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Abstract14

Soil moisture is known for its integrative behavior and resulting memory characteristics.15

Soil moisture anomalies can persist for weeks or even months into the future, making16

initial soil moisture a potentially important contributor to skill in weather forecasting.17

A major difficulty when investigating soil moisture and its memory using observations is18

the sparse availability of long-term measurements and their limited spatial representa-19

tiveness. In contrast, there is an abundance of long-term streamflow measurements for20

catchments of various sizes across the world. We investigate in this study whether such21

streamflow measurements can be used to infer and characterize soil moisture memory22

in respective catchments. Our approach uses a simple water balance model in which23

evapotranspiration and runoff ratios are expressed as simple functions of soil moisture;24

optimized functions for the model are determined using streamflow observations, and25

the optimized model in turn provides information on soil moisture memory on the catch-26

ment scale. The validity of the approach is demonstrated with data from three heavily27

monitored catchments. The approach is then applied to streamflow data in several28

small catchments across Switzerland to obtain a spatially distributed description of29

soil moisture memory and to show how memory varies, for example, with altitude and30

topography.31

32
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1 Introduction33

Among the variables of the climate system, soil moisture has potentially important memory (per-34

sistence) characteristics. If soil moisture anomalies, as induced by precipitation anomalies, persist35

into subsequent weeks, and if these long-lasting anomalies are then translated to the atmosphere36

through their impacts on the surface energy balance, soil moisture memory may have profound37

implications for climate variability and prediction.38

The role of soil moisture memory in climate, however, is still not completely understood. Complex-39

ity arises, for example, from the fact that while a soil moisture persistence signal can be translated40

to the atmosphere through evaporation anomalies (i.e., through soil moisture-evapotranspiration41

coupling and land-atmosphere interactions), these evaporation anomalies in turn act to reduce42

any original soil moisture anomaly; that is, a soil moisture anomaly, when it affects the surface43

fluxes, also acts to limit its own lifetime (although positive feedbacks with precipitation could44

also enhance it, e.g. Koster and Suarez 2001). In considering this balancing act, it is instructive45

to consider two competing and extreme scenarios. In the first scenario, evaporation processes46

annihilate a soil moisture anomaly within a day or two of its formation; soil moisture memory47

would then be small, and its effects on climate variability would necessarily be minimal. In the48

second scenario, the soil moisture anomaly does not affect evaporation or runoff and thereby49

persists indefinitely; here again, because the atmosphere or rivers cannot feel the anomaly, im-50

pacts on climate variability would necessarily be small. Evidence exists to show that neither of51

these extremes wholly captures the way nature works. In many regions, an important middle52

ground is achieved: soil moisture anomalies have been observed to persist for weeks to months53

(Vinnikov and Yeserkepova 1990, Entin et al. 2000, Seneviratne et al. 2006), and their impacts54

on atmospheric variability do indeed manifest themselves at those timescales, as demonstrated55

by various studies which quantify the impact of soil moisture initialization on the skill of sub-56

seasonal precipitation and/or temperature forecasts (e.g., Viterbo and Betts 1999, Koster et al.57
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2004, Douville 2010, Koster et al. 2010b, Seneviratne et al. 2010) or identified lag correlations58

between surface moisture deficits and temperature extremes (e.g., Hirschi et al. 2011, Mueller59

and Seneviratne 2012). This memory, at the same time, also allows soil moisture initialization to60

contribute significant skill to seasonal streamflow forecasts (e.g., Koster et al. 2010a, Mahanama61

et al. 2012).62

The existence of this useful middle ground makes soil moisture memory worthy of careful63

study. A critical step in this understanding is the characterization of memory and its variations64

across the globe. Unfortunately, such a characterization is not straightforward. A major obstacle65

is the limited availability of long-term soil moisture measurements (e.g. Robock et al. 2000,66

Seneviratne et al. 2010, Dorigo et al. 2011). Ground measurements of soil moisture are only67

available at the point scale, which implies some limitation in their spatial representativeness.68

Although spatial variability should not be overstated (e.g. Mittelbach and Seneviratne 2012),69

different hydrological dynamics may be active, for example, over adjacent grassland and forest70

areas (Teuling et al. 2010b, Orth and Seneviratne 2012a). Also, model estimates of soil moisture71

cannot be used for persistence studies, given the dependence of simulated soil moisture persistence72

on generally unvalidated model assumptions.73

In contrast, streamflow measurements are widely available, they generally cover longer periods,74

and they represent an integral of hydrological processes over an area. Because streamflow itself75

responds to soil moisture variations (see also Kirchner 2009 and Mahanama et al. 2012), it is76

natural to ask whether streamflow measurements contain useful information on catchment-scale77

soil moisture anomalies and soil moisture memory. We address this question in this paper. Using78

an adaptation of the simple water-balance model of Koster and Mahanama (2012), streamflow79

measurements are translated into fitted functional relationships between soil moisture and both80

runoff and evapotranspiration. These fitted relationships in turn provide estimates of soil moisture81

memory. The approach is successfully validated in three heavily monitored catchments in central82
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Europe and is then applied to several near-natural catchments in Switzerland, providing a spatial83

picture of how soil moisture memory varies across the country. The analysis shows how soil84

moisture memory is affected by both, geomorphological controls (e.g., altitude, topography, and85

catchment size) as well as meteorological controls (e.g., dryness index and the potential for86

externally-induced memory from the atmospheric forcing to be transmitted into the soil).87

2 Methodology88

2.1 Simple Water-balance Model89

Koster and Mahanama (2012) (hereafter referred to as KM12) developed a simple water-balance90

model to study the influence of soil moisture on hydroclimatic means and variability on large91

spatial and temporal scales. We use a similar approach in the present study. However, because92

we focus here on soil moisture memory in small catchments on daily to weekly time scales, we93

introduce several new features to the model, as described below.94

2.1.1 Water Balance Equation95

As in KM12, the model used here is based on the following water balance equation:96

97

wn+�t = wn + (Pn − En −Qn)�t (1)

where wn denotes the model’s sole prognostic variable: the total soil moisture content (in mm)98

at time step n. The value of wn is altered by precipitation Pn, evapotranspiration En, and runoff99

Qn (all in
mm

d
) accumulated from time step n to n +�t to yield the soil moisture at the next100

time step, wn+�t. As in KM12, we run the model here with a time step of one day (�t = 1d).101
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2.1.2 Evapotranspiration102

As in KM12, we assume simple dependencies of evapotranspiration (normalized by net radiation103

