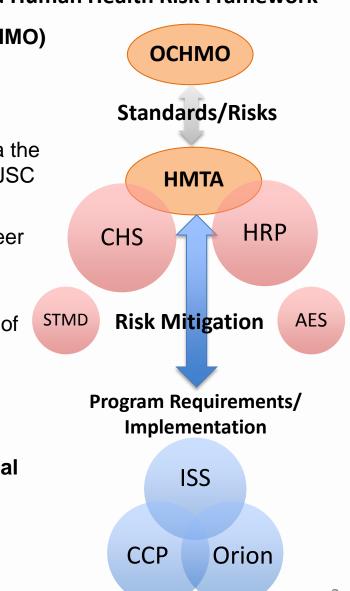


Human Health & Performance (HH&P) **Risk Assessment and Reduction** & Open Innovation for Problem Solving

Institute for Healthcare Improvement March 4, 2014


Jeffrey R. Davis, MD David R. Francisco Elizabeth E. Richard Lynn Buquo

Human Health and Performance Exploring Space | Enhancing Life

Integrated Risk Mitigation Crew Health and Safety, Medical Operations, & Research

Policy, Operations, and Research are integrated through a Human Health Risk Framework

- Office of the Chief Health and Medical Officer (OCHMO)
 - Level I NASA HQ
 - Develops Medical Policy, Health and Performance Standards, and Bioethics
 - Risk Assessment and Mitigation Implemented via the Health and Medical Authority (HMTA) – Level II – JSC
- Crew Health and Safety (CHS)
 - Medical Operations and Occupational Health (career health care/post career monitoring)
- NASA Human Research Program (HRP)
 - Human health & performance research in support of space exploration
 - Perform research necessary to understand & reduce health & performance risks
- AES & STMD Technology/Protocol Development
- International Space Station (ISS), Orion, Commercial Crew Programs
 - Implementation of Medical Operations
 - Medical Requirements, Tests and hardware
 - Engineering Requirements

NASA Human Health and Performance

Goal: Enable Successful Space Exploration by Minimizing the Risks of Spaceflight Hazards O Spaceflight

Risks

Hostile Spaceflight Environment

> Altered Gravity Radiation Isolation Closed Environment Distance from Earth

<u>Hazards</u>

Human Risks Bone & Muscle loss, Radiation Exposure, Toxic Exposure, etc

Standards Requirements

Standards

Mitigations

Deliverables: Technologies Countermeasures Preventions Treatments

3

Hazards of Spaceflight Hazards Drive Human Spaceflight Risks

Altered Gravity -Physiological Changes

Balance Disorders Fluid Shifts Cardiovascular Deconditioning Decreased Immune Function Muscle Atrophy Bone Loss

Space Radiation

Acute In-flight effects Long term cancer risk

Distance from earth

Drives the need for additional "autonomous" medical care capacity – cannot come home for treatment

> Hostile/ Closed Environment

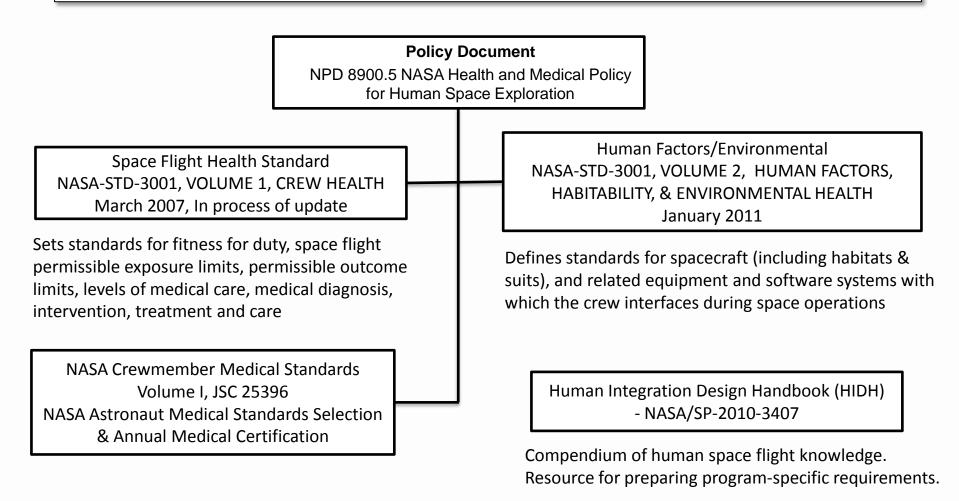
Vehicle Design Environmental – CO₂ Levels, Toxic Exposures, Water, Food

Isolation & Confinement

Behavioral aspect of isolation Sleep disorders

Summary of Human Risks of Spaceflight Grouped by Hazards – 30 Human Risks, 2 Concern/Watchlist Items

