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h i g h l i g h t s

� Remote sensing (RS) and regulatory monitoring (RM) were used to estimate air pollution.
� Pollution concentrations were assigned to homes in a national health study (N ¼ 211,789).
� NO2 and PM2.5 were associated with adverse respiratory and allergic health outcomes.
� Risk estimates based on RS and RM were similar for participants living near monitors.
� RS pollutants were associated with adverse outcomes in remote/rural areas (p < 0.05).
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a b s t r a c t

Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level
ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and
NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study
examined associations between air pollution and adverse respiratory and allergic health outcomes using
multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring.

RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments.
Regulatory monitoring data were obtained from Canada’s National Air Pollution Surveillance Network.
Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis
were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of
age and older). Multi-year ambient pollutant averages were assigned to each study participant based on
their six digit postal code at the time of health survey, and were used as a marker for long-term exposure
to air pollution.

RS derived estimates of NO2 and PM2.5 were associated with 6e10% increases in respiratory and
allergic health outcomes per interquartile range (3.97 mg m�3 for PM2.5 and 1.03 ppb for NO2) among
adults (aged 20e64) in the national study population. Risk estimates for air pollution and respiratory/
allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for
areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring sta-
tion). RS derived estimates of air pollution were also associated with adverse health outcomes among
participants residing outside the catchment area of the regulatory monitoring network (p < 0.05).
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The consistency between risk estimates based on RS and regulatory monitoring as well as the asso-
ciations between air pollution and health among participants living outside the catchment area for
regulatory monitoring suggest that RS can provide useful estimates of long-term ambient air pollution in
epidemiologic studies. This is particularly important in rural communities and other areas where
monitoring and modeled air pollution data are limited or unavailable.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Exposure to ambient air pollution has been consistently asso-
ciated with respiratory and cardiovascular morbidity and mortality
(Brook, 2008; Brook et al., 2010; Brunekreef and Forsberg, 2005;
Chen et al., 2008; Franchini and Mannucci, 2012; Krewski et al.,
2003, 2005), and implicated in adverse allergic, metabolic, neuro-
logical, reproductive, and developmental health outcomes (Curtis
et al., 2006; Genc et al., 2012; Health Effects Institute, 2010;
Kampa and Castanas, 2008; Langer, 2010; Lewtas, 2007; Riedl,
2008; Saxon and Diaz-Sanchez, 2005; Sram et al., 2005). These
effects have been demonstrated through a variety of epidemiologic
studies examining long and short term associations at multi-city
and intra-urban scales (Brook, 2008; Brook et al., 2010;
Brunekreef and Forsberg, 2005; Dominici et al., 2003; Health
Effects Institute, 2010; Peters et al., 2006; Ren and Tong, 2008;
Weinmayr et al., 2010). However, large scale studies have typi-
cally been conducted in densely populated areas of developed na-
tions due to the challenge and resource burden of assessing
exposure to air pollution. There is an emerging interest within both
scientific and regulatory communities to better understand risks
associated with exposure to ambient air pollution among non-
urban populations.

Ground-level regulatory monitoring networks in developed
countries have often been used to estimate exposure in health
studies (Kelly et al., 2012; Krewski et al., 2003, 2005; Laden and
Neas, 2011; Miller et al., 2007; Wilson et al., 2005). However,
because regulatory fixed-site monitors are primarily intended for
surveillance, they are often restricted to assessing emissions from
specific industrial sources and regional background levels in highly
populated areas. This leads to sparse coverage throughout many
rural areas of developed countries. Developing countries have
minimal to no coverage. As a result, fixed-sitemonitors have limited
utility in evaluating health effects in rural or developing areas.

Advancements in exposure science have led to improved char-
acterization of air pollution exposure and reduced reliance on
fixed-site monitoring to provide exposure estimates. Household
level ambient measurements provide accurate data for small-scale
studies and can be collected either by trained technicians (Breysse
et al., 2005; Diette et al., 2007; Wheeler et al., 2011; Williams et al.,
2008) or by participants (Johnson et al., 2009; Petreas et al., 1988;
Spengler et al., 1983; Sexton et al., 1986; Whitmore et al., 1999)
but are too resource intensive to be used in large scale epidemio-
logical studies.