(in
W

m2
)) and runoff (normalized by precipitation) on soil moisture. We use the following equation104

to capture the control of soil moisture on the ratio of evapotranspiration to net radiation, or ET105

ratio:106

107

λρwEn

Rn

= β0

(
wn

cs

)γ

with γ > 0 and β0 ≤ 1 (2)

where λ is the latent heat of vaporization (in
J

kg
) and ρw is the density of water (in

kg

m3
). Soil108

moisture is scaled by the soil water holding capacity cs (in mm) so that the function operates on109

the degree of saturation (unitless). The unitless exponent γ ensures that the function is strictly110

monotonically increasing, so that the ET ratio increases with soil moisture. The factor β0 (also111

unitless) reflects the residual plant and soil evaporative resistance under conditions which are not112

soil moisture-limited (e.g. Seneviratne et al. 2010). This factor therefore prevents the complete113

conversion of available net radiation into ET even when water is fully available (reflecting, for114

example, the fact that even with no water stress, transpiring water must still travel through the115

vegetation).116

2.1.3 Runoff and streamflow117

Even if runoff in nature is controlled by many variables, we assume that it depends on precipitation118

and soil moisture only, according to the equation:119

120

Qn

Pn

=

(
wn

cs

)α

with α ≥ 0 (3)

As with the exponent γ in (2), the unitless exponent α ensures that the runoff ratio
Qn

Pn

increases121
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monotonically with soil moisture. Note that runoff as defined here (which includes, in effect, both122

overland flow and drainage to baseflow-producing groundwater) is distinct from streamflow, as123

measured at a stream gauge site; the latter quantity includes delays associated with the subsurface124

water transport to the streambeds and the transport of the surface water to the stream gauge125

site. Based on sensitivity tests, we found that accounting explicitly for this distinction between126

runoff and streamflow improves the model’s performance in comparison to the KM12 version127

(not shown). We thus compute streamflow from the simulated runoff values by imposing a delay128

characterized by a timescale τ :129

130

Sn+t = Qn
1

τ
e
−
t

τ (4)

where the streamflow Sn+t corresponds to the streamflow produced at time n+ t associated with131

the surface runoff formed at time n. The integral of
1

τ
e
−
t

τ as t → ∞ equals 1, ensuring that the132

full complement of assumed runoff water (i.e., Pn

(
wn

cs

)α

, from Equation (3)) does contribute to133

streamflow at some time. The parameter
1

τ
determines how quickly the runoff is transformed into134

streamflow, whereas τ corresponds to the recession time scale, expressed in days. Using Equation135

(4), the streamflow accumulated over the m-th time step after the precipitation event is:136

137

Sn+m�t =

(
wn

cs

)α

Pn

∫ m+�t

m

1

τ
e
−
t

τ dt = Qn

⎛
⎝e

−
m�t

τ − e
−
(m+ 1)�t

τ

⎞
⎠ (5)

With this equation we can express the streamflow at any time step as the accumulation of the138

effects of all runoff amounts generated during the preceding 60 time steps:139
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140

Sn =
60∑
i=0

Qn−i�t

⎛
⎝e

−
i�t

τ − e
−
(i+ 1)�t

τ

⎞
⎠ (6)

Note that in order to make sure that all the generated runoff is transformed into streamflow, we141

would in principle need to use an infinite number of time steps. Sixty time steps is an arbitrary142

but tractable number that allows us to account for 99% or more of the runoff water.143

2.1.4 Model Integration144

Assuming that values for the five parameters in Equations (2) and (6) (namely, cs, β0, γ, α,145

and τ) can be determined, Equation (1) can be driven with daily values of precipitation and net146

radiation over any time period of interest to produce daily time series of total soil moisture, wn, as147

well as daily time series of runoff and ET. In contrast to KM12, who used monthly precipitation148

observations (equally distributed across the days of a given month) and an observed seasonal149

climatology of net radiation to force their model, we employ daily observations of precipitation150

and radiation. Unlike KM12, we do not include a snow layer in the model as our study focuses151

on the growing season.152

In fact, due to the limitation of using a daily (rather than a finer) time step, we integrate153

instead an implicit form of Equation (1), a form that effectively computes the evaporation and154

runoff for a given day based on the soil moisture content at the end of that day:155

156

wn+�t − wn = Pn − En+�t −Qn+�t ≈ Pn − En −Qn

1 + E ′
n +Q′

n

(7)

where the prime (′) indicates the derivative with respect to soil moisture, evaluated at wn. Note157

that even with this correction, the time-discretized equation is still not perfectly solved because158

the functions E (w) and Q (w) are not linear but (partly strongly) curved.159
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Running the model requires the initialization of the soil moisture prognostic variable. We160

spin-up the model by integrating it over five years prior to the start of a simulation.161

2.2 Optimization of streamflow, runoff and evapotranspiration parameters162

We optimize the above model with daily data from 16 European catchments, three of which have163

been previously examined in Orth and Seneviratne (2012a) (hereafter referred to as OS12). We164

use precipitation and radiation observations in these catchments to force the model. We then165

identify, separately for each catchment, the optimal set of values for the 5 parameters in Equations166

(2) and (6), that is, the set of values that allows the modeled streamflow Sn (Equation (6)) to167

agree most closely with observed streamflow.168

The accuracy of the modeled streamflow is measured with a time correlation against observed169

streamflow. The correlation period is limited to July through September to avoid any impact of170

snow, which is not included in the model (May-September for warmer site San Rossore). The171

absence of snow is supported by daily average temperatures that are always above 0 degrees Celsius172

during the correlation period. Note that while applied here to specific basins in Switzerland, the173

simple water balance model is generally applicable to any region and time period where streamflow174

is present.175

One way to find the optimal set of values for the five parameters at each catchment would176

be to run the model using all possible combinations of values. Capturing the optimal values in177

this way with some accuracy, however, would be computationally prohibitive. To work around this178

problem, we developed an alternative procedure (see Appendix A) to reduce the number of model179

runs required to yield a reliable optimal parameter set (see Table 1).180
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2.3 Validation of approach: Soil moisture memory181

The time series of simulated soil moisture produced with the optimal parameters, a reflection of182

precipitation, radiation and streamflow information only, is compared to the observed soil mois-183

ture in three highly monitored catchments to demonstrate that the precipitation, radiation, and184

streamflow data can indeed be translated into useful information on local soil moisture behavior.185

Because observed soil moisture information was not used at all in the calibration exercise, this186

comparison serves as a valid test of our methodology.187

The validation focuses in particular on soil moisture persistence. There are many ways of quantify-188

ing soil moisture persistence; here, we compute it, for a given time of the year, as a lag correlation189

for a given lead (see Koster and Suarez 2001, Seneviratne and Koster 2012, and OS12) that190

ranges between 0 (no memory) and 1 (maximum memory). The memory we compute at a given191

day with a given time lag is defined as:192

ρ
(
wn, wn+tlag

)
=

cov(wn, wn+tlag)

