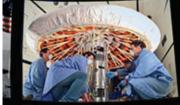
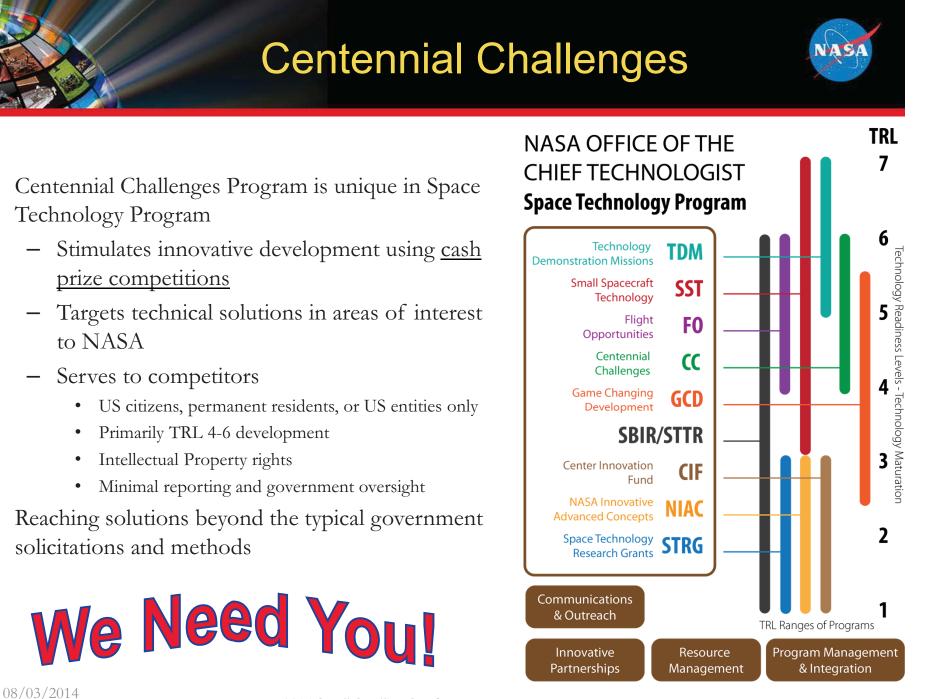
National Aeronautics and Space Administration

View metadata, citation and similar papers at core.ac.uk

Centennial Challenges Program Space Technology Mission Directorate


CubeSat Lunar and Deep Space Challenges


> 2014 Small Satellite Conference 08/03/2014

www.nasa.gov/spacetech

2014 Small Satellite Conference

Prize Competitions

- Stimulates innovation in ways unlike contracts or grants
 - Reward achievement, not effort
 - Competitors are not paid until goals are achieved
- Achieves returns that outweigh investment
 - High ratio of private investment to prize value <u>at a fraction of the cost of</u> <u>traditional procurement.</u>
 - Almost all funds go to prize purses
- Reaches new sources of innovation and talent
 - Multiple teams
 - Multiple approaches to same problem
- Stimulates new commercial ventures
 - New startups
 - New partners
 - More commercial competition
- Educate, inspire, and motivate the public
 - Train the future workforce; Inclusion, not exclusion
 - Increase awareness of science & engineering

Previous Centennial Challenges

Since 2005, 24 competitions held in 9 Challenges ~\$6.0M in prizes awarded to 16 different teams

Regolith Excavation – \$750K

Lunar Lander – \$2M

Astronaut Glove – \$550K

Power Beaming - \$900K

Personal Air Vehicle - \$250K

Green Flight – \$1470K

Incentivize advancement in robotic navigation and sample manipulation technologies.

Goal: Demonstrate a fully autonomous robot that can locate and retrieve several

identified samples with no use of GPS or other terrestrial navigation aids.

