered further in § 3.6. For now we note that the Ud history seen
here during the final stage of the NEQ phase is more consistent with the t−1/2 behavior of the
‘buoyancy-controlled’ subregion between NEQ and Q2D proposed by Meunier et al. (2006)
than the Ud plateau of the ‘NEQ2’ subregion identified by Brucker & Sarkar (2010).

A t−3/4 power law for Ud could be assumed for the Q2D regime (cf. [3,25]), which would
agree well with the present data for Nt ≥ 80 if a virtual origin of Nt = 30 were used.
(Recall the earlier comment about the interplay between the power law’s exponent and
virtual origin.) However, a better fit is provided by t−0.85 for Nt ≥ 60, with a smaller virtual
origin (Nt = 10) (chain-double-dotted curve in figure 7a). The −0.85 exponent is also more
consistent with conservation of mean momentum, when coupled with the behavior of the
vertical and lateral defect dimensions (see below). The NEQ/Q2D boundary defined by the
intersection of the corresponding power-law interpolants is Nt̃ ≈ 55; the t−0.85 interpolant
closely corresponds to the Ud variation until the end of the (primary) simulation, Nt ≈ 840.
Note that the final time is not large enough for a purely viscous 3D regime to appear (such
that Ud ∼ t−1; see Meunier et al. [3]). In fact, the TKE remains a significant fraction of
U2
d for all the times considered here (figure 15a inset plot). Nevertheless, the importance of

viscous effects during the Q2D phase is underscored by the significant deviation for Nt > 90
of the Ud histories from the constant- and variable-viscosity flows (figure 7b inset plot).

The height histories are shown in figure 7c. Both the ‘half-radius’ height hz (i.e. half the
distance between the locations at which the mean velocity in the vertical plane through the
centerline, u(z, yc), is 0.5 of Ud; not a best-fit to an assumed Gaussian profile), and an inte-
gral measure r∗z are shown; the latter is defined as r∗z = [(2 ln 2/Ud)

∫∞

0
u(rz , yc)rzdrz ]

1/2,
where r2z = (z − zc)

2 and (yc, zc) are the coordinates of the local wake centerline. The
integral height has been normalized such that it is equal to hz when u(z, yc) is Gaussian.
Consequently, the greater the difference between hz (chain-dotted line) and r∗z (solid) in
figure 7c, the more non-Gaussian the vertical mean velocity profile (figure 9a).

During the 3D phase, when the wake is effectively unstratified, its height and width
grow in proportion to t̃1/3, and its non-dimensional mean growth/spreading rate βz =
(1/Ud)dr

∗
z/dt is approximately constant. This can be seen in figure 7c, for Nt̃ < 3 (chain-

dotted curve and symbols, which respectively trace a t̃1/3 interpolant for r∗z and the βz
variation). Perhaps unsurprisingly, given the flattening and widening effect the stratification
has on the mean defect, the height/width interpolant deviates from the DNS sooner (near
Nt−Ntvo = 2) than the corresponding Ud power-law interpolant does (Nt̃ ≈ 4.5).

Despite the wake not becoming fully self-similar, the spreading rate during the unstrat-
ified regime remains fixed near 0.03, which is roughly half that observed at much later
times (corresponding to Nt > 70) for the self-similar growth of RCC’s unstratified Case VR
wake. The streamwise velocity fluctuations at the centerline are also weaker here during
the 3D regime, than for Case VR during its (first, non-universal) fully self-similar phase,

with (u′u′ )
1/2
c /Ud ≈ 0.2 here (open squares in figure 7b) compared to approximately 0.3 for

Case VR.

The difference between the integral height for the constant- and variable-viscosity runs
(solid and dotted curves, respectively, shown in inset plot), and that of the non-dimensional
mean growth/spreading rate βz (solid and open diamonds) – namely that the region of zero
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slope (and thus zero βz) lasts longer for larger Rd (Nt̃ ≈ 70 rather than 30) – corroborate
Meunier et al.’s [3] prediction, and Diamessis et al.’s [2] observation, that the duration of
the NEQ regime increases with increasing Reynolds number.

Figure 7c also shows the differences in the evolution of the height of the mean defect
and vertical extent of the wake turbulence, which become apparent when one compares
histories of hz (chain-dotted curve) or r∗z (solid) with that of r′z (dashed), a TKE based

integral length, defined as r′z =
(
{k (z − zc)

2}/{k}
)1/2

where k = 1
2u

′
iu

′
i. The mean defect

does indeed ‘collapse’ early in the NEQ regime, in the sense that both hz and r∗z decrease
with time from Nt̃ ≈ 8 until about Nt̃ = 15 – although the reduction in the integral height
is much weaker than that exhibited by the u = 0.5Ud measure hz . As found by Gourlay et

al. [13], the turbulent region continues to spread vertically during the NEQ regime, when
dr∗/dt ≈ 0, before an even more dramatic collapse occurs, with dr′z/dt < 0 (much larger
than the negative dhz/dt and dr∗z/dt seen earlier) between Nt̃ ≈ 20 and 100. This behavior
was also observed for the self-propelled case by Lin & Pao [10] in their flow-visualisation
experiments, and in Brucker & Sarkar’s [9] DNS of self-propelled and towed wakes.

After the wake enters the Q2D regime, r′z begins to grow again, as do hz and r∗z . All
three heights then converge, as the vertical spreading becomes a purely viscous phenomenon,
such that hz ≈ r∗z ≈ r′z [13] and each grow as t1/2 [3]. This can be seen in figure 8, which
includes contours of the mean defect (lines) and TKE (colour) at times representing the
three regimes. The tendency for the height of the turbulent region to occupy a smaller and
smaller fraction of the mean defect as time passes is clear. (The changes to the TKE budget
corresponding to the change in shape of the TKE profiles – for example, the growth of the
‘flattened, double-pronged’ structure in the y-z plane that begins to appear during the NEQ
phase – will be considered in § 3.5.) The non-dimensional vertical growth rate βz is therefore
positive but much smaller than during the 3D regime, when the spreading is effected by the
turbulence.

Due to the conservation of mean streamwise momentum, the product of the mean height,
width and maximum velocity will remain approximately constant through the wake’s life-
time. (It would be exactly constant for a pure 2D-Gaussian mean defect. The Udhzhy
product for the primary simulation remains within ±16% of its value at Nt = 1 for the
full 1 ≤ Nt ≤ 840 range.) The variations of the power-law exponents for Ud and hz during
the 3D, NEQ and Q2D regimes are thus expected to lead to variations for the mean-width
history (which would conflict with Diamessis et al.’s [2] claim that hy ∼ t1/3 for all three
regimes). For example, the combination of monotonically decreasing Ud and dr∗z/dt → 0
requires the mean width to grow faster than it does during the 3D phase as the wake en-
ters the NEQ regime. Figure 7d illustrates the enhanced lateral growth, compared to the
3D power law (chain-double-dotted curve), in terms of both the mean half-width/radius
hy (chained-dotted curve) and the integral width r∗y = [(2 ln 2/Ud)

∫∞

0
u(zc, ry)rydry ]

1/2,

with r2y = (y − yc)
2 (solid curve), for 1.5 ≤ Nt̃ ≤ 4.5. Thereafter, the rate of spreading

slows, falling from a maximum near Nt̃ = 5 to a local near-zero minimum near Nt̃ = 20
(see open and closed diamonds in figure 7d, which show the history of the non-dimensional
lateral spreading rate βy = (1/Ud)dr

∗
y/dt). Beginning from Nt̃ ≈ 25, as the wake leaves

the NEQ and enters the Q2D regime (and Ud(t) begins to increase its rate of decay), the
lateral growth increases rapidly until it reaches a value comparable to that observed during
the unstratified 3D period, with r∗y ∼ t0.35. This is similar to the hy ∼ t1/3 proposed by

Diamessis et al. [2], but differs from the t1/4 included in Meunier et al.’s [3] model, and the
t0.23 observed in Brucker & Sarkar’s [9] DNS, for the Q2D range. The difference between
the n = 0.35 and 0.25 exponents is shown by the thin-solid lines in figure 7d, which supports
our preference for the larger value – which in turn explains (in light of the viscous n = 1/2
growth of hz, and conservation of momentum) our use of n = −0.85 to fit the Ud(t) history
(figure 7b). (Meunier et al.’s [3] exponent combination of (−3/4, 1/2, 1/4) for (Ud, hz, hy)
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Figure 8. Mean-defect and TKE contours at: (a) Nt̃ = 1.2, (b) Nt̃ = 2.5, (c) Nt̃ = 18,
(d) Nt̃ = 82 and (e) Nt̃ = 586. TKE (shaded contours) normalized by local U2

d . Solid-line
contours correspond to u = 0.05Ud and 0.5Ud.
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also satisfies the constant-momentum constraint.) Despite the profound qualitative differ-
ences in the turbulence structure in the 3D and Q2D regimes, the rate at which the mean
defect spreads laterally is about the same.