σwnσwn+tlag

(8)

where cov(wn, wn+tlag) denotes the covariance between soil moisture at days n and n+ tlag in all193

considered years and σwn refers to the standard deviation of soil moisture at day n using also the194

values of all considered years. Due to the limited available number of years of soil moisture obser-195

vations (see Section 3.1), we in fact do some smoothing of the calculated persistences, computing196

representative estimates for half-monthly intervals. To determine the smoothed persistence for197

a given half-monthly interval, we use a "moving window" approach (OS12) that also considers198

the 30 days prior to the half-monthly interval and the 30 days after the end of the half-monthly199

interval. This can be expressed mathematically as:200

201

ρ
(
wn, wn+tlag

)
= trimmed average

(
tend+30−tlag∑
i=tstart−30

ρ
(
wi, wi+tlag

))
(9)
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where tstart and tend refer to the beginning and end of the particular half-monthly time period.202

The memory of that half monthly interval is then computed as a trimmed average of the 75− tlag203

individual persistences, avoiding days with the 10% largest and 10% lowest values (this last step204

differs from the approach of OS12, who take the median).205

We compute the correlation for many different lags (from 1 to 40 days) in order to capture more206

completely the character of the persistence. One region may show high correlations at small lags207

and a rapid fall-off in correlation at longer lags, and another may show a fast fall-off at short208

lags and a slower fall-off thereafter; our computations will capture such differences in behavior.209

Thus, we calculate, from both observations and the simulations with optimized parameters, the210

correlation between soil moisture on a given date n with that at a later date (n + tlag) across211

all years (Equation (9)). By computing a separate correlation for each date across all years,212

we avoid examining artificial memory associated with the climatological seasonal cycle of soil213

moisture. The higher the resulting correlation over a prescribed lag time, the higher we deem214

the soil moisture memory at that lag, and vice versa. Soil moisture memory is always decreasing215

with increasing time lag, because accumulated precipitation, runoff and ET alter the soil moisture216

content (Equation (1)). To facilitate the interpretation of soil moisture memory expressed as217

lag correlation, Orth and Seneviratne (2012b) compared the lag correlation with a persistence218

time scale (computed as mean duration to recover from anomalous conditions exceeding a certain219

threshold to normal conditions, expressed in days). They report an exponential relationship, i.e.220

the persistence time scale changes exponentially with linearly changing lag correlation.221

Similarly to (9), but without time lag, we compute estimates for the standard deviations of e.g.222

initial soil moisture over all estimates of day n of all years. Using the moving window approach we223

obtain a number of estimates of which we take a trimmed average as a representative estimate224

for a particular half monthly interval.225

Soil moisture persistences in this study are computed from April to October to exclude the226
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impact of snow cover, which is not included in the model. We therefore apply the model in an227

extended period compared to the period July-September used for optimization to allow us to228

show that the model also performs reasonably in months that are not used for calibration, but229

that are still mostly snow-free (underlined by daily average temperatures above 0 degrees Celsius230

on almost all days).231

To compute uncertainties of the soil moisture memory estimates, we separate the whole time232

period (24 years, see Section 3.2) into non-intersecting subsets of 3 years (period July-September233

in each year as described in Section 2.2) and optimize the model in each catchment to yield one234

parameter set per subset for a particular catchment. This is done with 5 repetitions for each235

subset (instead of 20 used for the whole time series) due to computational constraints. We apply236

all parameter sets of a particular catchment with the whole time series and derive respective237

soil moisture memories; from these memories we then compute the standard deviations for every238

considered month and lag time.239

3 Data240

3.1 Data analyzed for model validation241

To validate the model, we use data from the three heavily monitored catchments: Oensingen242

(Switzerland), Rietholzbach (Switzerland) and San Rossore (Italy). The climate at the Swiss sites243

is temperate humid, whereas San Rossore is characterized by Mediterranean climate. Along with244

the stream gauge measurements for the full catchments, there is a site in each catchment where245

ET, radiation and precipitation have been recorded. Detailed information on the catchments and246

sites is provided in Table 2.247

ET at Rietholzbach was measured using a weighing lysimeter (Seneviratne et al. 2012), whereas248

the eddy-covariance flux measurement method (Baldocchi et al. 2001) was used at the other two249

sites. As this latter method is known for its energy-balance closure error (e.g. Wilson et al. 2002,250
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Foken et al. 2006, Franssen et al. 2010), we corrected the ET data with the following procedure:251

Using hourly values, we increased sensible and latent heat flux to equal net radiation while keeping252

the Bowen ratio constant (Twine et al. 2000). If the Bowen ratio was negative both fluxes were253

adjusted with respect to the strength of their dependence on net radiation instead. This strength254

was the slope obtained from the regression of all available values of the particular flux against255

net radiation on a particular time of the day; the flux with the higher slope was modified by the256

larger fraction of the energy balance deficit. Note that the ET data from San Rossore could not257

be corrected as no data of sensible heat flux is available for that site. Furthermore, we linearly258

detrended the soil moisture data from Rietholzbach to address a known problem with the sensors259

there (see also Seneviratne et al. 2012).260

At all three catchments, we use satellite-derived net radiation data obtained from the NASA/GEWEX261

SRB project (http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html [checked on 26 March262

2012]). Since these data only extend until 2007, we had to extrapolate net radiation from the263

available solar radiation measurements for the remaining 3 years at San Rossore. These were264

scaled to match the mean and standard deviation of the satellite net radiation of the previous 4265

years. To evaluate the impact of this treatment we also applied such a scaling to solar radiation266

measured at Oensingen and found only minor impacts on the results there, predominantly on ET267

(not shown).268

269

3.2 Data used for model application270

Following validation, we apply the model to 13 near-natural catchments (i.e., catchments with271

little or no known human impact on streamflow) across Switzerland for which detailed stream272

gauge data are available. The catchments are located in a humid temperate climate, except for273

the Cassarate catchment in southern Switzerland where the climate is rather Mediterranean. A274
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summary of the catchment characteristics is provided in Table 3. The time period considered is275

1984-2007.276

For this period, we also obtained catchment-specific precipitation and radiation data. Precip-277

itation forcing for the model was derived from several MeteoSwiss (Swiss Federal Office of Mete-278

orology and Climatology) rain gauges in and/or near each respective catchment. The number of279

rain gauges per catchment depends on the size of the respective catchment and on the density of280

the network in the particular region (see http://www.meteoschweiz.admin.ch/web/de/klima/281

messsysteme/boden.Par.0049.DownloadFile.tmp/karteniederschlagsmessnetz.pdf [checked on 6 Febru-282

ary 2013]). The measurements were weighted inversely according to their distance from the catch-283

ment in order to compute an area-representative estimate. As only solar radiation was measured284

at the ground, we used net radiation data from the NASA/GEWEX SRB project. A comparison of285

anomalies of the solar radiation measured at the ground with that from SRB showed correlations286

between 0.8 and 0.9 for the different catchments, underlining the good match also reported by287