PRIZE PURSE: \$1.49 Million

Status

- 10 teams competed June 5-6, 2013
- 18 teams competed June 11-14, 2014
- Level I Winners
 - ✓ Team Survey (2013)
 - ✓ West Virginia University (2014)
- Competitors Include
 - Universities and High School Students
 - Amateur Designers
 - Industrial Teams

08/03/2014

2014 Small Satellite Conference

<complex-block>

http://wp.wpi.edu/challenge/

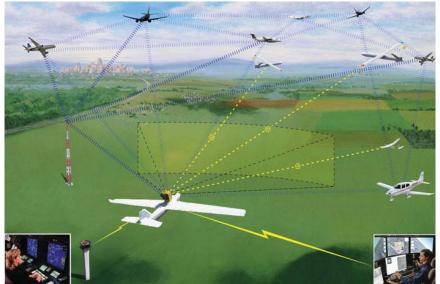
West Virginia University

Team Survey

UAS AOC Challenge managed by NASA & DPI

Incentivize advancement in avionic capabilities for operation in the Next Generation (NextGen) Airspace concept.

• Phase 1 Competition (\$500K)


- Fly 4-Dimensional Trajectories (4DT)
- Employ ADS-B IN
- Maintain safe separation from cooperative air traffic
- Operate safely in a number of contingency situations
- Phase 2 Competition (\$1M) (Planned) -
 - Maintain safe separation from uncooperative air traffic
 - Employ ADS-B IN and OUT
 - Have onboard systems capable of communicating verbally with the Air Traffic Control (ATC) system

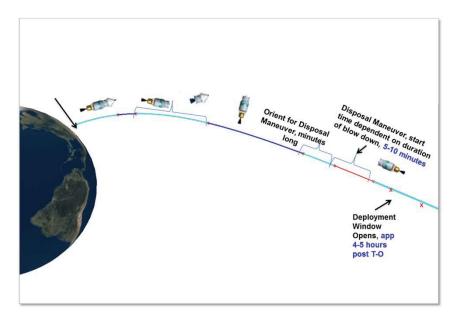
• Status

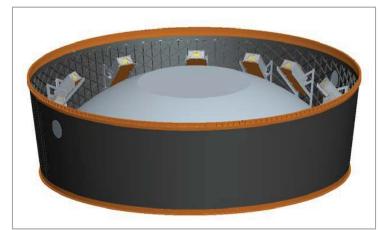
- Development Systems, Inc of Dayton Ohio selected as Allied Organization and Space Act executed on May 6.
- Registration open
- Phase 1 Competition Fall 2014. Phase 2 will be one year after Phase 1 success.

08/03/2014

2014 Small Satellite Conference

Detect, Sense & Avoid for Separation Assurance


http://go.usa.gov/YHmA


UAS AOC - Unmanned Aircraft System Air Operations Challenge

New Challenges

- Centennial Challenge Program is pleased to announce two new challenges to kick off this Fall
 - The CubeSat Deep Space Communications Challenge
 - The CubeSat Lunar Propulsion and Communications Challenge
- Qualified Teams will launch on board NASA's Exploration Mission EM-1 at no cost
 - EM-1 is the first uncrewed lunar flyby of Orion
 - Secondary Payloads will deploy during trans lunar orbit

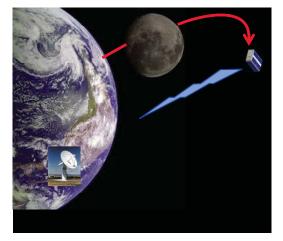
Why a Deep-Space CubeSat?

- CubeSat Form Factor
 - Advantages include
 - Low cost
 - Small size, mass, and power
 - Easier launch vehicle integration
 - Current limitations include
 - Short-term operations, in Low Earth Orbit (LEO)
 - Communications subsystems
 - Low-bandwidth data rates
 - Low transmit power
 - Low-gain
 - Unique protocols, or amateur radio wavelengths
 - No in-space propulsion (with limited exceptions)
 - No deep space navigation

- Future Applications include
 - Astrophysics
 - Planetary Exploration
 - Heliophysics
 - Earth Science
 - DoD Applications
 - Near Earth Object Exploration
- Successful teams will demonstrate sustained spacecraft and ground-segment capabilities necessary for deepspace exploration.