The width of the turbulence, like that of the mean defect, grows continuously throughout
the lifetime of the wake. This can be seen by the history of the TKE-based integral width

r′y =
(
{k (y − yc)

2}/{k}
)1/2

in figure 7d (dashed line). In contrast to the height of the
turbulent region, its width remains significantly larger than the width of the mean defect,
with r′y/hy > 1 for each of the 3D, NEQ and Q2D periods (cf. Gourlay et al. [13]). (We

cannot say whether or not the waviness in r′y(t) forNt̃ > 20 is physical.) The closed and open
circles in figure 7d respectively correspond to the ratios L′

σ/r
∗
y and L′′

σ/r
∗
y , where L

′
σ and L′′

σ

are, respectively, the distance from the wake centerline to the maximum values of the lateral
Reynolds shear stress −u′v′ and the horizontal-plane velocity fluctuations (u′u′ + v′v′)1/2.
Integral version of these scales are used, based on the profiles presented in Meunier &
Spedding [17], with L′

σ =
∫∞

−∞
|u′v′|dy/u′2

0 and L′′
σ =

∫∞

−∞
(u′u′ + v′v′)1/2dy/(2π)1/2u

′′

0 ,

where u
′2
0 = exp(0.5)(u′v′)max, u

′′

0 = 0.5 exp(0.5)(u′u′ + v′v′)
1/2
max, and (u′v′)max and (u′u′ +

v′v′)
1/2
max are the maxima over y of |u′v′| and (u′u′ + v′v′)1/2, respectively.

In contrast to r′y/r
∗
y , which is always significantly greater than one, the shear-stress width

ratio L′
σ/r

∗
y remain close to unity for the entire run, slightly less before Nt̃ ≈ 10, slightly

more thereafter, while for the horizontal TKE measure 0.7 < L′′
σ/r

∗
y ≤ 1 throughout. The

L′
σ ≈ r∗y and L′′

σ ≈ r∗y behavior, which is similar to that exhibited by the experimental data
for various bluff bodies given in Meunier & Spedding [17], implies a type of self-similarity
for the lateral profiles, especially for −u′v′, that survives as the importance of stratification
and viscous effects grows, and the flow moves through the 3D, NEQ and Q2D regimes.

The decoupling of the vertical and lateral spreading processes, and the associated greater
importance for the latter of the mixing due to turbulence relative to molecular viscosity,
is illustrated by the much closer agreement of the mean width r∗y from the constant- and
variable-viscosity flows (figure 7d inset) compared to the corresponding r∗z histories (figure 7c
inset).

Figure 9 contains vertical (9a) and lateral (9b) profiles of streamwise-mean velocity
u, normalized by the local maximum Ud and height hz or width hy of the defect. The
better collapse and smoother profiles seen here, compared to those from Gourlay et al.’s
[13] DNS and Diamessis et al.’s [2] LES, are thought to be a symptom of the better
averaging sample afforded by the present larger streamwise domain. Included in these plots
are results from times corresponding to the structures shown in figures 4 (dashed curve; 3D
regime), 5 (chain-dashed; NEQ) and 6 (long-dashed; Q2D). (The dotted profile is the mean
induced by the vortex ring initialization.) Given the qualitative differences in the 3D, NEQ
and Q2D structures, the collapse at these times is striking, as is the agreement with the
Gaussian idealization (open symbols), particularly near the centerline. At the earlier times,
the non-Gaussian behavior away from the centerline may be an artifact of the vortex-ring
initialization, and/or due to attenuation of the eddy viscosity, associated with corrugations
of the interface between the vortical and irrotational regions [31] (figure 4).

For the lateral profiles, which tend to be more consistently Gaussian than the vertical
ones, the near-centerline agreement is similar to that found by Spedding et al. [25]. (The
unphysical lateral asymmetry at Nt̃ = 137 is evidence of finite eddy sample at this time.
Curiously, the u(zc, y) profile at Nt̃ = 586, which is the result of averaging over an even
smaller number of eddy structures than are present atNt̃ = 137, is nearly exactly symmetric;
see long-dashed curve in figure 9b.) The vertical profiles, on the other hand, can at times
exhibit significant non-Gaussian features, across the entire wake. One might suspect the
‘extra peakiness’ near the centerline during the early stages of the Q2D regime (Nt̃ = 82
and 137) is due to the coarsening of the vertical resolution across the mean defect (i.e.
∆z/hz = 0.14; cf. table 1) mentioned at the end of § 2. However, this possibility was ruled
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Figure 9. Profile of mean streamwise velocity in (a) vertical and (b) lateral planes through
the wake centerline: , Nt = 0; , Nt̃ = 1.2 , Nt̃ = 2.5; , Nt̃ =
20; , Nt̃ = 82; , Nt̃ = 137 , Nt̃ = 586; ◦, Gaussian idealisation
u/Ud = exp(− ln(2) s2), where s is either (y − yc)/hy or (z − zc)/hz. Coordinates (y0, z0)
and (yc, zc) respectively define the initial and current location of the wake centerline, given
by the centroid of the mean velocity defect.

out by repeating this portion of the simulation with increased Mz, such that ∆z/hz = 0.07,
resulting in u(z, yc) variations that are nearly indistinguishable to those shown in figure 9a.

The mechanisms responsible for the evolving shape of the mean defect revealed in figure 9,
as well as its magnitude, height and width (figure 7), can be further understood by examining
the corresponding evolution of the terms in the mean-momentum transport equation. But
before attending to that task, we consider the history and budget of mean kinetic energy.

3.3 Integrated mean kinetic energy history and budget

The influence of the stably stratified background on the three components of mean kinetic
energy (MKE) is shown in figure 10a. Histories of the (cross-domain) area-integrated quan-
tities {Kαα} = { 1

2uαuα} for α = 1, 2, 3 (no sum on α) are presented. Only during the
NEQ regime are the lateral and vertical energies non-negligible compared to the streamwise
component, and even then remain at least 1.5 orders of magnitude smaller than {K11} at all
times. Nevertheless, all three components reveal discernible buoyancy effects. These can be
deduced from figure 10b, which presents histories of the dominant terms in the integrated
MKE transport equation:

d{Kαα}
dt

= −{Pααjj} − {Dααjj}+ {Bαα}, α = (1, 2, 3), (5)

where

−Pααjj = u′αu
′
j

∂uα
∂xj

is the mean-to-turbulence transfer term (i.e. the negative rate of TKE production),

Dααjj = ν
∂uα
∂xj

∂uα
∂xj

is the mean dissipation rate, and

Bαα = −gρuα δα3/ρ∞ = Bmke = −gρw/ρ∞
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Figure 10. (a) Components of integrated mean kinetic energy {Kαα} = { 1
2uαuα} (no sum

on α). Values normalized by MKE at Nt = 0, {Kii}o = {K11}o + {K22}o + {K33}o. (b)
Dominant terms in budget of MKE components, in units of U3

rLr, where Ur = 2.09Udo and
Lr = ho. (These arbitrary scales are implicitly defined by the non-dimensionalization used
to prescribe the radius, spacing and circulation of the vortex rings in the initial-condition
field.) Note signs of {P2222} and {Bmke} = {B33} (open symbols), which (unlike all the
other terms) both act as sources in their respective +d{Kαα}/dt balances.

is the mean buoyancy transfer (which appears with opposite sign in the transport equa-
tion for the mean potential energy 1

2gρ ρ/ρ∞|Γ|). Note that the integral of both the ad-

vection Aααjj = −uj∂Kαα/∂xj and flux-divergence/transfer Tααjj = −∂uαu′αu′j/∂xj +
ν ∂[uα∂uα/∂xj ]/∂xj terms are zero, {Aααjj} = {Tααjj} = 0. For the present flow, for

which ∂( )/∂x1 = ∂( )/∂x = 0, −Pααjj = −Pαα22 − Pαα33 and Dααjj = Dαα22 +Dαα33.