OS12.288

In order to study the dependency of soil moisture memory on topography (hilliness), we289

obtained values of mean compound topographic index (CTI; Moore et al. 1993) from the HYDRO-290

1K dataset [http:// webgis.wr.usgs.gov/globalgis/ metadataqr/metadata/hydro1k.htm]. As a291

measure of topography for each catchment, the CTI is a function of slope as well as upstream292

contributing area and increases with decreasing hilliness. Note that CTI is only evaluated at the293

catchments used for application of the model and not at the three validation catchments that294

include the very small Rietholzbach catchment. Therefore the 1km x 1km resolution is sufficient295

to characterize, to first order, the CTI amongst the catchments examined.296
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4 Results297

In this section we first describe the application and validation of the simple model methodology298

in three heavily monitored catchments (Sections 4.2 and 4.3). We show its satisfactory ability299

to yield a realistic soil moisture memory despite its simplicity. In Section 4.4 we describe the300

application of the model in multiple catchments across Switzerland. This allows us to study the301

main meteorological controls of soil moisture memory as well as its dependency on altitude and302

topography.303

304

4.1 Streamflow, runoff and evapotranspiration parameters305

To summarize our methodology, we optimize the applied simple water balance model (i.e., we find306

optimized values for its five parameters) so that it reproduces well the time variations in the daily307

streamflows measured in a given catchment when forced with local precipitation and net radiation308

data. An overview of the fitted parameters in all catchments is provided in Table 4.309

A note about the parameter search is appropriate here. Two parameters, the ET ratio exponent310

and maximum ET ratio, collide with their bounds in 2 and 9 catchments, respectively, out of311

the 16 catchments considered in total in this study (see Table 1 for bounds and Table 4 for312

fitted parameters). Concerning the maximum ET ratio, the fact that the optimum value of β0313

is found to be exactly 1, an imposed bound for the parameter, does not reflect poorly on the314

parameter estimation approach; the optimized value of 1 simply means that for the catchment in315

question, all of the net radiation is converted to evaporation in wet conditions, a physically plausible316

scenario. Our requirement that β0 cannot exceed 1 is simply a reflection of our assumption that317

net radiation provides the energy needed for evaporation. Whereas high maximum ET ratios are318

not surprising in a radiation-limited regime that is characteristic for Switzerland, we note the319

possibility that in nature, ET might (temporarily) exceed net radiation through processes that320
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are not captured by our simple model, such as energy input from warm air advection to Europe;321

therefore, the collisions experienced with the β0 term can be said to reflect the limitations of our322

assumption. Note that both parameters that collide with their bounds are related to radiation323

(Equation 2) and streamflow (through optimization procedure, see Section 2.2). Therefore it is324

furthermore possible that these collisions are due to scale discrepancies between radiation and325

streamflow measurements and the consequent mismatch in their temporal evolutions. However,326

the parameter collisions should, in any case, not have a major impact on the resulting estimated327

soil moisture memory as indicated by supplemental tests (not shown) in which the bounds were328

removed (in conflict with the model’s underlying assumptions) and the results were found to be329

generally similar. Furthermore we note that despite the parameter collisions we find a good match330

between modeled and observed soil moisture memory as described in the following subsection.331

To validate our optimization procedure, we applied it with higher (coarser) step widths for the332

parameters and then compared the results with those obtained when all possible combinations333

of parameters (assuming the same coarse spacing) were tested. This allowed us to compare the334

resulting best parameter sets. Given the high computational effort the validation was done only for335

the three catchments listed in Table 2. The best parameter sets found from both procedures were336

identical for all three catchments (see Table 4 for parameter values), underlining the validity of337

the approach introduced in this study. As expected due to the larger step width (lower accuracy),338

these parameter sets yield slightly lower correlations between observed and modeled streamflow339

compared to the parameter sets found using the default step widths (see Table 1).340

4.2 Validation of estimated memory341

In addition to generating realistic streamflows, the optimized model produces, as a matter of342

course, a time series of daily soil moisture, from which soil moisture persistence measures can be343

derived. Our methodology for converting streamflow measurements into soil moisture information344
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is deemed successful if the derived soil moisture persistences obtained from this time series agree345

with those obtained using independent soil moisture measurements in the catchments.346

This validation test was performed in each of the three catchments described in Section347

3.1. Results are shown in Figure 1. Shown for each catchment are the modeled and observed348

persistences for different lags (out to 40 days) and for different times of the year (April through349

October). Overall, the memory characteristics in the three catchments are well captured by the350

model, with a reasonable representation in each of the seasonal cycle of soil moisture memory and351

its decay with lag. The observed and simulated memory is comparatively strong at Oensingen352

and San Rossore and weakest at Rietholzbach. The seasonal cycle of the observed memory at353

San Rossore differs clearly from that of the other two sites, and this is captured by the model.354

Difference plots are shown in the bottom row of the figure; there is no clear pattern of over-355

and underestimation of memory in the simulation results. The relatively large difference between356

modeled and observed soil moisture memory in autumn at both Rietholzbach and San Rossore is357

consistent with results of OS12 (Figure 6 of that paper), who used the same atmospheric forcing358

data, and derived also a clearly underestimated soil moisture memory. In this previous study,359

the identified reason for this behavior was a mismatch between precipitation and soil moisture360

observations in autumn at these two sites. This means that the water balance is not closed with361

the employed observations, which could be due, for example, to a higher spatial variability of362

precipitation or a stronger role of land cover in this season.363

The model, using only information on locally measured precipitation, net radiation, and stream-364

flow, therefore successfully captures the distinctions between the catchments in their soil moisture365

memory behavior. Despite its simplicity, it captures enough of the physical processes control-366

ling memory to allow the translation of streamflow information into soil moisture information.367

Furthermore, the agreement in Figure 1 suggests (as does the reasonable reproduction of soil368

moisture anomalies shown below) that the time behavior of the observed site-based soil moisture369
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anomalies is representative of that for soil moisture across the catchment containing the site; that370

is, soil moisture levels may be spatially heterogeneous within a catchment but may nevertheless371

show similar temporal dynamics. This is consistent with results from Mittelbach and Seneviratne372

(2012) for Switzerland based on measurements from the Swiss Soil Moisture Experiment (SwissS-373

MEX), which show that soil moisture dynamics have a large regional footprint in that region,374

unlike absolute soil moisture that displays a stronger spatial variability.375

To illustrate further the impact of the fitted parameter set on the resulting soil moisture376

memory characteristics – in particular, to show the relative impacts on memory of the parameter377

values and the meteorological forcing – we run the model at each of the three sites mentioned378

above with the parameter set fitted for the particular site and also with the parameter sets fitted for379

the other two sites. The results are displayed in Figure 2. We find that the parameter set is more380

important for determining the resulting soil moisture memory than is the meteorological forcing.381