Altered Gravity Field Radiation Hostile/Closed Environment-Spacecraft Design **Primary Effect Primary Effect Primary Effect** 1. Spaceflight-Induced Intracranial 🛧 1. Risk of Space Radiation 💢 1. Toxic Exposure Hypertension/Vision Alteration **Exposure on Human Health** Acute and Chronic Carbon Dioxide Exposure 2. Urinary Retention 3. Hearing Loss Related to Spaceflight 3. Space Adaptation Back Pain 4. Risk of reduced crew performance prior to 4. Renal Stone Formation Distance from Earth adaptation to mild hypoxia. 5. Risk of Bone Fracture due to spaceflight 5. Injury and Compromised Performance due Induced bone changes **Primary Effect** to EVA Operations 🛨 6. Impaired Performance Due to Reduced 1. Unacceptable Health and 6. Decompression Sickness 🔀 Muscle Mass, Strength & Endurance 🛨 Mission Outcomes Due to 7. Injury from Sunlight Exposure 🕇 7. Reduced Physical Performance Capabilities **Limitations of In-flight** 8. Incompatible Vehicle/Habitat Design Due to Reduced Aerobic Capacity 📩 Medical Capabilities ***** 9. Risk of Inadequate Human-Machine 8. Impaired Control of Spacecraft, Associated 2. Risk of Ineffective or Toxic Interface Systems and Immediate Vehicle Egress due Medications due to Long 10. Risk to crew health and compromised to Vestibular / Sensorimotor Alterations Term Storage performance due to inadequate nutrition associated with space flight. 🗡 11. Adverse Health Effects of Lunar (Celestial) 9. Cardiac Rhythm Problems ★ Isolation Dust Exposure 🛨 10. Orthostatic Intolerance During Re-Exposure 12. Performance Errors Due to Fatigue Resulting to Gravity 🛨 **Primary Effect** from Sleep Loss, Circadian 11. Adverse Health Effects due to Alterations in 1. Risk of performance Desynchronization, Extended Wakefulness, Host Microorganism Interaction 🛨 decrements due to adverse and Work Overload 🗡 behavioral conditions 🛨 13. Injury from Dynamic Loads 🕁 **Concerns/Watchlist** 14. Risk of Altered Immune Response 🗡 1. Concern of Clinically Relevant Unpredicted Standards 15. Risk of electrical shock ★ **Effects of Medication** 2. Intervertebral Disc Damage NASA-STD-3001, VOLUME 1, CREW HEALTH NASA-STD-3001, VOLUME 2, Ż HUMAN FACTORS, HABITABILITY, & ENVIRONMENTAL HEALTH Standards in process of


Clinical Practice Guidelines

review/change/addition

Health and Medical Policy and Standards

Standards based on best available scientific/clinical evidence & expert recommendations (medical practice, lessons learned, analogue environments, research findings, risk management data)

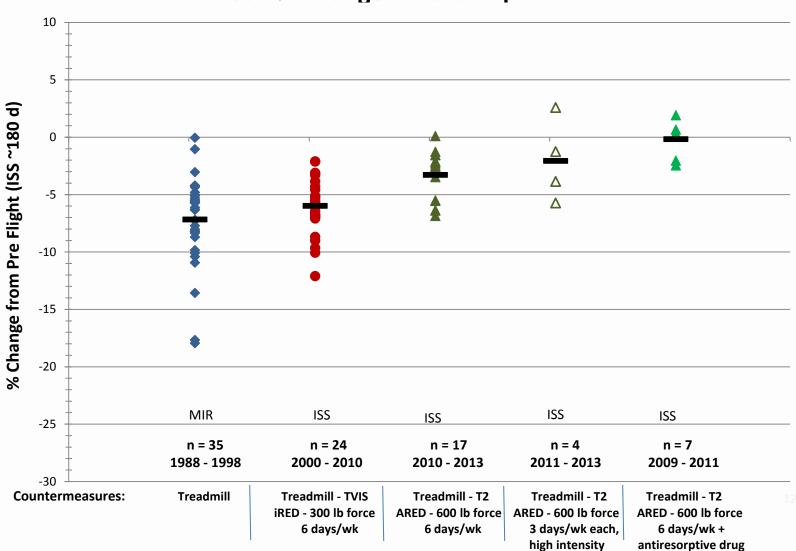
Crew Health, Medical, and Safety: Space Flight Health Standards

Discipline	Туре	Standard
Bone	POL	Maintain bone mass at ≥-2SD
Cardiovascular	FFD	Maintain ≥75% of baseline VO2 max
Neurosensory	FFD	General Sensory Motor, Motion Sickness, Perception, Gaze Control
Behavioral	FFD	Maintain nominal behaviors, cognitive test scores, adequate sleep
Immunology	POL	WBC > 5000/ul CD4 + T > 2000/ul
Nutrition	POL	80% of spaceflight-modified/USDA nutrient requirements
Muscle	FFD	Maintain 80% of baseline muscle strength
Radiation	PEL	≤ 3% REID (Risk of Exposure Induced Death)

FFD - fitness for duty, PEL - space flight permissible exposure limits, POL - permissible outcome limits

Risk of Bone Fracture due to Spaceflight-induced Changes to Bone

Risk Title: Risk of Bone Fracture due to Spaceflight-induced Changes to Bone


Risk Statement: Given that crewmembers may experience a decline in bone mass/strength in microgravity & skeletal adaptation may not be reversible after return to earth, there is an increased possibility of bone fracture during the mission & post mission.

Primary Hazard: µ-gravity	Secondary Hazard: radiation, Vehicle design	Countermeasure: <u><i>Prevention:</i></u> selection standard, exercise, task design, diet, pharmaceuticals.
Contributing Factors: nutrition, visual-neuro-muscular declines, radiation		<u>Treatment</u> In-flight treatment/medical kit, meds, post-mission rehabilitation

State of Knowledge: Fracture probability dependent upon loading and bone strength. BMD is widely used as a surrogate for bone strength but its sole use recognized to be insufficient for risk assessment. Extensive pre/post flight Bone Mineral Density data. ARED/T2 6 days/week exercise regimens have minimized declines in BMD to meet Permissible Outcome Limits (POL). Changes to trabecular bone, whole bone structure and hip strength estimations are limited to two research studies with and without pharmaceuticals.