Regarding the K11 balance, the end of the 3D period is first evident in the dissipation
terms {D1122} and {D1133}, in that the mean vertical gradients enhanced by the vertical
flattening of the wake overwhelm the lateral variations, thereby arresting the reduction of
{D1133} (compare single- and double-dot-dashed curves in figure 10b). This begins near
Nt̃ = 1.5; however, the dissipation terms are too small, relative to the TKE production, to
have a controlling influence on the {K11} history. Shortly thereafter, at Nt̃ ≈ 2.5 (when
the Ud history first departs from the t̃−2/3 interplant for the 3D regime; see figure 7b), the
curvature in the {K11} history changes, as a result of near-identical reductions of {P1122} and
{P1133}, the MKE-to-TKE transfer terms respectively associated with the lateral −u′v′ and
vertical −u′w′ shear stresses. Buoyancy has begun to affect the structure of the turbulence,
such that −u′w′ becomes a smaller and smaller fraction of the TKE for Nt̃ > 2.5, while
−u′v′/k remains nearly constant until well into the NEQ regime (see figure 15b). (We shall
see below (figures 15a and 16) that the TKE begins to increase its rate of decay |{dk/dt}|
near Nt̃ = 2.5, as the result of weakening TKE production and growing buoyancy transfer
(acting as a TKE sink), relative to the local rate of TKE dissipation.) Combined with
buoyancy-induced alterations of the mean flow – which reduce (compared to the unstratified
counterpart) the lateral shear ∂u/∂y and enhance the vertical shear ∂u/∂z (see §3.4 and
figure 11) – this leads to the comparable reductions of −P1122 = u′v′ ∂u/∂y and −P1133 =
u′w′ ∂u/∂z seen in figure 10b (see also figure 16b). The result is a less-rapid decay of {K11}
(and presumably Ud), as the MKE-to-TKE transfer is diminished, as the wake enters its
NEQ phase.

At Nt̃ ≈ 5.5, the time at which the 3D and NEQ interpolants for Ud intersect (figure 7b),
figure 10b implies that the processes begun at Nt̃ ≈ 2.5 carry on unabated, until Nt̃ ≈ 9
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(somewhat after the time, Nt̃ ≈ 6.5, at which the Ud history first begins to track with the
NEQ interpolant; figure 7b), when the buoyancy drives the vertical velocity fluctuations, and
thus P1133, to zero, leaving P1122 (after Nt̃ ≈ 15) to account for all the the MKE-to-TKE
transfer from the streamwise component. (Recall that for this flow the nominal duration of
the NEQ regime, based on the times at which the 3D, NEQ and Q2D power-law interpolants
for Ud intersect, is 5.5 < Nt̃ < 45, while its ‘formal’ duration, based on the period when Ud

tracks closely with the t̃−0.25 interpolant, is 6.5 < Nt̃ < 30.) Dommermuth et al. (2002) and
Brucker & Sarkar (2010) have highlighted the correlation between vanishing P1133 and the
occurrence of the NEQ regime; the present results indicate that its inception is triggered
by a joint reduction of P1122 and P1133, which begins near Nt̃ = 2.5. We note that the
P1122 and P1133 histories do not deviate from each other until after the magnitude Ud and
especially the height hz of the mean defect begin to display characteristics associated with
NEQ behavior (figures 7b and c), and that this (Nt̃ ≈ 9) deviation is not only the result
of the rapid reduction of P1133, but also a consequence of P1122 beginning to ‘wake up’ at
about the same time (which mitigates the |dUd/dt| reduction). The attenuation of the rate
of decay (and eventual change of sign, between Nt̃ ≈ 25 and 60) of d{P1122}/dt can be
attributed to another buoyancy-forced alteration of the turbulence structure, such that the
magnitude of the lateral shear stress (figure 15b) becomes large enough to overcome the
reduction in the mean lateral shear ∂u/∂y and thus produces enhanced P1122.

By the time Ud departs from the t̃−1/4 NEQ interpolant, near Nt̃ = 30 (figure 7b),
the rate of decay of the streamwise MKE, d{K11}/dt, has returned to levels comparable
to its pre-NEQ value. This increase is initially due to comparable contributions from the
lateral MKE-to-TKE transfer P1122 and vertical-gradient dissipation D1133. The ‘bump’
observed in the {K11} history between Nt̃ ≈ 25 and 100 (see also the Ud history over
this range, in figure 7b) corresponds to the period of P1122 enhancement, during which
{P1122}/{D1133} > 1, bridging the NEQ-to-Q2D transition. (We shall see in §3.5 that this
period includes the time, 25 < Nt̃ < 90, over which the net rate TKE production exceeds
that of the net TKE dissipation; see figure 16.) The slowing of the decay of P1122 appears to
be an integral part of the NEQ regime, with its amplification marking the time at which the
wake begins to move towards its Q2D phase. For Nt̃ > 150 or so, the differences between
the lateral TKE production (which has begun to fall again) and vertical-gradient dissipation
are statistically insignificant.

The {K11} history thus reflects alterations to both the mean flow (increased ∂u/∂z, am-
plifying the mean dissipation and modulating the MKE-to-TKE transfer; decreased ∂u/∂y,
also modulating the MKE-to-TKE transfer) and turbulence (reduced −u′w′ and enhanced
−u′v′, respectively throttling and augmenting the MKE-to-TKE transfer terms P1133 and
P1122). Two further effects of buoyancy can be observed in the vertical and lateral compo-
nents of the MKE budget. The first is direct transfer via net positive Bmke = −gρw/ρ∞,
which supplies energy from the MPE to the vertical component (open diamonds in figure 10b,
which for illustration purposes trace positive {Bmke} on the −d{K33}/dt plot). Note how-
ever, that in terms of its effect on the mean defect (since Bmke it is not a direct source
of K11), this can be viewed solely as a symptom of the mean-flow collapse, ∂w/∂z < 0,
associated with the indirect/modulating influences cited above.

The second further-buoyancy effect visible in the non-K11 budgets in figure 10 is manifest
by another alteration of the TKE production terms, again due to negative ∂w/∂z < 0 and
(due to continuity) lateral expansion (∂v/∂y > 0) of the mean flow in the wake core, such
that −P3333 = w′w′ ∂w/∂z < 0 and −P2222 = v′v′ ∂v/∂v > 0. The latter ‘anti-TKE-
production’ is responsible for the growth of {K22}, the former mitigating the increase in
{K33} caused by {Bmke}, such that {K33} remains much smaller than {K22}. (Although
P2222 is a net sink of TKE during the NEQ regime, it is not an important one, as can be
seen in figure 16b of §3.5; P3333, is also insignificant, except within the 40 < Nt̃ < 100 range,
when it acts as a TKE source, of magnitude of a few percent of the TKE dissipation rate.)
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Figure 11. Terms in the mean streamwise momentum budget at Nt̃ = 2.5: (a) rate of change
∂u/∂t; (b) advection −v ∂u/∂y − w ∂u/∂z; (c) Reynolds-stress divergence −∂u′v′/∂y −
∂u′w′/∂z; (d) viscous-stress divergence ν (∂2u/∂y2 + ∂2u/∂z2). Terms given in units of
U2
r /Lr, where Ur = 2.09Udo and Lr = ho.

Having catalogued the above buoyancy effects, the question now arises of how they
combine to modify the maximum velocity and y-z spatial structure of the mean defect (i.e.
Ud, hz and hy) during the 3D, NEQ and Q2D regimes. To address this question, we turn
our attention to the budget of mean streamwise momentum.

3.4 RANS budget

In this section we examine the terms in the budget of mean streamwise momentum, and
how stratification modifies their spatial structure in vertical (y-z) planes normal to the wake
axis, to better understand the mechanisms responsible for the decay and spread of the mean
defect during the 3D, NEQ and Q2D regimes. For the present time-dependent parallel flow
the streamwise Reynolds-averaged Navier-Stokes (RANS) equation can be written

∂u

∂t
=

(
−v ∂ u

∂y
− w

∂ u

∂z

)

︸ ︷︷ ︸
advection

+

(
−∂ u

′v′

∂y
− ∂ u′w′

∂z

)

︸ ︷︷ ︸
Reynolds-stress divergence

+ ν

(
∂2 u

∂y2
+
∂2 u

∂z2

)

︸ ︷︷ ︸
viscous-stress divergence

. (6)

During the 3D phase, the reduction in Ud and increase in the wake height and width
– i.e. the negative ∂u/∂t near the centerline and the positive ∂u/∂t at the wake edge –
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is driven by the divergence of the Reynolds stress, −∂u′v′/∂y − ∂u′w′/∂z. This can be
inferred from figure 11, which shows the cross-wake plane distribution of ∂u/∂t and how
the advection, turbulence and viscous terms contribute to it at Nt̃ = 2.5. At this time, the
axisymmetric/3D nature of the flow has been slightly altered by the buoyancy, as the flow
moves towards the NEQ regime. Although the relative strengths of the vertical and lateral
components of the Reynolds-stress divergence remain comparable at the edges of the wake,
the flattening and widening of the region of wake turbulence caused by the buoyant forcing
is apparent (figure 11c). The reduced rate of vertical spreading is due to vertical advection,
with −w ∂u/∂z < 0 above and below the centerline (dark regions in figure 11b), while the
lateral spreading is enhanced by the corresponding advection term, in that −v ∂u/∂y > 0
at the left and right of the defect (light regions in figure 11b).