There are similarities between the actually modeled memory at Oensingen and San Rossore and382

the resulting memory when using the parameter set or meteorological forcing from another site.383

This can be explained by the roughly similar fitted parameters (see Table 4). Generally the strong384

sensitivity of the memory with respect to the parameter set underlines the ability of our simple385

model framework to yield a parameter set that is related with realistic features of the studied386

catchments.387

4.3 Hydrological states and fluxes388

While the main goal of the tested methodology is the extraction of soil moisture memory statistics,389

we can also validate the soil moisture, streamflow, and evapotranspiration time series produced390

by the optimized model against available observations in the three validation catchments. Com-391

parisons of the observed and simulated anomalies of these quantities are provided in the top392

three rows of Figure 3. Mean seasonal cycles have been subtracted from both the observed and393
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simulated data in order to avoid an overestimation of model skill associated with the seasonal394

cycles inherent in the precipitation and net radiation forcing. While this subtraction also prevents395

a proper evaluation of bias, such bias evaluations would, in any case, be of limited usefulness: (i)396

significant biases are likely in the observed evaporation data given the closure problem associated397

with eddy covariance measurements (see Section 3.1), (ii) biases in soil moisture are likely because398

the model uses an arbitrary wilting point (which doesn’t affect the temporal variability of the soil399

moisture it produces), (iii) observed absolute soil moisture is also expected to vary strongly even400

on small spatial scales, only the temporal dynamics should display a regional footprint (Mittel-401

bach and Seneviratne 2012), and (iv) biases in streamflow may occur especially in flat catchments402

through baseflow out of the catchment away from the stream gauge.403

Overall, the model seems to do especially well in estimating soil moisture variations, partic-404

ularly for Oensingen (R2 = 0.78) but also for Rietholzbach (R2 = 0.62). Streamflows for these405

two sites are also reasonably reproduced (R2 values of 0.6 and 0.87, respectively), whereas simu-406

lated ET values are somewhat less consistent with the observations, although still satisfactory at407

Rietholzbach (R2 = 0.58). The simulated values are always worse for the San Rossore catchment,408

possibly due to (i) its larger size and the corresponding reduction in the large-scale representative-409

ness of its site-based precipitation forcing and (ii) the interpolation of the radiative forcing (see410

lower part of Section 3.1). In cases of comparatively low R2 values, such as for ET at Oensingen411

and for all quantities at San Rossore, we find that the model tends to underestimate the variability412

of the anomalies, as indicated by the regression slopes that are clearly smaller than 1.413

Corresponding scatter plots produced with data from June and October (not shown) show com-414

parable agreement between the model results and observations. This provides an independent415

evaluation of model performance, given that these months were not part of the fitting period (see416

Section 2.2).417

The bottom row in Figure 3 displays the optimized runoff functions (solid red lines) and ET418
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functions (solid black lines) at Oensingen, Rietholzbach and San Rossore. Every plotted point419

represents either an observed streamflow ratio,
Sn

Pn

(in red), or an observed ET ratio,
λρwEn

Rn

420

(in black), with the respective quantities (both the numerators and the denominators separately)421

accumulated over a week to increase representativeness and to ensure comparability between422

runoff ratio as shown by the fitted function and streamflow ratio as shown by the observations.423

At first glance, the evaporation functions seem to disagree with the data. Here one must424

remember two key points: (i) no evaporation data were used in the optimization of the functions,425

and (ii) the evaporation observations are subject to bias and, even after bias correction, are426

uncertain. Eddy-covariance measurements are known, for example, to produce underestimated427

fluxes (e.g. Wilson et al. 2002, Foken et al. 2006, Franssen et al. 2010). Therefore we corrected428

the ET in order to close the energy balance through a modification of latent and sensible heat fluxes429

as described in Section 3.1. Indeed, at Rietholzbach, where ET was measured with a weighing430

lysimeter instead, the modeled ET ratio compares better to observations. At San Rossore, the ET431

data could not be corrected because net radiation was not available over the whole time period; the432

observed ET fluxes there are thus underestimated. (Such errors might also explain the relatively433

poor comparison of ET anomalies at San Rossore in the third row of Figure 3.) At Oensingen, ET434

flux corrections may have led to excessive ratios, possibly because ET was measured over grassland435

whereas the optimized function represents the whole catchment, which includes forested regions.436

Teuling et al. (2010b), using observations, showed that forests in temperate Europe use water437

more conservatively than grassland, especially under extreme conditions (Figure 1 of that paper).438

In contrast, the optimized runoff functions do capture, to first order, the observed streamflow439

ratios. This makes sense, given that the streamflow measurements were used in the optimization440

procedure. The high fitted runoff ratio (especially for wet conditions) corresponds well with441

the generally wet regime at Rietholzbach (annual precipitation ≈ 1500mm), such that most of442

the precipitation can not be stored but runs off instead. There is nevertheless still some bias443

seen in the optimal runoff functions and a substantial amount of scatter seen in the streamflow444
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ratio observations. Again, our use of available streamflow and precipitation observations is made445

difficult by the mismatch in their scales; because the functions are optimized using data from446

July to September, we speculate that local thunderstorms and showers might influence parts of447

a catchment not captured by the rain gauge or might over-emphasize small-scale storms falling448

over the rain gauges. Of course, even without a scale mismatch, scatter in the plotted points will449

result from the fact that precipitation and streamflow measurements each have their own errors,450

and these errors are compounded when the ratio is computed. Again, some time shift between451

precipitation and streamflow is already implicitly included in Equations 4-6 through the streamflow452

recession.453

Summing up we note that generally the unimpressive agreement found in the bottom row454

in Figure 3 is no surprise given the vastly different scales we consider (e.g. for streamflow and455

precipitation or of modeled, catchment-scale ET and observed, point-scale ET) and the noted456

measurement uncertainties related to, for example, eddy-covariance ET measurements or point-457

scale precipitation measurements. When considering this unimpressive agreement, it is worth458

remembering that the optimization procedure focuses on finding the runoff and evaporation func-459

tions that best reproduce the time variability of the observed streamflow (through an R2 value),460

a reflection of the time dynamics of the local hydrological cycle, rather than functions that are461

necessarily consistent with direct evaporation and streamflow measurements, as represented by462

the plotted points in the lowest row of Figure 3. Naturally, if the latter approach were used, the463

functions chosen would agree much more strongly with those plotted points. Of course, the latter464

approach requires soil moisture and evaporation information, which is what we want to avoid465

here, given the noted dearth of contemporaneous soil moisture and evaporation data. While it is466

certainly possible that our optimization approach does not produce the runoff function and ET467

function combination that best reproduces the measured soil moisture memory, it does neverthe-468

less produce a combination that reproduces it reasonably well (Figure 1), and it does maintain the469

critical advantage of being based on only streamflow, precipitation, and radiation information.470
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Note furthermore that the suitability of the optimization approach may vary depending on the471

climate regime, as it becomes difficult, under dry conditions when streamflow variations are small,472

to infer hydrological variability of a catchment from streamflow only (e.g. Teuling et al. 2010a).473