Goal: Incentivize small spacecraft deep space operations capabilities development, leading to the economic achievement of NASA, other government agencies, academia, and industry objectives.

Challenge Firsts


- First opportunity for non-government entities to develop spacecraft, and compete to operate at the moon and beyond
- Challenges incentivize alternate solutions to
 - Deep Space Communications
 - Ground station networks
 - Deployable CubeSat antennas
 - Improved transmitters
 - Game-changing high bandwidth optical
 - In-Space Propulsion
 - CubeSat market poised to offer a variety of propulsion systems
 - To date, only NanoSail-D has demonstrated propulsion in LEO
 - Three propulsion types allowed
 - Solar sail
 - Solar electric
 - Chemical (subject to SLS approval)
 - Longevity in Deep Space:
 - New approaches to rad hardening
 - Thermal and power management
 - Advanced CubeSat GN&C to achieve lunar orbit and steer antennas
- First ever in-space Centennial Challenge

Challenge Structure

- Concurrent In-space Challenges
 - Lunar CubeSat Propulsion and Communications Challenge
 - Achieve Lunar Orbit
 - Downlink the largest volume of error-free data
 - 30-minute burst
 - 28-day aggregate
 - Survive the longest
 - Transmit the last data packet heard within the challenge timeframe
 - CubeSat Deep Space Communications Challenge (> 4 million km)
 - Farthest data transmission distance
 - Largest volume of error-free data
 - 30-minute burst
 - 28-day aggregate
 - Longest duration of operability
 - Transmit the last data packet heard within the challenge timeframe

• Five Ground Qualification Competitions (GQC) Milestones

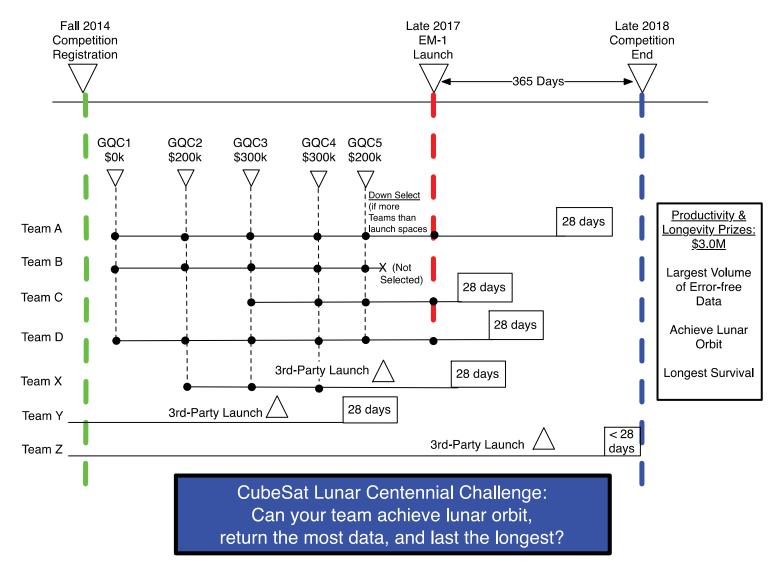
- Purposes:
 - Gain insight into competitor's mission designs
 - Provide feedback to teams
 - Award intermediate prizes
- Judging based on technical maturity, compliance with Challenge Rules and with SLS requirements
- GQCs culminate in down-select for EM-1 integration and launch
- GQCs not required of teams that elect to procure 3rd-party launches

Prize Structure

•	Lunar Challenge Will Award	Up To \$3M
	 Achieve Lunar Orbit 	1.5M (shared)
	 Error Free Communication 	\$1.0M
	- Longevity (Orbit maintenance)	\$500k
•	Deep Space Communication Challenge Will Award	Up To \$1.5M
	 Error Free Communication 	\$1.0M
	- Longevity (No maintenance needed)	\$250k
	– Distance	\$250k