Metric Risk of Bone Fracture due to Spaceflight-induced Changes to Bone

1371B - January 2014 Bone & Mineral Lab Data Analysis

Mean % Change in Total Hip DXA BMD

9

Design Reference Missions Categories

All of the Human Health and Performance Risks will be evaluated against the following categories:

DRM Categories	Mission Duration	Gravity Environment	Radiation Environment	Earth Return
Low Earth Orbit	6 months	Microgravity	LEO - Van Allen	1 day or less
	1 year	Microgravity	LEO - Van Allen	1 day or less
Deep Space Sortie	1 month	Microgravity	Deep Space	< 5 days
Lunar Visit/Habitation	1 year	1/6g	Lunar	5 Days
Deep Space Journey/ Habitation	1 year	Microgravity	Deep Space	Weeks to Months
Planetary Visit/Habitation	3 years	Fractional	Planetary*	Months

*Planet has no magnetic poles, limited atmosphere

Examples of Missions that would fall into the DRM Categories:

Low Earth Orbit – ISS6, ISS12, Commercial Suborbital, Commercial Visits to ISS, future commercial platforms in LEO
 Deep Space Sortie: MPCV test flights, moon fly around or landing, visits to L1/L2, deep space excursion
 Lunar Habitation: Staying on the surface more than 30 Days (less than 30 days would be similar)
 Deep Space Habitation: L1/L2 Habitation, Asteroid visit, journey to planets
 Planetary Habitation: Living on a planetary surface, MARS

Human System Risks – Likelihood vs Consequence

Consequence Mission Health and Performance (OPS)

CM = Countermeasure

LOM = Loss of Mission

LOC = Loss of Crew

Death or permanently disabling injury to one or more crew (LOC) OR Severe reduction of performance that results in loss of most mission objectives (LOM)	High	1 x 4	2 x 4	3 x 4
Significant injury, illness, or incapacitation – may affect personal safety OR Significant reduction in performance results in the loss of some mission objectives	Medium	1 x 3	2 x 3	3 x 3
Minor injury/illness that is self-limiting OR Minor impact to performance and operations- requires additional resources (time, consumables)	Low	1 x 2	2 x 2	3 x 2
Temporary discomfort OR Insignificant impact to performance and operations - <u>no</u> additional resources required	Very Low	1 x 1	2 x 1	3 x 1
M = Countermeasure DC = Loss of Crew DM = Loss of Mission		Low ≤0.1 % Lik	Medium	<u>></u> 1.0%

Consequence Long Term Health (post mission) (LTH)

LOI	ng Term Health (post mission) (LTH
High	 Unknown and improbable return to baseline (requires drastic intervention surgery & therapy) Major impact on quality of life (permanent reduced function, premature death)
Medium	 Return to <u>near</u> baseline requires extended medical intervention w/ known clinical methods/technologies (pharmaceuticals, etc.) Moderate impact on quality of life
Low	 Return to baseline values within 1 year with nominal intervention (time, exercise, nutrition, lenses) Negligible effect on quality of life
Very Low	 Return to baseline values within 3 months with <u>limited</u> intervention No effect on the quality of life

Quality of Life is defined as impact on day to day physical and mental functional capability and/or lifetime loss of years

Risk Assessment

Bone Fracture due to Spaceflight-induced Changes to Bone

Countermeasures: <u>*Prevention:*</u> selection standard, exercise, task design, diet, pharmaceuticals. <u>*Treatment:*</u> In-flight treatment/medical kit, meds, post-mission rehabilitation

L x C Driver: OPS Likelihood all except Planetary : < 0.1% likelihood of bone fracture in mission due to existing countermeasures (prevention by selection) effectiveness. Planetary: increases due to mission duration and surface operations. Consequence LEO, Sortie, Lunar: Bone fracture considered significant injury with in flight treatment and return to Earth. Deep Space and Planetary Consequence: Injury may be disabling due to the inability to return to Earth for treatment. LTH Likelihood LEO, Lunar, Journey: Likelihood of fracture due to spaceflight > 0.1% and < 1%. Most crew could return to baseline BMD within 3 years. Sortie: Likelihood <0.1% due to limited mission duration. Planetary: > 1% due to mission duration. LTH Consequence: Bone fracture prevention may require extended medical interventions by known methods

DRM Categories	Mission Duration	L OPS	x C LTH	Risk Evaluation Status	Deliverables Required	Responsible Program	Budget (\$M)/ (2014-2018)
Low Earth Orbit	6 months	1 x 4	2 x 3	Partially Controlled	 Knowledge: Surveillance data to supplement bone density with bone quality index 	HRP/Grant	\$0.25M
	1 year	1x4	2 x 3	Partially Controlled	Identify critical risk factors Technology:	HRP/Grant	\$0.45M
Deep Space Sortie	1 month	1 x 4	1 x 3	Partially Controlled	 Develop biomarkers Need to establish index for CM efficacy 	HRP/Grant HRP/Contract	\$1.0M \$0.05M
Lunar Visit/ Habitation	1 year	1 x 4	2 x 3	Partially Controlled	 Evaluate pharmacological CMs Operational Protocols: Continued crew monitoring 	HRP/Grant	\$1.32M \$1.35M
Deep Space Journey/Hab	1 year	1 x 4	2 x 3	Partially Controlled	 Guideline/Requirements/Standards: Leverage terrestrial Level 4 Evidence 	CHS/HRP	\$0.05M
Planetary	3 years	2 x 4	3 x 3	Uncontrolled	Total Budget 2014-19 = \$4.5M	ISS, \$0.6	CHS, \$0.6

Note: ISS Exercise H?W – Sustaining, Logistics and Maintenance: \$27M

HRP, \$3.3

Requirements Flow down – Bone Fracture

Risks	Bone Fracture of Spaceflight-ind Changes to B	duced	Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance	Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity			
Standar	rd(s)		Space Flight Health Standard STD-3001, VOLUME 1, CREW H March 2007, In process of updat				
4.2.9.3 The post-flight (end of mission) bone mass DXAT score shall not exceed -2.0 (-2.0 SD below the mean Bone Mineral Density).							