For completeness, Figure 4 shows the hydrographs associated with the optimized values of τ474

for the three catchments. In the Rietholzbach catchment, the streamflow response falls off most475

quickly, as might be expected given the catchment’s hilliness and relatively small size. In the other476

two catchments, 2% of the water in a precipitation event is still running off two weeks after the477

event.478

4.4 Application to multiple Swiss catchments479

The application of the methodology to precipitation, net radiation, and streamflow data in 13480

catchments across Switzerland (Section 3.2) allows us to obtain an areal picture of soil moisture481

memory (30-day-lagged autocorrelation), as shown in Figure 5. The similar memories found for482

adjacent catchments, even those with different sizes, provides additional support for our approach.483

A signature of the alpine ridge (and its associated precipitation regime) is seen in the memory484

distribution.485

The highest memory is found for the Langeten catchment, which is located in the Swiss plateau486

between the Alps and the Jura mountains. High memory is also found for the Mentue (also in the487

Swiss plateau) and Ergolz (northern end of the Jura mountains) catchments. The lowest memory488

is found in the highest catchments: Sitter, kleine Emme, Emme and Sense. Overall, soil moisture489

memory seems to increase with increasing distance from the Alps, as seen in the far west for490

the Broye and Mentue catchments and in the far east for the Murg, Aach, Goldach and Sitter491

catchments. Despite the drier climate regime south of the Alps, we find a similar strength of the492

soil moisture memory at Cassarate compared to catchments along the northern alpine front.493

Figures 6 and 7 summarize the results for all catchments, showing the optimized runoff and ET494
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functions (Column 1) and the corresponding soil moisture memories as a function of season and495

lag (Column 2). The rows holding the catchment results are arranged in order of average memory,496

starting with Langeten (the catchment with the strongest memory). The optimized functions differ497

significantly among the catchments, as does the absolute soil moisture range. Correspondingly,498

the strength of the estimated soil moisture memory and its seasonal cycle differ significantly across499

the catchments, especially in summer. In general, memory seems to be strongest in autumn, for500

which considerable memory is often seen at 4-5 week lags, and it is weakest in spring, which501

generally shows almost no significant memory beyond 2 weeks.502

Figures 6 and 7 also display the uncertainties corresponding to the soil moisture memories,503

as derived with the methodology described in Section 2.3. They are mostly smaller than 0.2,504

indicating that the computed memory patterns are robust with respect to parameter sets obtained505

from different and independent subsets of the full time period analyzed. Especially if the estimated506

memory is high, the uncertainties are low; therefore high soil moisture memory as identified with507

the simple water balance model is particularly reliable.508

4.4.1 Controls of soil moisture memory in Switzerland509

OS12 identified two main controls of soil moisture memory at five sites in Central and Mediter-510

ranean Europe; (i) the ratio between the variability of initial soil moisture and subsequent forcing,511

and (ii) the correlation between initial soil moisture and the subsequent forcing. They also report512

that the forcing is dominated by precipitation, and thus we can express the first control as the513

unitless ratio between the standard deviation of initial soil moisture and the standard deviation of514

subsequent precipitation:515

κ̃n =
σwn,y

σPn,ytlag

(10)

where Pn,y denotes precipitation (in
mm

d
) between date n and n+ tlag of year y. It is multiplied516

with tlag to yield the accumulated precipitation during that interval. The standard deviations are517
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computed as described in Section 2.3. Note that κ̃n also reflects the impact of seasonal variations518

in precipitation. Given that precipitation dominates the forcing, the second control identified in519

OS12 can be simplified to yield ρ(wn, Pn). High values of either of these controls are indicative of520

higher soil moisture memory. The first control, κ̃n, reflects the size of the anomaly to be erased521

relative to that of the precipitation available to erase it, and the second describes how the effect522

of the precipitation may be diminished if its magnitude is not independent of the initial anomaly.523

The fourth and fifth columns of Figures 6 and 7 illustrate the values of these controls at all524

catchments, for all months and lags considered. The ratio of the soil moisture and precipitation525

variabilities decreases from the top to the bottom in both figures as the soil moisture memory526

decreases, suggesting a connection. Confirming the results of OS12, also comparatively high527

correlations between initial soil moisture and the subsequent precipitation (a reflection, indeed, of528

memory in precipitation itself) seem to coincide with high memory in most catchments.529

Moreover these two figures show that the runoff optimization approach (Section 2.2) yields530

functions of similar shape for nearby catchments (e.g. Mentue/Broye and Sitter/Goldach), un-531

derlining the robustness of the simple model approach. However, despite such similarity in the532

functions, we can sometimes find different strengths for the soil moisture memory, as in the533

Mentue and Broye catchments, illustrating the importance of catchment-specific parameters such534

as water holding capacity and maximum ET ratio.535

Figure 8 shows the correlations between the optimized model parameters and the resulting soil536

moisture memory (as shown in Figure 5). Water holding capacity is seen to be a strong control of537

soil moisture memory, which is intuitively sensible; it has a direct impact on the numerator of the538

standard deviation ratio discussed above. A second control of memory is the runoff ratio exponent539

(even if of questionable statistical significance due to the relatively small set of catchments). The540

higher this exponent, the greater the contrast in the impact of runoff on soil moisture in wet and541

dry conditions. That is, for a high exponent, the dampening impact of runoff on soil moisture542

anomalies is significantly reduced in drier conditions. OS12 found that especially dry anomalies543
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contribute to a higher soil moisture memory, which explains why the runoff ratio exponent has such544

a large effect. It is important to note that these three controls are not statistically independent,545

for otherwise they would explain too much of the variance of soil moisture memory; a proper546

breakdown of the roles of these parameters and how they vary with each other would require a547

substantially larger collection of analyzed catchments.548

4.4.2 Dependence of soil moisture memory on altitude, topography and dryness index549

Investigating the dependency of soil moisture memory on altitude, topography and dryness index550

allows us to separate the effects of soil and vegetation characteristics, morphology and atmospheric551

forcing, respectively. Even if altitude and topography are usually related, here they are to some552

extent independent due to the complex (pre-) alpine terrain of Switzerland. The top row of Figure553

9 demonstrates that memory decreases with altitude and with increased topography (expressed as554

CTI, see Section 3.2). The bottom row of the figure shows a link between κ̃n (the aforementioned555

ratio of initial soil moisture variability to precipitation variability shown in Equation (10)) and both556

altitude and topography. This κ̃n ratio was identified in Section 4.4.1 as a main control of soil557

moisture memory, which is consistent with the shown dependencies on altitude and topography.558