Within the NEQ regime the story is more complex. Figure 12a shows that at Nt̃ =
18, when dhz/dt ≈ dr∗z/dt ≈ 0, the regions at the top and bottom of the wake contain
negligible ∂u/∂t, while u continues to grow at the sides. Significant internal wave activity,
in the κx = 0 (i.e. streamwise mean) mode, is generated by the wake, revealed by the
vertical mean momentum flux divergence, −∂uw/∂z (figure 12b). However, the waves do
not make a meaningful contribution to the net momentum (or the kinetic energy), since
−∂uw/∂z − ∂u v/∂y ≡ −w∂u/∂z − v∂u/∂y is nearly identically zero outside the wake
(figures 12c and d). The (slower, compared to 3D) rate of decrease of Ud(t) is now driven
by lateral Reynolds-stress divergence −∂u′v′/∂y and vertical advection −w∂u/∂z, while
the lateral component −v∂u/∂z retards the lateral spreading near the centerline plane but
increases it further above and below (figures 12d). The Reynolds stresses, especially the
vertical component −u′w′, are profoundly affected by the buoyancy (which drives w′ → 0;
see figure 15b), such that the importance of their divergence has been reduced to levels
comparable to that of the vertical viscous stresses. (Contrast figures 12e, f and g). That
viscous effects are important within the NEQ regime was illustrated by the difference in the
defect histories for the primary simulation and Case R1500 (figure 7). The lateral advection
and the vertical viscous terms (which tend to mirror and counteract each other) reveal a
‘flattened-X’ pattern in the mean velocity that is not apparent in the vertical u(z, yc) and
lateral u(zc, y) profiles in figure 9. The lateral viscous-stress divergence (not shown) remains
negligible.

The difference between the ∂uw/∂z contours in figures 12b (Nt̃ = 18) and 13b (Nt̃ = 82)
displays the tendency for the strength of the internal waves to fade as the flow passes from
the NEQ to Q2D regime. Once the wake enters the Q2D phase, the core deceleration is
dominated by the lateral Reynolds-stress divergence, and to a lesser extent by the verti-
cal advection and vertical viscous-stress terms. This can be seen in figures 13e, c and f ,
respectively. The vertical Reynolds-stress −∂u′w′/∂z and lateral viscous-stress ν ∂2u/∂y2

terms are now negligible. We also note that the multi-layered structure first seen in the
instantaneous vorticity contours earlier in the NEQ range, at Nt̃ ≈ 20 (figure 5), has now
matured to the point that it affects the RANS budget, leaving its signature in the terms
involving spatial gradients of the mean velocity, such as −v∂u/∂y (figure 13d). At the top
and bottom edges of the wake, the vertical viscous-stress divergence is now solely responsible
for the small net positive ∂u/∂t here – a fact foreshadowed by the t1/2 growth of the mean
height observed in figure 7c. In contrast, the (faster) lateral spreading is due to the lateral
advection (figure 13d) and especially the lateral Reynolds-stress term (figure 13e).

As time passes, the importance of the −∂u′v′/∂y and ν ∂2u/∂z2 terms continues to
grow relative to the other ones, until they are the only significant contributors to the RANS
budget (cf. Meunier et al. [3]). At Nt̃ = 586 (figure 14), both decelerate the core region by
about the same amount, but have very different effects on the spreading of the defect: the
mean acceleration at the top and bottom of the defect caused by the viscous diffusion is
much weaker than that produced at the sides by the lateral divergence of the −u′v′ Reynolds
stress, induced by the pancake-eddy turbulence (cf. figure 6). (The lateral asymmetry of the
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Figure 12. Terms in mean streamwise momentum budget atNt̃ = 18 (NEQ regime): (a) rate
of change ∂u/∂t; (b) −∂uw/∂z; (c) vertical advection −w ∂u/∂z; (d) lateral advection
−v ∂u/∂y; (e) vertical Reynolds-stress divergence −∂u′w′/∂z; (f) lateral Reynolds-stress
divergence −∂u′v′/∂y; (g) vertical viscous-stress divergence ν ∂2u/∂z2. Lateral viscous-
stress divergence ν ∂2u/∂y2 is negligible compared to terms shown. Terms given in units of
U2
r /Lr, where Ur = 2.09Udo and Lr = ho.
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Figure 13. Terms in mean streamwise momentum budget at Nt̃ = 82 (Q2D regime): (a) rate
of change ∂u/∂t; (b) −∂uw/∂z; (c) vertical advection −w ∂u/∂z; (d) lateral advection
−v ∂u/∂y; (e) lateral Reynolds-stress divergence −∂u′v′/∂y; (f) vertical viscous-stress di-
vergence ν ∂2u/∂z2. Vertical Reynolds-stress divergence −∂u′w′/∂z and lateral viscous-
stress divergence ν ∂2u/∂y2 are negligible compared to terms shown. Terms given in units
of U2

r /Lr, where Ur = 2.09Udo and Lr = ho.
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Figure 14. Terms in mean streamwise momentum budget at Nt̃ = 586 (late Q2D regime):
(a) rate of change ∂u/∂t; (b) lateral Reynolds-stress divergence −∂u′v′/∂y; (c) vertical
viscous-stress divergence ν ∂2u/∂z2. Vertical mean-flow momentum divergence −∂uw/∂z,
advection −v ∂u/∂y − w ∂u/∂z, vertical Reynolds-stress divergence −∂u′w′/∂z and lateral
viscous-stress divergence ν ∂2u/∂y2 are negligible compared to terms shown. Terms given
in units of U2

r /Lr, where Ur = 2.09Udo and Lr = ho.

−∂u′v′/∂y contours in figure 14b is a statistical anomaly, due to the relatively small number
of eddy structures included in the streamwise average at this time.) The decoupling of the
viscous/vertical and turbulent/lateral mixing mechanisms during the late-Q2D regime is
consistent with the disparate rates of vertical and lateral spreading observed in figures 7(c, d),
with βz larger than βy for Nt̃ > 100, and the earlier observation that the growth of hz is a
purely viscous phenomenon during this time.

3.5 Turbulence kinetic energy history and budget

Figure 15a summarizes the manner in which stratification alters the cross-wake-averaged
potential and kinetic energy of the turbulence, 1

2g〈ρ′ρ′〉/ρ∞|Γ| (symbols) and 〈k〉 = 1
2 〈u′iu′i〉

(lines), respectively. (Recall the cross-wake average is over regions where u ≥ 0.05Ud.)

The density fluctuations are largest early in the NEQ regime, when buoyancy most
strongly affects the flow, and the internal waves are the most active. The present case,
with its much larger initial Froude number (F∞ ≈ 130), does not contain buoyancy-induced
temporal oscillations of TKE at early times. This is in contrast to Dommermuth et al.’s
[8] F∞ = 4 LES and Brucker & Sarkar’s [9] F∞ = 8 DNS, for which dk/dt first becomes
positive near Nt̃ = 5.5 for the former and Nt̃ = 2.3 for the latter. (See figure 21 regarding
values of the virtual origin Nt̃vo used for those simulations.) Those oscillations, which are
damped more slowly in the lower F∞ flow, are indicative of transfer back and forth between
the potential and kinetic energy of the turbulence, associated with changes in sign of the
TKE-to-turbulence potential energy (TPE) exchange term, Btke = −gρ′w′/ρ∞ (Brucker &
Sarkar mention, but do not quantify, ‘large values of the buoyancy flux at early time’). For
the present flow, Btke always acts as a net sink of TKE (figure 3b) despite the monotonic
decrease with time of the local mean Froude number Fd (figure 1a, b).
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Figure 15. Histories of (a) cross-wake-averaged turbulence potential and kinetic energy, and
(b) Reynolds-stress anistropy bij = 〈|u′iu′j |〉/2〈k〉 − δij/3. Inset plot in a shows components
scaled by local Ud.

Instead of increasing towards the beginning of the NEQ regime, here the TKE increases
for 30 < Nt̃ < 70, i.e. during the NEQ-to-Q2D transition defined by the Ud history (fig-
ure 7b). The reasons for this increase, which are unrelated to the TPE-to-TKE transfer via
Btke, will soon be clear.

The difference between the rates of decay of the three velocity fluctuations, as well as the
non-constant variation of 〈k〉/U2

d for Nt̃ > 4 (solid curve in figure 15a inset), demonstrate
the anisotropy introduced by the stratification, and how it breaks the early-time axisym-
metry, leading to a flow for which the relationship between the magnitude of the velocity
fluctuations and the maximum mean defect continues to evolve throughout the NEQ and
Q2D regimes. Of the three components, the streamwise TKE 1

2 〈u′u′〉 (dashed curve) ex-
hibits the least variation with respect to the local U2

d , but even so varies significantly (by
over a factor of five) as the wake regimes come and go. For Nt̃ > 150, when the TKE is
reasonably approximated by a t−4/3 power law, k decays more slowly than U2

d does, such
that (assuming Ud ∼ t−0.85 in the Q2D range) k/U2

d ∼ t+0.37 (figure 15a inset plot).