Requirements Is	SS
-----------------	----

SSP 50260 International Space Station Medical Operations Requirements Document - MORD

6.2.4.1 IN-FLIGHT EXERCISE

Daily physical exercise shall be scheduled for each ISS crewmember, consisting of 1.5 hours daily of actual exercise time with varying amounts of resistive and aerobic exercise.

Commercial Crew

CCT-REQ-1130 ISS Crew Transportation Requirements Document

N/A – due to limited duration of mission

MPCV

MPCV Human System Integration Requirements -HSIR

3.5.4.1 Exercise Capability [HS6032] The system shall provide the capability for aerobic and resistive exercise training for 30 continuous minutes each day per crewmember for missions greater than 8 days.

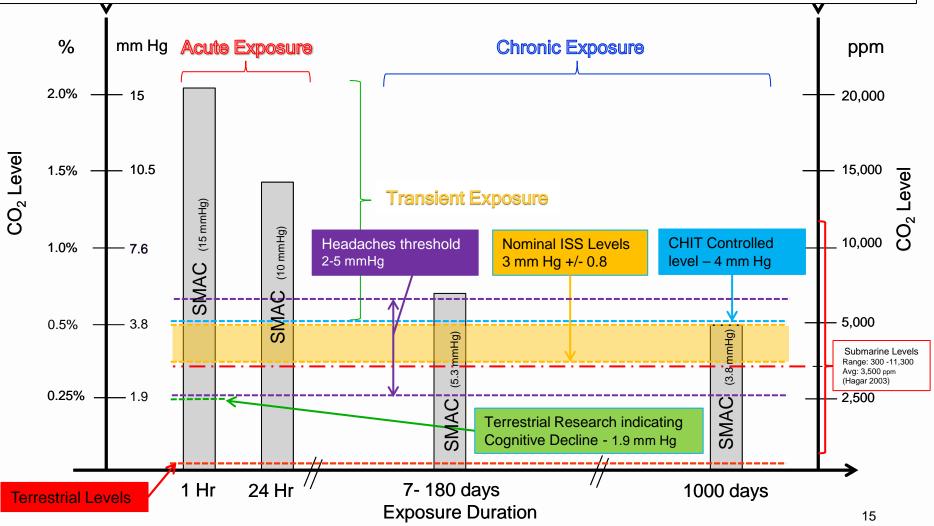
Risk Title: Risk of Acute and Chronic Carbon Dioxide Exposure

Risk Statement: Given CO_2 levels in spacecraft are 6-20 times higher than in the terrestrial atmosphere, there is a possibility that short-term and long-term CO_2 exposures will impact crew health and performance when complex decisions are necessary.

Primary Hazard: Closed Environment -	Se
CO ₂ (local pockets of high concentration)	Dis

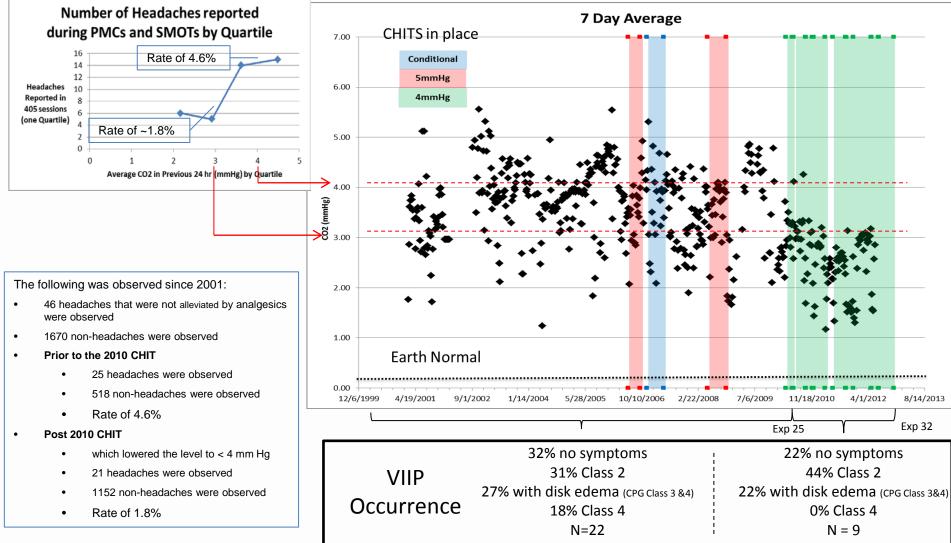
Secondary Hazard: Micro-g fluid shift <u>Dist. from Earth</u> - autonomous ops

Contributing Factors: 1) Microgravity-related lack of convection and air circulation, 2) Limited carbon dioxide removal capability, 3) genetic factors. Elevated CO_2 concentration appears to be a contributing factor to other risks*