The higher (or hillier) a catchment is, the thinner the soil should be, leading to a decreased water559

holding capacity and therefore a lower σwn and thus a lower κ̃n value. Even if topography and560

altitude are found to have the same impact on soil moisture memory, the reasons may not be561

the same, since topography as such only impacts soil moisture dynamics whereas altitude also562

reflects the varying atmospheric forcing (e.g. precipitation (variability) increasing with altitude563

and thereby reducing soil moisture memory as described in the previous subsection).564

We also investigated the link between mean soil moisture memory (as shown in Figure 5) and565

catchment-specific dryness index, as illustrated with the plots on the right hand side of Figure 9.566

The dryness index is computed as
R

λρwP
, where λ is the latent heat of vaporization and R and567

25



P are long-term averages of annual net radiation and precipitation, respectively. Soil moisture568

memory tends to increase with increasing dryness index, even if the diagnosed relationship between569

the two is rather weak. Less precipitation leads to a lower variability and thus a higher κ̃n value570

as shown in the Figure.571

Comparing the influence of these three controls on soil moisture memory in Switzerland as572

indicated by the R2 values, we find that altitude is of highest importance, followed by topography573

and dryness index.574

5 Conclusions575

In this study we modified the simple water-balance model proposed by Koster and Mahanama576

(2012) to include such features as streamflow recession and an implicit form of the water balance577

equation. We then applied the model to the analysis of soil moisture memory. Our main tested578

hypothesis was whether such a simple model can be used to extract information on soil moisture579

memory based on observations of precipitation, net radiation, and streamflow alone, since these580

observations are much more plentiful than soil moisture observations.581

Our approach was successfully validated using data from some of the relatively rare catchments582

for which soil moisture measurements and contemporaneous meteorological measurements are583

adequate. Using only precipitation, net radiation, and streamflow data, the model captures the584

first order behavior of the observed soil moisture memory in terms of its variation with season and585

the considered lag (Figure 1). The model also reproduces the observed soil moisture anomalies586

reasonably well (Figure 3).587

We then used the validated model to estimate the soil moisture memory within 13 near-natural588

catchments across Switzerland. The resulting spatial distribution of estimated memory allowed589

an analysis of the controls on this memory. Our results support earlier propositions that the main590

controls of memory in Central Europe are (i) the ratio of the standard deviations of initial soil591

26



moisture and subsequent precipitation, and (ii) the correlation between the initial soil moisture and592

the subsequent precipitation. Soil moisture memory in the vicinity of the Alps appears to decrease593

with altitude and hilliness (as measured by CTI), possibly because soils at higher elevations tend594

to be thinner.595

The study with the 13 Swiss catchments demonstrates that the simple water balance model can596

be used in conjunction with precipitation, net radiation, and streamflow measurements to estimate597

soil moisture memory and its controls even in the absence of direct soil moisture measurements.598

Applying this methodology to catchments in other regions of the world could help identify areas599

of strong soil moisture memory, that is, areas for which soil moisture initialization has a chance600

to contribute to hydrological or meteorological prediction.601
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Appendix A: Optimization procedure for identification of catchment-614

specific parameter sets615

We first choose a random value for each parameter in Equations (2) and (6) from within a616

prescribed acceptable range and add a prescribed step width (see Table 1) to yield a second value617

for each parameter. We then run the model for all 25 = 32 combinations of parameters to find the618

set which yields the highest correlation between modeled and observed streamflow. After that,619

we rerun the model using another 25 = 32 combinations, assigning to each parameter the optimal620

value found before and this value with the respective step width subtracted (if the lower value621

from before was the optimal value) or added (if the higher value from before was the optimal622

value). This procedure is repeated until the same set of parameters is found two times in a row.623

This procedure, of course, guarantees only a local (rather than a global) optimum in the five-624

dimensional parameter space. We thus repeat the procedure 20 times, always starting with new625

randomly chosen values for each parameter. This yields 20 local optima, of which many are similar626

or even identical, underlining the robustness of this approach. Of these 20 local optima we take627

the best as our parameter set for a given catchment. Our tests with the procedure suggest that628

higher computational effort would probably not yield a different solution; given the step widths629

applied to the parameters, we most likely indeed find the global optimum in the five-dimensional630

parameter space.631
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Table 1: Overview of step width of model parameters as used in the optimization procedure, of
their boundaries and the range of their respective estimates.

Parameter Step
width

Lower
limit

Upper
limit

Maximum
value
found

Minimum
value
found

water holding
capacity cs

(mm)

30 30 - 500 80

inverse
streamflow
recession

timescale
1

τ
(1/days)

0.02 0.02 - 0.80 0.10

runoff ratio
exponent α

0.2 0.2 - 8.0 0.8

ET ratio
exponent γ

0.03 0.03 - 1.05 0.03

max ET ratio
β0

0.03 0.03 0.99 0.99 0.60
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Table 2: Overview of measurements and conditions at the sites and catchments used for validating
the model as well as references describing the sites in more detail.

Station Data
period

Land cover Soil type SM
measurement
depths (m)

Oensingen
(CH)

2002 -
2007

grassland clay 0.05, 0.1, 0.3,
0.5

Rietholzbach
(CH)

1994 -
2007

grassland (clay) loam 0.05, 0.15,
0.55

San Rossore
(ITA)

2004 -
2010

forest sand 0.1, 0.3, 0.45

Station Streamflow station
(distance and direction
rel. to SM station in

km)

Catchment
area

Satellite
radiation

coordinates

Reference

Oensingen
(CH)

Brugg (38 east) 11726km² 47.5°N 7°E Ammann
et al. 2010

Rietholzbach
(CH)

Mosnang (1.5) 3.3km² 47.5°N 9°E Seneviratne
et al. 2012

San Rossore
(ITA)

Vicopisano (25 east) 8228km² 43.5°N
11°E

Tirone
2003

Table 3: Overview of catchments where the model is applied.
Catchment Size

(km²)
Mean

altitude (m
above sea

level)

Mean
CTI

Mean
daily

stream-
flow

(mm)

Satellite
radiation

coordinates

Aach 49 480 11.82 1.32 47.5°N 9°E
Broye 392 710 11.33 1.78 46.5°N 7°E

Cassarate 74 990 9.39 2.72 45.5°N 9°E
Emme 124 1189 10.03 3.01 46.5°N 7°E
Ergolz 261 590 10.99 1.25 47.5°N 7°E

Goldach 50 833 10.71 2.32 47.5°N 9°E
Guerbe 54 837 9.98 2.01 46.5°N 7°E

kleine Emme 477 1050 10.48 2.81 46.5°N 7°E
Langeten 60 766 11.37 1.79 47.5°N 7°E
Mentue 105 679 11.27 1.34 46.5°N 7°E
Murg 79 650 11.47 1.98 47.5°N 9°E
Sense 352 1068 10.5 2.18 46.5°N 7°E
Sitter 74 1252 10.18 4.06 47.5°N 9°E
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Table 4: Overview of fitted parameters for all catchments.