The disparate effect of the stratification upon the three velocity-fluctuation components,
and thus on the structure of the Reynolds-stress tensor, can also be seen in figure 15b.
These Reynolds-stress-anisotropy histories show that the velocity fluctuations first deviate
from axisymmetric-decay behavior (i.e. v′v′ ≈ w′w′ and u′v′ ≈ u′w′) near Nt̃ = 2, the time
at which the mean-defect height and width begin to differ from each other (figure 7c, d).
Thereafter, the vertical component falls monotonically, first slowly then precipitously, such
that w′w′ and both u′w′ and v′w′ are negligible for Nt̃ > 40 (cf. Spedding [12] and Diamessis
et al. [2]). The absence of vertical velocity means that buoyancy can no longer directly cause
a transfer between the turbulence potential and kinetic energies.

The streamwise normal stress u′u′ becomes a larger and larger fraction of the 2k =
u′u′ + v′v′ + w′w′ total until the flow is well within the NEQ regime, when dk/dt becomes
positive, near Nt̃ ≈ 30. Afterwards, the normal component v′v′ increases faster than u′u′,
and u′v′ is the only significant shear stress. The dominance of u′v′ corresponds to that of
the P1122 = −u′v′∂u/∂y production term; recall the importance of −{P1122} in the {K11}
budget and see below. During the Nt̃ > 70 phase of the Q2D regime, when dk/dt is again
negative (and the flow is dominated by pancake-eddy structures), the lateral fluctuations
have more energy than the streamwise fluctuations do, with 〈v′v′〉/〈u′u′〉 → 2 for Nt̃ > 400.
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ble ({P2233} ≈ {P3322} ≈ 0). Components of dissipation rate ǫ̃αα = ν(∂u′α/∂xj)(∂u

′
α/∂xj)

(no sum on α), where ǫ̃ii = ǫtke − ν∂2u′iu
′
j/∂xi∂xj , and ǫtke = 2νs′ijs

′
ij .

We now consider the transport equation for the TKE k,

∂k

∂t
= Atke + Ptke + Ftke + Btke − ǫtke +Wtke, (7)

where the rates of change due to advection Atke, production Ptke, flux divergence Ftke,
buoyancy transport Btke and dissipation ǫtke are, respectively, Atke = −uj∂k/∂xj, Ptke =

Piijj = −u′iu′j∂ui/∂xj , Ftke = ∂fj/∂xj , with fj = − 1
2u

′
ju

′
iu

′
i − u′jp

′/ρ∞ + ν∂u′iu
′
j/∂xi +

ν∂k/∂xj, and Btke = −gρ′u′iδi3/ρ∞ and ǫtke = 2νs′ijs
′
ij , with s

′
ij = 1

2 (∂u
′
i/∂xj + ∂u′j/∂xi).

For the flow at hand, these reduce to Atke = −v∂k/∂y − w∂k/∂z, Ptke = Pii22 + Pii33,
Ftke = ∂[− 1

2v
′u′iu

′
i−v′p′/ρ∞+ν∂v′v′/∂y+ν∂v′w′/∂z+ν∂k/∂y]/∂y+∂[− 1

2w
′u′iu

′
i−w′p′/ρ∞+

ν∂v′w′/∂y+ν∂w′w′/∂z+ν∂k/∂z]/∂z and Btke = −gρ′w′/ρ∞. The work done by the fringe
forcing Fi in (1) is Wtke = u′iFi (i = 1, 2, 3).

We begin by examining the cross-plane-area-integrated histories of the terms in (7),
shown in figure 16. (This information was presented in a different format in figure 3b;
it is repeated here to highlight the relative importance of individual budget terms.) The
cross-plane averages used in figure 15 can be approximated from the cross-plane integrations
used in figure 16 by dividing the latter by the cross-sectional area of the mean defect, such
that e.g. 〈k〉 ≈ {k}/4πhyhz. Since the advection and flux-divergence terms integrate to
zero, figure 16 reveals the contributions of the pure source Ptke, sink ǫtke and TKE-TPE
transfer Btke. The cross-plane variation of these terms, and Atke(y, z) and Ftke(y, z), will be
investigated below.

For the present high-F∞ flow, the fringe-work contribution {Wtke} to the TKE balance
is negligible (recall that the production, dissipation and buoyancy sum shown in figure 3b is
sufficient to provide an excellent representation of the d{k}/dt history, for 0 ≤ Nt < 840.)
The net buoyancy transfer is also much smaller than the production and dissipation, but is
not negligible, with −{Btke} reaching a maximum of about 30% of the integrated dissipation
{ǫtke} from early in the NEQ regime (Nt̃ ≈ 5) and remaining fixed near this ratio until
Nt̃ ≈ 70 (figure 16b), after which −{Btke} is a monotonically decreasing fraction of {ǫtke}
until it becomes negligible after Nt̃ ≈ 150. Between Nt̃ ≈ 25 and 70, all three non-negligible
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Figure 17. Contours of buoyancy transfer Btke as a fraction of (ǫtke)max, the local maximum
ǫtke from figure 20, at: (a) Nt̃ = 2.5, (b) Nt̃ = 5.5, (c) Nt̃ = 18, (d) Nt̃ = 40, (e)
Nt̃ = 82 and (f) Nt̃ = 586. Minimum (darkest) contour level -Clim corresponds to the
most negative Btke/(ǫtke)max at each time. White solid-line contours indicate five levels of
positive Btke/(ǫtke)max, over range +0.01|Clim| ≤ Btke/(ǫtke)max ≤ [Btke/(ǫtke)max]max, where
[Btke/(ǫtke)max]max is maximum Btke/(ǫtke)max, which at Nt̃ = 2.5, 5.5, 18, 40, 82 and 586
is respectively +0.0007, +0.085, +0.37, +0.14, +0.06 and +0.005. Black solid-line contours
correspond to u = 0.05Ud and 0.5Ud.
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Figure 18. Contours of density-fluctuation variance ρ′ρ′ at: (a) Nt̃ = 2.5, (b) Nt̃ = 5.5,
(c) Nt̃ = 18, (d) Nt̃ = 40, (e) Nt̃ = 82 and (f) Nt̃ = 586. Values given in units of
(ρ∞U

2
r /gLr)

2. Solid-line contours correspond to u = 0.05Ud and 0.5Ud.
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terms are roughly constant in absolute terms, with d{ǫtke}/dt and d{Btke}/dt approximately
zero and d{Ptke}/dt increasing slightly. Spedding [12] found a similar NEQ plauteau in the
total dissipation ǫtke + Diijj in his high-F∞ experiments, which he attributed to ‘vertical
shear taking over’. We have already observed that the global/integrated buoyancy transfer
{Btke} acts as a pure sink throughout the lifetime of the present flow (figure 3b). At times,
however, there are local regions in which Btke is positive, where the potential energy of
the turbulence is converted to kinetic energy. During the early NEQ phase, these tend
to be concentrated just above and below the wake (see white-line contours in figure 17b),
while later they are more diffuse and disorganized, although still occurring mostly outside
the wake core (figure 17c-e). Much later, in the viscous-dominated Q2D regime, when
{Btke}/{ǫtke} → 0, positive Btke tends to lie in the non-vortical regions to the left and right
sides of the wake (figure 17f). The relationship between Btke and the density fluctuations
ρ′ρ′ can be inferred by comparing figures 17 and 18. The regions of maximum negative Btke

are in general highly correlated with those of maximum |ρ′|, although the departure from
axisymmetry associated with the beginning of the NEQ regime is more apparent in the ρ′ρ′

field at Nt̃ = 2.5 (figure 18a) than in the corresponding Btke distribution (figure 17a). The
local ρ′ρ′ maxima at Nt̃ = 2.5 at the top and bottom of the wake, near z = ±1.5hz, are
consistent with the ‘excess’ TPE that later ‘springs back’ into TKE at these locations, by
way of the positive Btke observed in figure 17b at Nt̃ = 5.5.

Figure 16a shows that the Reynolds number is large enough for the early/3D-regime
evolution to satisfy the inertial scaling ǫtke ∼ k3/2/h, such that ǫtke ∼ t−7/3 and {ǫtke} ∼
t−5/3 (chain-double-dot curve; cf. Brucker & Sarkar [9]). For late times, approximately
Nt̃ > 200, the decay of {Ptke} and especially {ǫtke} is reasonably well approximated by t−n

with n = 1.7 ≈ 5/3. Thus, paradoxically, the TKE dissipation evolves according to the
inertial scaling during both the 3D and Q2D regimes, despite their qualitatively different
eddy structures (see figure 20d).