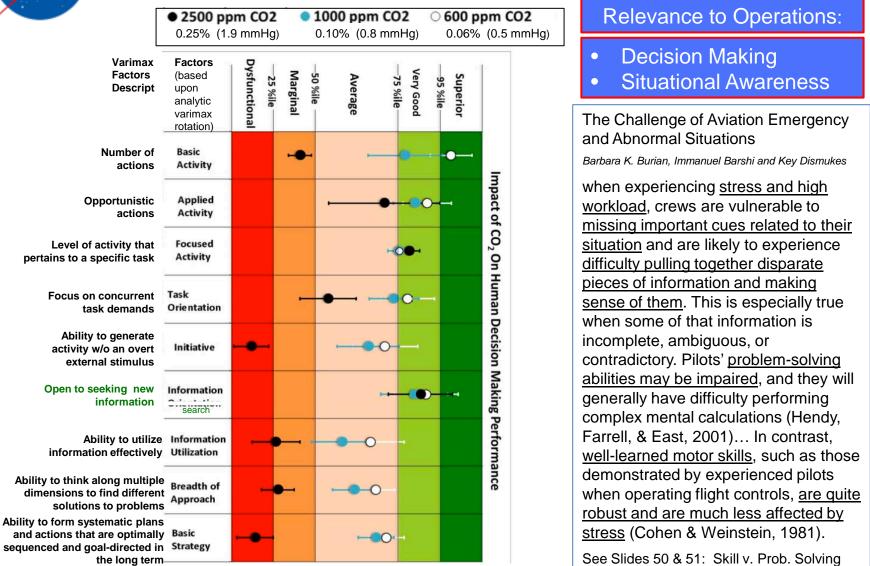

Countermeasures: Standards/SMAC Levels - CO₂ scrubbing <u>Corrective CM</u>: Ground Control and Monitoring.

State of Knowledge: Terrestrial evidence indicates that current standards for CO_2 exposures via SMACs, Flight Rules, and CHITs may not be adequate to mitigate neuro-cognitive effects. Additionally, ISS data suggest a higher incidence of headaches with acute increases of CO_2 over the range of 2 to 5 mmHg, with resultant "p" values so small indicating statistical significance with regard to the association of headaches and CO_2 levels.

*Areas of Concern: Crew Headaches Contribution to Intracranial Pressure Increase – Vision Impairment/ICP Possible Cognitive Impacts


Risk Statement: Given CO_2 levels in spacecraft are 6-20 times higher than in the terrestrial atmosphere, there is a possibility that short-term and long-term CO_2 exposures will impact crew health and performance when complex decisions are necessary. Coupled with microgravity fluid shift may compound the effects.

Headaches that were not alleviated by Analgesics


Weekly Average CO₂ Level

NASA

CO₂ Exposures - <u>Acute</u> - Cognitive Function

Decision-Making Decrements (Satish et al. 2012)

CR-HSRB-10-013-R1-R1

Countermeasures: Preventive: Standards/SMAC Levels - CO₂ scrubbing <u>Treatment/Corrective CM</u>: Ground Control and Monitoring.

LxC Driver: Based on cognitive function impairment and lack of awareness of such inability, the consequences could be severe reduction of performance resulting in loss of most mission objectives for LEO, Lunar Missions, and Deep Space Sortie. For Deep Space Journey/Hab and Planetary missions, it could lead to LOC. **Primary LxC Driver – Access to Ground Communication.** Is this sufficient to mitigate risk?

DRM Categories	Mission Duration	L OPS	x C LTH	Risk Deliverables Required Evaluation		Responsible Program/Mechanism	Budget (\$M)/Timeline (2013-2018)
				Status	Knowledge: • Cognitive Function	TBD	TBD
Low Earth	< 180 days	3 x 2	3 x 1	Partially Cont.	ICP Impacts	TBD	TBD
Orbit	> 180 days	3 x 2	3 x 1	Partially Cont.	Technology:		
Deep Space Sortie	< 30 days	3 x 3	3 x 1	Partially Controlled	Amine Swing bed Advance ECLSS Operational Protocols:		
Lunar Visit/ Habitation	> 30 Days	3 x 2	3 x 1	Partially Controlled	 Flight Rule Changes Operational Changes 	ISS/MPCV/CCP	In-work 2014
Deep Space Journey/Hab	<365 Days	3 x 4	3 x 1	Uncontrolled	Guideline/Requirements/Standards: • SMAC Levels Updates (Standards)	ISS	In Work 2014
Planetary	>365 Days	3 x 4	3 x 1	Uncontrolled			

Uncontrolled (Rationale):

- 1. Ground data \rightarrow Dysfunctional decision making at CO₂ exposures half the current ISS CHIT Levels of 4mmHg, which may explain ISS historical accounts of decision making errors.
- 2. Flight crews unable to recognize decision making impairment thereby increasing risk during autonomous mission phases
- 3. Suggestive evidence \rightarrow incidence of reported headaches on ISS is associated with higher 24-h average CO₂ levels well below the CHIT.

Requirements Flow down – Risk of Acute and Chronic Carbon Dioxide Exposure

Risks R

Risk of performance decrements due to adverse behavioral conditions

Risk of Acute and Chronic Carbon Dioxide Exposure Spaceflight-Induced Intracranial Hypertension/Vision Alteration

Standard(s)

Human Factors/Environmental NASA-STD-3001, VOLUME 2, HUMAN FACTORS, HABITABILITY, & ENVIRONMENTAL HEALTH

6.2.1.3 Carbon Dioxide Levels [V2 6004]

CO2 levels shall be limited to the values stated in the tables located in JSC 20584, Spacecraft

Maximum Allowable Concentrations for Airborne Contaminants.

Requirements ISS	Commercial Crew	MPCV
International Space Station ISS Flight Rules	CCT-REQ-1130 ISS Crew Transportation	MPCV 70024 Human Systems Integration Requirements -HSIR
Flight Rule B13-53 ("PPCO2 Constraints")prescribes required actions whenstation ppCO2 levels approach or exceedthe permissible exposure limit of 7.6mm Hg.CHIT – 4.0 mmHgFlight Rule B13-251 ("EMU PPO2 andPPCO2 Constraints")	Requirements Document Table 3.10.11.1.1-1: Atmospheric Habitability Limits d. Cabin ppCO2 Maximum: 4.0 mmHg (0.077 psia)	3.2.1.1 HS3004C The system shall maintain the partial pressure of carbon dioxide in the internal atmosphere to less than 4.0 mmHg (0.077 psia) average over any 1-hour time frame.