Catchment
water

holding
capacity
cs (mm)

inverse
streamflow
recession

timescale
1

τ
(1/days)

runoff
ratio ex-
ponent

α

ET ratio
expo-
nent
γ

max ET
ratio β0

Catchments in
which model
is validated

Oensingen 410 0.10 0.8 0.03 0.60
Rietholzbach 140 0.80 4.4 0.42 0.99
San Rossore 500 0.14 3.6 0.03 0.96

Aach 230 0.62 8.0 0.78 0.99
Broye 200 0.36 5.8 0.42 0.60

Cassarate 410 0.36 6.8 0.33 0.81
Emme 80 0.74 1.4 0.27 0.99

Catchments in
which model
is applied

Ergolz 290 0.54 5.6 0.90 0.99
Goldach 350 0.60 6.8 0.75 0.99
Guerbe 170 0.44 4.2 1.05 0.99

kleine Emme 80 0.66 2.4 0.60 0.99
Langeten 320 0.52 4.0 0.06 0.81

Mentue 410 0.52 6.4 0.66 0.99

Murg 230 0.50 6.2 0.63 0.99

Sense 80 0.52 1.6 0.09 0.69
Sitter 170 0.56 7.4 0.90 0.69
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Figure 1: Soil moisture memory computed from observed and modeled soil moisture in the 3713

validation catchments for lag times between 5 and 40 days. Values outside the plotting range of714

the difference plots are shaded in gray.715

716

Figure 2: Soil moisture memory computed for all possible combinations of meteorological forc-717

ings and parameter sets from the 3 validation catchments as compared to observed soil moisture718

memory displayed in the bottom row.719

720

Figure 3: The top rows show modeled soil moisture, streamflow and evapotranspiration plotted721

against observations for data within the period July-September that was used to fit the functions.722

The red lines are fitted through least-squares regressions. The bottom row shows the functions723

of Equations (2) (black) and (6) (red) fitted for each catchment. These are compared to weekly-724

averaged observed corresponding ratios plotted as points against observed soil moisture (mean725

and variance adapted to model soil moisture).726

727

Figure 4: Fitted hydrographs (Equation (4)) in the 3 validation catchments.728

729

Figure 5: Soil moisture memory of lag 30 days at all investigated catchments across Switzerland,730

averaged from April through October. The brownish background indicates the topography, with731

darker brown referring to higher altitudes.732

733

Figure 6: Overview of fitted functions, soil moisture memory, its uncertainty (refer to text for734

details),κ̃n =
σwn,y

σPn,ytlag

and ρ(wn, Pn) (as described in Section 4.4.1) for all catchments going735

from high soil moisture memory (top row) to low soil moisture memory (bottom row). In the left736

hand side column the red curves correspond to the fitted runoff ratio functions, the black lines737

show the fitted ET ratio functions and the vertical blue lines denote the 5% and 95% quantile of738
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all soil moisture values in the time frame between April and October. Soil moisture memory, its739

uncertainty, κ̃n and ρ(wn, Pn) are computed for all months between April and October and for740

lag times between 5 and 40 days.741

742

Figure 7: Continuation of Figure 6.743

744

Figure 8: Correlations of fitted model parameters (listed in Table 1) at all catchments with re-745

spective soil moisture memory at a lag of 30 days. Dark gray corresponds to negative correlations,746

light gray indicates positive correlations. Hatching indicates correlations that are not significant747

on the 5% level (two-sided t-test).748

749

Figure 9: The top row displays the soil moisture memories of lag 30 days of all 13 catchments750

plotted against altitude, CTI and dryness index including a least-squares fit and explained fraction751

of variance. The same is shown in the lower row for the ratio κ̃n =
σwn,y

σPn,ytlag

, also for a lag time752

of 30 days.753
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Figure 1: Soil moisture memory computed from observed and modeled soil moisture in the 3
validation catchments for lag times between 5 and 40 days. Values outside the plotting range of
the difference plots are shaded in gray.

37



10
20

30
40

A M J J A S O
Oensingen

la
g 

(D
ay

s)
O

en
si

n
g

en

A M J J A S O

Meteorological forcing from
Rietholzbach

A M J J A S O
San Rossore

10

20

30

40

10
20

30
40

la
g 

(D
ay

s)
R

ie
th

o
lz

b
ac

h

P
ar

am
et

er
 s

et
 o

f

10

20

30

40

10
20

30
40

la
g 

(D
ay

s)
S

an
 R

o
ss

o
re

10

20

30

40

10
20

30
40

A M J J A S O

la
g 

(D
ay

s)

O
b

se
rv

ed

A M J J A S O A M J J A S O

10

20

30

40

0.0

0.2

0.4

0.6

0.8

1.0

la
g−

co
rr

el
at

io
n

Figure 2: Soil moisture memory computed for all possible combinations of meteorological forcings
and parameter sets from the 3 validation catchments as compared to observed soil moisture
memory displayed in the bottom row.
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Figure 3: The top rows show modeled soil moisture, streamflow and evapotranspiration plotted
against observations for data within the period July-September that was used to fit the functions.
The red lines are fitted through least-squares regressions. The bottom row shows the functions
of Equations (2) (black) and (6) (red) fitted for each catchment. These are compared to weekly-
averaged observed corresponding ratios plotted as points against observed soil moisture (mean
and variance adapted to model soil moisture).
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Figure 4: Fitted hydrographs (Equation (4)) in the 3 validation catchments.
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Figure 6: Overview of fitted functions, soil moisture memory, its uncertainy (refer to text for
details), κ̃n =

σwn,y

σPn,ytlag

and ρ(wn, Pn) (as described in Section 4.4.1) for all catchments going

from high soil moisture memory (top row) to low soil moisture memory (bottom row). In the left
hand side column the red curves correspond to the fitted runoff ratio functions, the black lines
show the fitted ET ratio functions and the vertical blue lines denote the 5% and 95% quantile of
all soil moisture values in the time frame between April and October. Soil moisture memory, its
uncertainty, κ̃n and ρ(wn, Pn) are computed for all months between April and October and for
lag times between 5 and 40 days.
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Figure 7: Continuation of Figure 6.
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Figure 8: Correlations of fitted model parameters (listed in Table 1) at all catchments with respec-
tive soil moisture memory at a lag of 30 days. Dark gray corresponds to negative correlations,
light gray indicates positive correlations. Hatching indicates correlations that are not significant
on the 5% level (two-sided t-test).
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Figure 9: The top row displays the soil moisture memories of lag 30 days of all 13 catchments
plotted against altitude, CTI and dryness index including a least-squares fit and explained fraction
of variance. The same is shown in the lower row for the ratio κ̃n =

σwn,y

σPn,ytlag

, also for a lag time

of 30 days.
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