Once the wake turbulence is fully established, the net rate of TKE dissipation is larger
than that of the production Ptke, except for a substantial period during the NEQ regime,
from Nt̃ ≈ 20 to 90, when {Ptke} is significantly larger than {ǫtke} (and gradually increases,
in absolute terms), after which it returns to its pre-NEQ behavior, with {Ptke}/{ǫtke} < 1 for
the Q2D phase. This explains the growth of TKE during this period, mentioned above. From
figure 16b we find that the enhanced NEQ-regime production is due solely to amplification
of the P1122 = −u′v′ ∂u/∂y component (dotted curve), since the −u′v′ stress grows more
rapidly than ∂u/∂y decreases (and the fall of u′w′ is more rapid than the attenuation
of the decay of ∂u/∂z; see figure 16b and histories of the MKE dissipation components
D1122 = ν(∂u/∂y)2 and D1133 = ν(∂u/∂z)2 in figure 10). This ‘structural’ alteration,
represented by the decrease of |u′w′| and increase of |u′v′|, was also found by Brucker &
Sarkar [9] in their DNS for both towed and self-propelled cases. They concluded that
stratification causes the TKE production to mainly consist of P1122 during this time. The
present results underline the extent to which this is true, and that in fact Ptke can effectively
be replaced by P1122 for all times after Nt̃ ≈ 20.

While both the present and Brucker & Sarkar simulations contain enhanced production,
only here does it lead to growth of TKE (and not just reduction in the net TKE decay)
during the NEQ regime. This is because of the large amount of energy radiated by internal
waves between Nt̃ = 25 and 75 in Brucker & Sarkar’s F∞ = 8 flow, which counteracts the
impact of the P1122 growth. The strength of the internal waves is an indication of when
the TKE growth occurs. When they are strong, at low F∞, buoyancy leads to an early
TKE increase driven by the TPE-to-TKE transfer, before the NEQ regime begins – during
which the energy the waves radiate mitigates the effect of the enhanced TKE production
associated with the flattened, two-layer NEQ structure, and d{k}/dt is small but negative.
When the waves are weak, at high F∞, they do not attenuate the enhanced Ptke ≈ P1122,
leading to net TKE growth during the NEQ regime.
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Also included in figure 16b are histories of the three components of the integrated rate of
homogeneous dissipation, {ǫ̃ii} = {ǫ̃11}+{ǫ̃22}+{ǫ̃33}, as a fraction of the full (actual, ther-
modynamic) rate of TKE dissipation {ǫtke} = 2ν{s′ijs′ij}, where ǫ̃ii = ν(∂u′i/∂xj)(∂u

′
i/∂xj).

(There is very little difference between the integrated homogeneous and full/inhomogeneous
dissipation for this flow, with 0.9999965 ≤ {ǫ̃ii}/{ǫtke} ≤ 1.0012 for all times considered.)
Examining ǫ̃αα for α = 1, 2, 3 allows us to assess the interplay between the rates of produc-
tion and dissipation of the individual normal-stress components u′αu

′
α. (Other dissipation

decompositions have been utilized by Spedding [12] and Brucker & Sarkar [9]; see also
Itsweire et al. [33].)

The vertical component {ǫ̃33} ∼ {(∂w′/∂x)2}+ {(∂w′/∂y)2}+ {(∂w′/∂z)2} falls mono-
tonically as w′ does, with d{ǫ̃33}/dt becoming negative from Nt̃ ≈ 7 until Nt̃ > 50, when
{ ˜ǫ33} is negligible with respect to {ǫtke}.

For the streamwise component, the increase in P1122 for Nt̃ > 5 is accompanied by an
increase in {ǫ̃11}, such that the net effect (to which the pressure-strain correlation φ11 =
p′(∂u′/∂x)/ρ∞ may also contribute) is to arrest the decay of u′u′, such that d{u′u′}/dt first
changes sign and then becomes slightly positive as the flow enters its NEQ phase (figure 15a).
This is an example of what is often referred to as an ‘extra strain’ effect (Bradshaw [34]),
which involves a difficult-to-model change that results from the imbalance of much larger
terms of opposite sign, each of which change much more than the net imbalance. Similar
behavior is found in the Q2D regime, in that as d{u′u′}/dt becomes negative again, both
{P1122} and {ǫ̃11} decrease (the latter accounting for roughly one-third of the total {ǫtke}).

The evolution of the lateral component during the 3D-to-NEQ transition is not directly
affected by production (since P2211 ≡ 0 and P2222 ≈ P2233 ≈ 0). Consequently, the slight
increase in {v′v′} between Nt̃ ≈ 25 and 80 shown in figure 15a must be due to inter-
component transfer via the pressure-strain term φ22 = p′(∂v′/∂y)/ρ∞, mitigated by {ǫ̃22},
which first falls slightly below {ǫtke}/3 (i.e. the isotropic value approximated by all three
components before Nt̃ ≈ 5), then grows to account for about 2/3 of the total.

The dissipation histories are broadly consistent with those observed in Brucker & Sarkar’s
[9] low-F∞/self-propelled wake simulation, in that (∂u′/∂z)2 and (∂v′/∂z)2 (i.e. the domi-
nant terms in ǫ̃11 and ǫ̃22, respectively) are respectively the second-largest and largest terms
for Nt̃ > 10 (although the contributions of ∂v′/∂x, ∂w′/∂x and ∂w′/∂z were not quan-
tified, these are likely to be negligible). The {ǫ̃αα} histories are thus also consistent with
the enhanced vertical gradients associated with the flattened eddy structures of the NEQ
and Q2D regimes (figures 5 and 6). We note that {ǫ̃22}/{ǫ̃11} ≈ 2 for Nt̃ > 150 while
〈v′v′〉/〈u′u′〉 > 1.7 in the late-Q2D regime, i.e. for Nt̃ > 500 (figure 15b).

Terms in the TKE budget for the (essentially) unstratified axisymmetric benchmark at
Nt̃ = 1.2 are illustrated in figure 19. Shown are radial profiles of the production Ptke,
dissipation ǫtke, buoyancy transport Btke (which at this time is very small) and the flux
divergence Ftke, which solely redistributes TKE within (and thus integrates to zero over)
the y-z plane, and thus played no role in the integrated budget histories considered to
this point. The importance of the flux divergence (open symbols) is indicated by the large
contribution it makes to the net ∂k/∂t (solid symbols), especially to the TKE growth at
the edge of the wake. The shapes of the production and dissipation profiles are the same as
those found in the self-similar axisymmetric experiment of Uberoi & Freymouth [35], but
here the transport increases the TKE not just at the edge of the wake (as it does in the
experiment) but also near the centerline. (The difference is perhaps a consequence of all the
fluxes, including the viscous ones, being included in Ftke in figure 19, rather than only the
inviscid, boundary-layer terms shown in [35].) But while the profile shapes of the budget
terms for the Uberio & Freymuth experiment and the present simulation are comparable,
their relative magnitudes are not – which provides further evidence for the non-universal
nature of the turbulence for (unstratified) wakes generated by different objects [5,36],RCC.

The influence of the stratification upon the three dominant terms in the TKE budget,

35



›3 ›2 ›1 0 1 2 3

›0.0001

0

0.0001

±r/h

∂
k
/
∂
t
b
u
d
g
et

Figure 19. Radial profiles of terms in the TKE budget atNt̃ = 1.2: , rate of production
Ptke; , (minus) rate of dissipation −ǫtke; , rate of buoyancy transfer Btke; ◦, flux
divergence Ftke; �, Ptke − ǫtke + Btke + Ftke. Advection −v∂k/∂y − w∂k/∂z is negligible
compared to terms shown. Budget terms normalized by U3

r /Lr, where reference velocity
Ur = 2.09Udo and reference length Lr = ho.

and in particular how they evolve in the y-z plane, can be observed in figure 20. To facilitate
comparison, ‘quadrant-averaged’ contours of ∂k/∂t, Ptke, −ǫk and Ftke at selected times are
combined in each plot, in the ‘northwest’, ‘northeast’, ‘southwest’ and ‘southeast’ quadrants,
respectively. The lateral and vertical coordinates are scaled by their respective width or
height, to clarify the spatial variations, and reveal the early ‘kinematic’ stratification effects,
which act solely to flatten and widen the axisymmetric distributions. The black lines trace
the shape and extent of the mean defect, via 0.05Ud and 0.5Ud contours, while the white-line
contours indicated the dominant term(s) at each time.

At Nt̃ = 2.5 (figure 20a), the only indication of the beginning of the end of the 3D regime
is the slight lack of axisymmetry in the flux term, which causes the net TKE growth at the
edge of the wake to be larger at the sides than at the top and bottom. The production
and dissipation are not yet deeply affected, since using the width and height to normalise
the cross-plane axes causes them to maintain their (axisymmetric) radial shapes from the
unstratified state (figure 19). The location of the maximum production is still just inside the
u = 0.5Ud (i.e. r = h) contour (close to the location of the maximum TKE; see figure 8b),
and the maximum dissipation falls between r = h and the centerline. As is the case for
the unstratified/axisymmetric state, the flux term plays a large role in setting the net
∂k/∂t variation, and is solely responsible for the TKE growth at the wake edge (since the
dissipation tends to cancel the production here).