NASA Human Health and Performance (HH&P) Strategy Formulation and Execution

Human Health and Performance Exploring Space | Enhancing Life

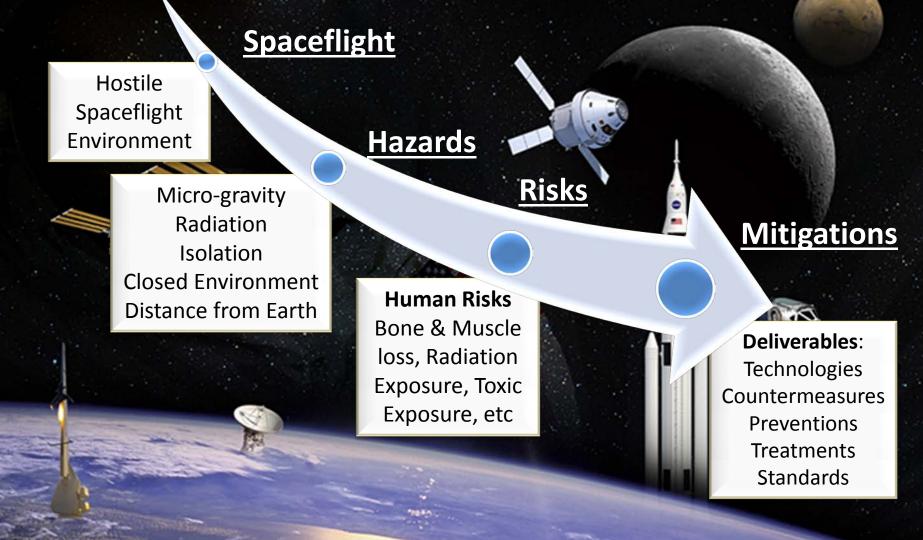
Formulating and Executing our Strategy

- Strategic Plan (2007 and 2012)
 - Develop an improved business model using collaborative approaches to drive health innovations in space and on Earth
- Benchmark to inform implementation
 - Culture change most critical for success
 - Collaboration needed to drive innovation
- Successful open innovation pilots testing new approaches to solving technical problems
- NHHPC, NTL and CoECI: virtual centers built to advance collaboration and the use of open innovation
- Solution Mechanism Guide (SMG) Tool to integrate new tools into HH&P culture

HH&P Organization

- -Space and Clinical Operations
- Health care and medical systems

- -Biomedical Research and Environmental Sciences
- Physiological, environmental and behavioral effects of spaceflight
- -Human Systems Engineering and Development
- Human centered design (hardware/software), human factors, food systems



NASA Human Health and Performance

Goal: Enable Successful Space Exploration by Minimizing the Risks of Spaceflight Hazards

Risk Assessment

Bone Fracture due to Spaceflight-induced Changes to Bone

Countermeasures: <u>Prevention</u>: selection standard, exercise, task design, diet, pharmaceuticals. <u>Treatment</u>: In-flight treatment/medical kit, meds, post-mission rehabilitation

L x C Driver: OPS Likelihood all except Planetary : < 0.1% likelihood of bone fracture in mission due to existing countermeasures (prevention by selection) effectiveness. Planetary: increases due to mission duration and surface operations. Consequence LEO, Sortie, Lunar: Bone fracture considered significant injury with in flight treatment and return to Earth. Deep Space and Planetary Consequence: Injury may be disabling due to the inability to return to Earth for treatment. LTH Likelihood LEO, Lunar, Journey: Likelihood of fracture due to spaceflight > 0.1% and < 1%. Most crew could return to baseline BMD within 3 years. Sortie: Likelihood <0.1% due to limited mission duration. Planetary: > 1% due to mission duration. LTH Consequence: Bone fracture prevention may require extended medical interventions by known methods

DRM Categories	Mission Duration	L OPS	x C LTH	Risk Evaluation Status	Deliverables Required	Responsible Program	Budget (\$M)/ (2014-2018)
Low Earth Orbit	6 months	1 x 4	2 x 3	Partially Controlled	 Knowledge: Surveillance data to supplement bone density with bone quality index 	HRP/Grant	\$0.25M
	1 year	1x4	2 x 3	Partially Controlled	Identify critical risk factors Technology:	HRP/Grant	\$0.45M
Deep Space Sortie	1 month	1 x 4	1 x 3	Partially Controlled	 Develop biomarkers Need to establish index for CM efficacy 	HRP/Grant HRP/Contract	\$1.0M \$0.05M
Lunar Visit/ Habitation	1 year	1 x 4	2 x 3	Partially Controlled	 Evaluate pharmacological CMs Operational Protocols: Continued crew monitoring 	HRP/Grant ISS/CHS/HRP	\$1.32M \$1.35M
Deep Space Journey/Hab	1 year	1 x 4	2 x 3	Partially Controlled	 Guideline/Requirements/Standards: Leverage terrestrial Level 4 Evidence 	CHS/HRP	\$0.05M
Planetary	3 years	2 x 4	3 x 3	Uncontrolled	Total Budget 2014-19 = \$4.5M	ISS, \$0.6	CHS, \$0.6

Note: ISS Exercise H?W – Sustaining, Logistics and Maintenance: \$27M

HRP, \$3.3

Portfolio Analysis: Models of Collaboration

The Four Ways to Collaborate

There are two basic issues that executives should consider when deciding how to collaborate on a given innovation project: Should membership in a network be open or closed? And, should the network's governance structure for selecting problems and solutions be flat or hierarchical? This framework reveals four basic modes of collaboration.