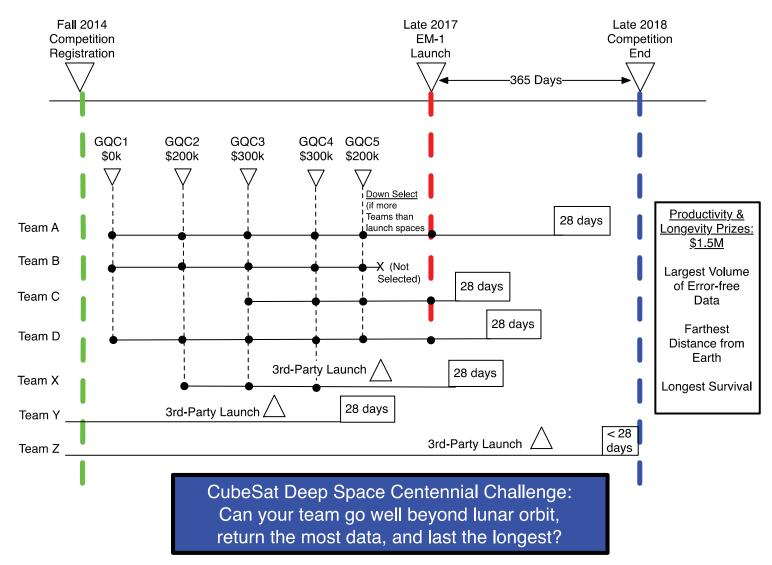
- Ground Qualification Competition (GQC) Will Award Up To \$1.0M
- Challenges End Date is 365 Days After NASA-provided Launch Date
- Winner(s) Determined by Submitted Results At The End of Competition Period
- Teams Competing In More Than One Challenge
 - Must Use A Single Spacecraft
 - Must Meet All Respective Challenge Rules To Qualify for Prize

\$5.5M Allocation of Prize Money


Versatility of Rules

- Challenges are structured to cover a variety of scenarios:
 - EM-1 or other launcher
 - Teams may choose to qualify for EM-1, or obtain their own launch (at their expense)
 - Propulsion or no propulsion
 - Deep Space Challenge does not require propulsion
 - 365-day time rule should allow exotic trajectories to lunar orbit
 - With/Without NASA-provided Space Communication and Navigation (NEN, DSN)
 - Competitors may elect to use Deep Space Network (DSN) at their cost or procure own ground station
 - Third party methods must provide NASA specified evidence for authenticating transmission origin
- Rules avoid "hard coding" certain TBD constraints at this time:
 - EM-1 launch date
 - Final number of secondary payload slots

Lunar Challenge Time Line



08/03/2014

²⁰¹⁴ Small Satellite Conference

Deep Space Challenge Time Line

²⁰¹⁴ Small Satellite Conference

Summary

- New Challenges Starting
 - CubeSat Deep Space Communications
 - CubeSat Lunar Propulsion and Communications
- Favorable Responses To Request for Information
 - 29 Respondents on First
 - 20 Respondents on Second (7 Repeats)
 - 42 Total Respondents
- Challenge Information
 - Registration to Begin Fall 2014
 - Kickoff Summit Will Be Held
 - For More Information Go To NASA Centennial Challenges Website

www.nasa.gov/challenges

2014 Small Satellite Conference

BACKUP

08/03/2014

2014 Small Satellite Conference

Centennial Challenge Deputy Program Manager	Eric Eberly
Centennial Challenge Program Manager	Sam Ortega
CubeSat Deep Space and Lunar Challenges Administrator	Jim Cockrell, ARC
Communications Technical Advisors	Steve Horan, LARC; Steve Townes, JPL
Trajectory Analysis	Anthony Genova, ARC
Propulsion Technical Advisor	Tim Smith, GRC; Chuck Taylor, LARC
SMD Representatives	Dr. Pete Panetta, Planetary Sciences Division; Dr. David Klumpar, Heliophysics Division