When the flow is well into the NEQ regime, Ftke is much less significant, leaving the
production-dissipation imbalance to control ∂k/∂t (figure 20b, for Nt̃ = 18). The dissipation
has by this time become quite anisotropic, with ǫtke ≈ 2ǫ̃11 ≈ 4ǫ̃22 ≈ 5ǫ̃33 (figure 16b).
Nevertheless, its cross-plane variation – while tending to align into two flat regions above
and below the y axis (consistent with the double-layer structure observed in figure 5, for
Nt̃ ≈ 20) – remains more axisymmetric than that of the production. In contrast, Ptke
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Figure 20. Contours of terms in TKE budget at: (a) Nt̃ = 2.5, (b) Nt̃ = 18, (c) Nt̃ = 82 and
(d) Nt̃ = 586. Streamwise-averaged quantities have been further averaged (‘double folded’)
across the lateral y and vertical z axes through the wake centerline (yc, zc), and plotted in
separate quadrants, such that the upper left (‘northwest’), upper right (‘northeast’), lower
left (‘southwest’) and lower right (‘southeast’) region of each plot respectively corresponds
to the net rate of change ∂k/∂t = Atke + Ptke + Ftke + Btke − ǫtke, production Ptke, (minus)
dissipation −ǫtke and flux-gradient transport Ftke. Buoyancy flux term Btke is shown in
figure 17. Advection Atke = −v∂k/∂y − w∂k/∂z is negligible compared to the other terms.
Budget terms normalized by U3

r /Lr, where reference velocity Ur = 2.09Udo and length Lr =
ho. White solid-line contours indicate ±0.67 of the larger of the minimum and maximum
magnitude at each time. Black solid-line contours correspond to u = 0.05Ud and 0.5Ud.
The (maximum,minimum) values at Nt̃ = 2.5, 18, 82 and 586 are respectively (+1.49 ×
10−5,−2.25× 10−5), (+1.77× 10−7,−1.1× 10−7), (+5.3× 10−8,−3.2× 10−8) and (+8.15×
10−11,−2.6× 10−10).

37



tends to be concentrated into a ‘wing-like’ region near y = ±hy, because it is now nearly
all associated with the −u′v′ stress (Meunier et al. [3]), with Ptke ≈ P1122 = −u′v′∂u/∂y.
Consequently, the net ∂k/∂t ≈ Ptke − ǫtke tends to be segregated according to sign, into
either an ‘hourglass’-shaped zone aligned with the z axis (TKE decay) or double ‘hotspots’
of TKE growth focused near y = ±hy. The latter is compatible with the ‘double-pronged’
structure in the TKE contours at Nt̃ ≈ 20, seen in figure 8c.

The flow’s entrance into its Q2D phase is characterized by the continuing importance of
Ptke ≈ P1122, which is again concentrated along the y axis, near y = ±hy (figure 20c, for
Nt̃ = 82). However, the production now contains a small region of negative Ptke centered
at the origin, due to negative P2222 = −v′v′∂v/∂y. This is due to the combination of
finite v′v′ (whose maximum occurs at the centerline), and the positive ∂v/∂y associated
with the mean stagnation flow (i.e. vertical collapse and lateral expansion) at the origin.
The dissipation is now even more concentrated in two flat regions above and below the
y axis, within the u = 0.5Ud contour, than it was at Nt̃ = 18 – corresponding to the
enhanced vertical shear mentioned by e.g. Spedding [12], and the primary roles played at
this time by ǫ̃11 ∼ (∂u′/∂z)2 and ǫ̃22 ∼ (∂v′/∂z)2 (figure 16b). The flux-divergence term
has grown in importance, compared to its Nt̃ = 18 levels, such that it significantly reduces
Ptke (near y = ±hy) and decreases ǫtke (near z = ±hz). The net result leads to the TKE
distribution shown in figure 8d, which demonstrates the persistence of the flattened double-
peaked structure as the flow passes from the NEQ to the Q2D regime (see also Brucker &
Sarkar [9]).

Much later, at times for which the turbulence is dominated by the quasi-2D pancake
eddies displayed in figure 6, the Ptke ≈ P1122 production is still active near y = ±hy, and ǫtke
(≈ 1.5ǫ̃22) is still focused in horizontal layers near z = ±0.5hz, but both are weaker than the
flux term Ftke. As is the case for Ptke and ǫtke, the distribution of Ftke is closely correlated
with the two-layer pancake-eddy structure at this time. The largest (positive) vertical-
gradient contribution ∂f3/∂z is aligned with the horizontal layers centered near z = ±hz/2
(and thus reduces the effect of the dissipation here), while the smallest (negative) values lie
between the layers, along the y axis; the maximum and minimum lateral divergence ∂f2/∂y
are clustered along the y axis, at the lateral edges of the dual Ptke (and TKE) peaks, with
the negative values closer to the wake centerline. The flux term combines with Ptke and ǫtke
to yield large negative ∂k/∂t in a shallow horizontal layer near the centerline. While there
is still some TKE growth due to the combined effect of Ptke and Ftke, between the y and z
axes along the u = Ud contour, it is very weak.

3.6 Comparison with previous simulations

Figure 21 shows the mean-defect histories from earlier simulations at various Froude and
Reynolds numbers, along with the present results (Fdo = 130, Rdo = 2625). Available
DNS and a recent LES are included: The DNS of Gourlay et al. [13] (Fdo = 34, Rdo =
1472) and Brucker & Sarkar’s [9] Case TR50F04 (Fdo ≈ 0.75, Rdo ≈ 3250) and TR10F20
(Fdo ≈ 3.75, Rdo ≈ 650), and Diamessis et al.’s [2] Case R100F64 LES (Fdo ≈ 34, nominal
Rdo ≈ 11, 000). Also shown are the unstratified/3D-regime power-law diagnostics for each
case (inset plots in figure 21a, b). These are used to estimate virtual-time origins for each
simulation, to facilitate comparison by plotting histories in terms of Nt̃ = Nt−Ntvo.

The various histories cannot be expected to agree in the scaling used for figure 21, which
takes no account of Froude and/or Reynolds numbers, since the maximum velocities Ud,
heights ℓz, and widths ℓy are presented solely in terms of their initial values. (Also, ℓz is
for some cases given in terms of the 0.5Ud half-height hz and for others in terms of integral
measures; see figure 21c caption.) Nevertheless, several common features can be observed,
including similar power-law behavior over the same Nt̃ range. The height decreases with
time for Nt̃ > 2 in every case, although the reduction of hz is larger than that experienced
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Figure 21. Histories of (a) maximum velocity Ud, (b) height-to-width ratio ℓz/ℓy, (c) height
ℓz and (d) width ℓy of mean defect: , present; ◦, [13]; �, Case TR50F04 of [9]; •,
Case TR10F20 of [9]; ⋄, Case R100F64 LES of [2] . Inset plots in (a) and (b) show unstratified
similarity diagnostics for (a) velocity χ = (Ud/Udo)

−3/2 and (b) height ξz = (ℓz/ℓo)
3 (lower

curve/symbols) and width ξy = (ℓy/ℓo)
3 (upper curve/symbols), which are used to define the

virtual-time origin tvo for each case, with Ntvo = 0.645 for the present DNS, Ntvo = 0.2 for
Brucker & Sarkar’s TR50F04, Ntvo = −0.5 for Diamessis et al. and Ntvo = 0 for Gourlay et

al. [13] and Brucker & Sarkar’s [9] TR10F20. For the present DNS, the linear curve-fit for χ
and ξ ( in upper right-hand-side inset plots in a and b) are χ = (Ud/Udo)

−3/2 = B ·Nt̃
and ξ = (r∗/r∗o)

3 = C · Nt̃, where Nt̃ = Nt − Ntvo and (B,C,Ntvo) = (3.1, 2.9, 0.645).
The maximum defect velocity Ud in (a) for Brucker & Sarkar’s [9] Case TR50F04 (but not
TR10F20) is replaced by their Um.k.e.

1 . Integral measures are used for the height and width
for the present DNS, with ℓz = r∗z , ℓy = r∗y , and ℓo the value of r∗z = r∗y at Nt = 0. For
Brucker & Sarkar’s [9] Case TR50F04, ℓz and ℓy are respectively represented by integral
scales (in their notation) R3 and R2, with ℓo the half-radius of the initial Gaussain mean-
velocity profile, while for Diamessis et al. [2], and effectively for Gourlay et al. [13], ℓz = hz,
ℓy = hy and ℓo = ho, where hz and hy are determined from fitting an assumed Gaussian
profile.
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by the integral-measure heights (which is consistent with the behavior found for the present
DNS, in that both dhz/dt and dr∗z/dt are negative for 8 < Nt̃ < 18, but hz falls faster than
r∗z ; figure 7b).