Innovation Mail A place where a company can post a problem, anyone can propose solutions, and the company chooses the solutions it likes best Example: InnoCentive.com website, where companies can post scientific problems Elite Circle A select group of participants chosen by a company that also defines the problem and picks the solutions Example: Alessi's handpicked group of 200-plus design experts, who develop new concepts for home products	Innovation Community A network where anybody can propose problems, offer solutions, and decide which solutions to use Example: Linux open-source softwere community Consortium A private group of participants that jointly select problems, decide how to conduct work, and choose solutions Example: IBM's partnerships with select companies to jointly develop semiconductor technologies	Closed Open
Hierarchical	Fist	Gary P

Gary Pisano, Harvard Business School

NASA Innovation Projects: *Elite Circle*

- Intravenous fluid from potable water
- Modified technology colorimetric water analysis (formerly a device to evaluate paint color)

Exploration Medical Capability

IntraVenous fluid GENeration for exploration (IVGEN)

PRODUCE USP GRADE 0.9% NORMAL SALINE FROM *IN* SITU RESOURCES

- IV fluid required to respond to medical contingencies
- Filter to generate fluid incurs a smaller mass and volume cost than the actual fluid
- System based on deionization and sterilizing filters

FLIGHT TEST: MAY 4-7, 2010

Human Health and Performance Exploring Space | Enhancing Life

Environmental Monitoring: Colorimetric Water Quality Monitoring Kit

Hardware Description

- Solution is a simple, compact, hand-held device that reliably and rapidly measures key water quality indicators in-flight
- Water sample is passed through membrane cartridge resulting in color change on membrane surface in the presence of silver or iodine
- Commercially available Diffuse Reflectance Spectrophotometer (DRS) measures magnitude of color change, which is proportional to the amount of analyte present in sample volume
- CSPE water quality monitoring kit was delivered to ISS on STS 128/17A

HH&P Open Innovation Pilot Projects:

Innovation Malls, Innovation Communities, and Consortiums

Human Health and Performance Exploring Space | Enhancing Life

- Why Open Innovation?
 - Joy's Law
 - "No Matter Who You Are, Most of the Smartest People Work for Someone Else"

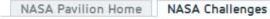
- Bill Joy, Cofounder Sun Microsystems

- The Causal Explanation for Joy's Law
 - Knowledge is unevenly distributed in society Fredrich von Hayek (1945)
 - Knowledge is sticky Eric von Hippel (1994)
 - from Karim Lakhani, PhD Harvard Business School

- HH&P Research and Technology Development Portfolio Gaps
 - Food packaging to maintain quality for 5 years
 - Compact (one cubic foot, 20 pound) exercise device for capsules
 - Solar proton event predictive capability for 24 hours
 - Coordinated sensor swarms for planetary research
 - Accurate tracking of medical consumables in flight
 - Motivational enhancement for exercise
 - Inflight laundry system

- InnoCentive: posts individual challenges/gaps to their established network of solvers (~300,000)
 - financial award if the solution is found viable by the posting entity
- Yet2.com: acts as a technology scout bringing together buyers and sellers of technologies
 - Option to develop partnerships
- TopCoder: open innovation software company with a large network of solvers (~300,000)
 – variety of skill-based software coding competitions
- NASA@work: internal collaboration platform leveraging expertise found across NASA's 10 centers

HH&P Open Innovation Pilot Projects:


Innovation Malls, Innovation Communities, and Consortiums

Human Health and Performance Exploring Space | Enhancing Life

NASA Innovation Pavilion

Global Appeal-

2900 solvers 80 Countries

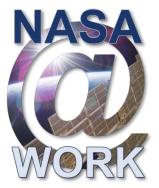
InnoCentive Successes

Challenge	TRL*	Submissions	Award
 Data-Driven Forecasting of Solar Events (D. Fry) ➢ Resulting model showed a high percent correct (~95%) but with an equally high false alarm rate. Potential for coupling with other modeling efforts 	Low	11	\$30,000
 Non-invasive Meas of Intracranial Pressure (S. Villarreal) Resulted in a predictive algorithm from UCLA using available physiologic data. Site visit planned to assess UCLA analysis of NASA data via modification of existing NSBRI study. 	Med	638	\$15,000
 Compact Aerobic Resistive Exercise Device Mech (L. Loerch) ➢ Technology was included in Advanced Exercise Concepts trade space for consideration 	Low	95	\$20,000
 Food Packaging and Protection (M. Perchonok) Monitoring other packaging team evaluations of flexible graphene material proposed as solution 	Med	22	\$11,000 (partial)

*TRL = Technology Readiness Level Low (1-3), Med (4-6), High (7-9)

Human Health and Performance Exploring Space | Enhancing Life

- Opportunity presented to NASA by Harvard Business School
 - Research project to compare outcomes of collaborative and competitive teams
 - $\circ\,$ NASA provided the problem statement
 - Optimize algorithm that supports medical kit design
- Competition began in Nov 2009 and lasted approximately 10 days
 - 2800 solutions were submitted by 480 individuals
 - $\,\circ\,$ Useful algorithm developed and incorporated into NASA model
 - Team felt this process was more efficient than internal development
- Result: NASA Tournament Lab with HBS and TopCoder established to seek many novel optimization algorithms for ISS



NASA@work Pilot Project

	SA@work municate. Collabor	ate. Come Tog	ether.		A B	
CHALLENGES HOME	SUGGEST A CHALLENGE	INFO EXCHANGE	MANAGE	MY ACCOUNT	HELP	CORPORATE INTRANET
Challenge Activity Dashboard						
NASA@work Challeng	ges (20 of 20 total)					
Search Challenges & Discus:	sions:	Search				Switch To Summary View
SORT By: Deadline vin	Descending Order 💌	FILTERS	- By Status: Pen	ding,Open,Under Ev	r alı By	/ Tag: Technology Development
					:	Showing 20 out of 20 results
If and When Life Is Dis	covered on Mars, How Can	We Determine If It i	s Trulv Indi	genous Mars Li	fe?	
Challenge Award: \$200 USD	, , , , , , , , , , , , , , , , , , , ,	Challenge 429		-		Joel S. (LARC-E303) - 🖄 Edit This Challenge
and does no	re requested for protocols that woul t result from man's exploration of th otection is particularly welcome.			-		-