The 3D-to-NEQ transition also tends to occur at about the same time for each of the
simulations, with Nt̃ between 2 to 2.5 the point at which the heights and widths first begin
to differ from each other; this can be seen in figure 21b, in both the height-to-width ratio
ℓz/ℓy and is even more obvious in the unstratified/axisymmetric height/width diagnostic ξ =
(ℓ/ℓo)

3 shown in the inset plots (recall that linear variation with time of ξ is characteristic
of the pure-axisymmetric 3D regime).

The reasonably good collapse of the mean aspect ratio ℓz/ℓy over the early NEQ periods
of the five simulations was not anticipated, both because of the wide Froude and Reynolds
number ranges, as well as the differences in the initialization strategies used for the various
simulations (e.g. Brucker & Sarkar’s [9] DNS held the mean velocity fixed until Nt =
0.2 (TR10F20) and 1 (TR50F04), while Diamessis et al.’s [2] LES gradually introduced
the background stratification during a precursor simulation). The ℓz/ℓy histories again
demonstrate the increase of the Nt̃ range of the NEQ regime with Reynolds number –
compare the times at which the ℓz/ℓy histories begin to deviate from the negative power-
law behavior for NEQ, for Brucker & Sarkar’s [9] TR10F20 (40 < Nt̃ < 100), Gourlay et

al. [13] (Nt̃ ≈ 70), present (Nt̃ ≈ 105), and Brucker & Sarkar’s [9] TR50F04 (Nt̃ > 400, at
least). (The late-time ℓz/ℓy history for Diamessis et al. [2] (open diamonds) is thought to be
statistically unreliable, in light of the relatively small streamwise domain used.) The same
message regarding the Reynolds-number dependence of the NEQ period can be inferred
from figure 21c, by examining the durations of the dℓz/dt ≈ 0 regions for each case.

The tendency for ℓz and ℓy to deviate from the 3D/axisymmetric ideal sooner than
Ud does, which was seen above (figure 7), also holds for the other simulations (although
not as markedly), since the unstratified/axisymmetric similarity diagnostic for Ud, χ =
(Ud/Udo)

−3/2, remains linear longer (until Nt̃ ≈ 2 to 2.5) than the corresponding height/width
diagnostic, ξ (Nt̃ ≈ 2 to 5); cf. figures 21a and b inset plots.

A scaling to account for the significant Froude-number sensitivity of the Ud histories
seen in figure 21a has been developed by Meunier & Spedding [17]. It amounts to assuming
Ud will eventually depend solely on the volume-flux deficit Id, the Brunt-Väisälä frequency
N and time t, which leads via dimensional analysis to

Ud

(IdN2)1/3
= Φ(Nt−Nt0), (8)

where Φ is a universal non-dimensional function of Nt − Nt0 and Nt0 is a non-universal
offset time (unrelated to the 3D virtual-origin time Ntvo), which will depend for example
on Reynolds number and the near-field/early-time wake evolution. In terms of a virtual
wake-creating sphere of diameter D emersed in a steady uniform stream of density ρ∞
and speed V∞, experiencing a drag force FD, we can write Id = 1

8V∞D
2CD, where CD =

FD/(πρ∞V
2
∞D

2/8). Equation (8) then implies

Ud

V∞
F 2/3
∞ = f(CD)Φ(Nt−Nt0), (9)

where f(CD) = (πCD/2)
1/3. Equation (9) shows the limitation of attempting to collapse

Ud/V∞ data from wakes generated by various bluff bodies (with variable CD) by using only

F∞ (e.g. by plotting (Ud/V∞)F
2/3
∞ versus Nt; cf. [1,9]). Following Meunier & Spedding [17],

(8) can be recast in terms of the virtual effective diameterDeff = D(CD/2)
1/2 for bluff bodies

of arbitrary shape,
Ud

V∞
F
2/3
eff = π1/3Φ(Nt−Nt0), (10)
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Figure 22. Histories of rescaled mean defect (a, c) as Q2D power-law/similarity diagnostic
and (b, d) with respect to Q2D time shift Nt0, assuming (a, b) n = 3/4 and (c, d) n = 0.85:

, present DNS; ◦, Gourlay et al. [13]; �, Case TR50F04 of Brucker & Sarkar [9];
•, Case TR10F20 of [9]; ⋄, Case R100F64 LES of Diamessis et al. [2]. Thin-solid curves
( ) in (a, c) are linear curve fits of Q2D diagnostic (which for [13] and Case TR10F20
of [9] are nearly coincident), used to define time shift Nt0 in (b, d), such that for (b) (n = 3/4)
Nt0 =: 19 (present DNS), −55 ( [13]), −63.5 (Case TR50F04 of [9]), −57 (Case TR10F20
of [9]) & 11 (Case R100F64 of [2]), and for (b) (n = 3/4) Nt0 =: 7 (present DNS), −70
( [13]), −66.5 (Case TR50F04 of [9]), −71 (Case TR10F20 of [9]) & −3 (Case R100F64
of [2]).
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where Feff = 2V∞/NDeff is the effective Froude number.
The validity of (8) is tested in figure 22. Meunier & Spedding [17] found the universality

under consideration cannot be expected until the flow reaches the Q2D regime (see their
figure 5b). Consequently, we assume Φ(Nt − Nt0) = CQ2D(Nt − Nt0)

−n, where CQ2D is

a universal constant and n ≈ 3/4. Similar slopes of the (Ud/I
1/3
d N2/3)−1/n diagnostic are

found for all five simulations, for both n = 3/4 (figure 22a, with CQ2D = 0.08−3/4 ≈ 6.65)
and the n = 0.85 suggested by the present DNS (figure 22c; CQ2D = 0.055−0.85 ≈ 11.8).
Note the dependence of the beginning of the region of common slope (straight thin-solid
lines in figure 22a, c), and the offset times Nt0 (Nt-axis intercept), on the Reynolds number
and initialization scheme used by each simulation. The reasonable collapse of the results in
figures 22b and d, produced by using the Nt0 defined for each case by the corresponding
curve fits in figures 22a and c, points to the validity of (8), and thus to that of the founding
assumptions used in the Meunier & Spedding [17] analysis.

4 Summary and closing comments

The DNS results presented above reveal the effect of a weakly stratified, buoyantly stable
background upon the structure and statistics of a turbulent wake, during its various phases
of development, including its 3D, NEQ and Q2D regimes. This has been documented by
the evolution of the mean momentum and energy, turbulence kinetic energy, and the terms
in their budgets. The dependence of the quality of the statistics on adequate ‘eddy sample
size’ has been observed, as has the Reynolds-number dependence of the duration, in terms
of Nt, of the NEQ regime.

The mean momentum budget clarifies the relationship between the turbulence suppres-
sion due to buoyancy and the turbulent and viscous mechanisms responsible for the vertical
and lateral growth of the wake. The TKE budget, on the other hand, quantifies the man-
ner in which the changes in turbulence structure are reflected in changes to the relative
importance and composition of the terms whose imbalance defines the net rate of change
of TKE. Surprisingly, despite these changes in structure, the TKE dissipation decays at
approximately the same rate during the early/3D and late/Q2D regimes. This affirms yet
again the dissimilarity between the Q2D state and pure 2D turbulence [11].

The present results illustrate that the wake collapse, signaling the beginning of the
NEQ regime, need not be accompanied by the transfer from the potential energy of the
turbulence to the kinetic energy of the turbulence, as has been proposed elsewhere. Instead,
the enhanced TKE exhibited during the NEQ regime is solely the result of buoyancy-induced
structural changes, which lead to increased TKE production. Thus, while the potential-to-
kinetic energy transfer is observed at early times for lower F∞ cases (Dommermuth et al. [8];
Brucker & Sarkar [9]), it is not an essential feature of the 3D to NEQ transition.

For the present high-F∞ case, internal wave activity is most pronounced at the start
of the NEQ regime. However, even during this time, internal waves make a negligible
contribution to the turbulence energy budget. This is in contrast to the strongly stratified
cases studied elsewhere, for which the amount of turbulence energy radiated by internal
waves during the NEQ regime can be comparable to that produced by the mean shear or
lost via viscous dissipation (cf. Brucker & Sarkar [9]).

The role of stable stratification in driving the wake towards a universal state has also
been displayed, in that the Q2D structure is independent of the details of the wake initializa-
tion (a fact frequently observed in other experiments and simulations). The present study
also indicates that during the Q2D period, the history of the maximum mean defect Ud (ap-
propriately normalized, in terms of the initial volume-flux deficit Id and the Brunt-Väisälä
frequency N) is a unique function of nondimensional time Nt (relative to a flow-dependent
virtual offset/origin). This supports the validity of the framework proposed by Meunier &
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Spedding [17] in their universal model of the mean-defect evolution for a stably stratified
towed wake.
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