- Pilot conducted in 2010 and fully operational platform launched in 2012
- Connects 10 NASA centers and offers access to previously untapped expertise

• Enthusiastic response to new business model

Challenges (since Aug 2011)

- Number of Challenges: 27
- Winners to Date: 57
- Average Number of Posts per Challenge: ~36

NASA@work Community (as of July 2013)

- Solvers: 10,036
- Active Solvers: >500

- Rice Business Plan Competition
 - 42 MBA/technical student teams
 - Offered life science prize for earth/space benefits
 - 5 teams awarded since 2008
 - 2 teams have secured funding
 - Series A funding
 - USDA grant
- LAUNCH (NASA HQ)
 - Early stage technologies identified
 - Netra (MIT Media Lab)

Building upon Pilot Success: NASA HH&P and Agency Outcomes

The NASA Human Health and Performance Center (NHHPC)

A global convener of government, industry, academic, and non-profit organizations to advance human health and performance innovations to enable space exploration and benefit life on Earth

Engagement Activities

- Annual workshops
- Webcasts: Innovation Lecture Series and Member to Member Connects

130+ Member Organizations

- Website postings
- Quarterly NHHPC eNews
- Technical needs postings tied to existing Tech Watch process

The NTL and CoECI

Advancing open innovation in the federal government

- NASA Tournament Lab (NTL)
- NASA Center of Excellence for Collaborative Innovation (CoECI)

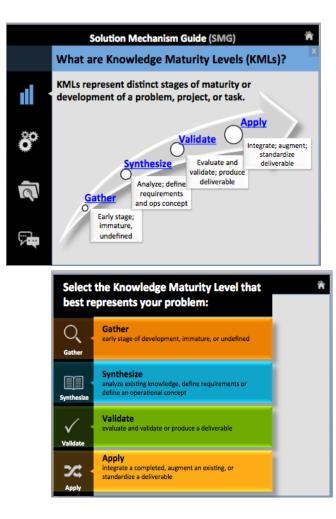
Established 2011

Human Health and Performance Exploring Space | Enhancing Life

Tournament Lab

Solution Mechanisms

Challenge	Solution Mechanisms	Outcomes	Results
- How to	NASA WORK	Top 3 NASA "winners" directed us to take a second look at developers we were already aware	
measure intracranial pressure (ICP) non-	- INNOCENTIVE Potential \$15K Award	638 Solutions Submitted 581 Rejected by InnoCentive 11 Rejected by NASA 46 Reviewed by NASA	2 New Potential Solutions
invasively _	yet ⊘ com [™]	81 Leads Identified 63 Rejected High Interest Solutions: 3 Other Interesting Solutions: 5 Potential Complementary Technologies: 6	2 New Potential Solutions


Building upon Pilot Success: Solution Mechanism Guidance (SMG) Tool

Exploring Space | Enhancing Life

The Solution Mechanism Guide (SMG)

Creating a culture of innovation

- A project management tool
 - educates users about options available
 - provides a guide to help subject matter experts decide which tool works best for each stage (TRL) of the project
- Includes options for traditional (grants, SBIRs) and new (open innovation) tools
- Results in the most cost effective, efficient mechanism to address HH&P gaps

Select the Knowledge Maturity Level that best represents your problem:

Gather early stage of development, immature, or undefined

Gather

=

Synthesize

Synthesize

analyze existing knowledge, define requirements or define an operational concept

Validate

 \checkmark

Validate

Apply

evaluate and validate or produce a deliverable

Apply integrate a completed, augment an existing, or standardize a deliverable

(SMG)

Gather Knowledge

	30 days 1 year Don't filter by
ynthesize	What Deliverable(s) are you looking for?:
	Knowledge Countermeasure
./	Technology Requirements & Standards
V	Don't filter by
Validate	
	Amount of Resources you want to Allocate?:
	Free \$1M+ Don't filter by
Annly	Have an Issue: Email for

your needs, please answer the following:

What are your time constraints?:

In order to identify the Solution Mechanisms that best fit

Evaluate & Comment: Submit Feedback

(SMG)

Your first step will be to contact the POC listed; other pertinent information is provided below

NIACA Querk

Gather

Synthesize

Apply

	NASA@WOrk
Point of Contact (POC):	Center of Excellence for Collaborative Innovation (CoECI) office – Kathryn Keeton (Wyle)
Duration of SM:	Prep: ~ 2-3 weeks Challenge Open/Active: ~ 4-6 weeks Evaluation: 2 weeks
Cost of SM:	Self-Serve: No cost Full-Serve: \$2400 (support provided by InnoCentive)
Time Investment:	Program Champion (time varies); Challenge Owner (time varies)
SM Metrics:	3 in prep, 3 active, 42 awarded as of 05/01/13
Repository:	CoECI website

Have an Issue: Email for Help Evaluate & Comment: Submit Feedback

- National Science Foundation Ideas Lab
 - Rapid, iterative proposal development
 - Joint NASA-NSF Workshop Nov. 6

- Marblar
 - A crowd-sourcing platform seeking to repurpose
 "over-looked technologies" for new applications
 - MSFC has a contract for 40 challenges
 - Evaluating feasibility of NASA-RWJF-Marblar contest using the Intravenous Fluid Generation (IVGen) system which converts potable water into sterile fluid for injection