Air quality models have provided significant support for health
studies and regulatory policy. Physical, mechanistic, and atmo-
spheric air quality models use detailed source information,
meteorology, and atmospheric chemistry to predict pollutant
concentrations at a long-range spatial scale in both urban
and rural areas (Arrandale et al., 2011; Bey et al., 2001; Boothe
et al., 2005; Isakov and Özkaynak, 2007; Jerrett et al., 2005;
Kelly et al., 2012). Land use regression (LUR) and spatial inter-
polation models such as kriging or spline characterize the spatial
distribution and health effects of air pollution at a local scale
(Arrandale et al., 2011; Hoek et al., 2008; Jerrett et al., 2010;

Johnson et al., 2010; Mejia et al., 2011). However, air quality
models may exhibit high levels of uncertainty in areas where
limited information is available. For example, natural emission
sources such as biogenic soil NOx or mineral dust remain uncer-
tain. LUR and spatial interpolation models, which are most
commonly used to assess exposure in health studies, require a
dense monitoring network for model development and evalua-
tion, and therefore are typically limited to urban areas.

Satellite remote sensing (RS) has emerged as a new tool for
estimating ambient pollutant concentrations (Hidy et al., 2009;
Hoff and Christopher, 2009; van Donkelaar et al., 2010). Pollutant
concentrations based on satellite remote sensing utilize observa-
tional data that are collected daily at a global scale, providing
consistently derivedmeasurements in urban and rural areas in both
developed and developing nations. Previous studies have demon-
strated that long-term pollutant concentrations based on RS are
significantly correlated with regulatory fixed site monitoring
measurements (Liu et al., 2004; van Donkelaar et al., 2010; Lamsal
et al., 2008; Kloog et al., 2012).

RS has previously been used to extend the capacity of LUR
models. For example, RS has been used to develop national LUR
models in the United States (Novotny et al., 2011) and Canada
(Hystad et al., 2011) and to provide temporal refinement for LUR
models (Kloog et al., 2011; Liu et al., 2009; Mao et al., 2012). RS has
also been used to assess air pollution in developing countries where
ground-based regulatory measurements are limited (Chu et al.,
2003a, 2003b; Gupta et al., 2006; Kaiser et al., 2011; Mariano
et al., 2010; Pereira et al., 2009; Xia et al., 2006).

However, few studies to date have examined the implications of
using RS pollutant concentrations to estimate air pollution health
effects. Crouse et al. (2012) demonstrated that long-term exposure
to ambient PM2.5 based on RS was associated with increased car-
diovascular mortality in the Canadian population. Kloog et al.
(2012) reported that ambient PM2.5 concentrations during preg-
nancy based on RS were associated with adverse birth outcomes.
Henderson et al. (2011) found that daily RS estimates of forest fire
smoke exposure in British Columbia were positively associated
with respiratory physician and hospital visits, although these as-
sociations did not reach statistical significance.

Here, we present a cross-sectional study that uses both satellite
RS and ground-based regulatory monitoring data to examine res-
piratory health impacts of PM2.5 and NO2 across Canada using
multi-year ambient averages assigned to the home address of the
study participant at the time of the health survey as a marker for
long-term exposure to air pollution. The first objective was to
examine the implications of using air pollution concentrations
derived from RS to estimate exposure in a large-scale health study
by comparing effect estimates based on RS and regulatory fixed-site
monitoring. The second objective was to evaluate the utility of RS
for assessing air pollution risk in remote and rural populations
residing outside the catchment area for regulatory monitoring
networks. We focused on respiratory disease due to the well-
documented association between exposure to air pollution
and respiratory health outcomes in urban areas (Health Effects
Institute, 2010).
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2. Methods

The study linked air pollution data from 1) satellite remote
sensing and 2) ground-based regulatory monitors with residential
location from the Canadian Community Health Survey (CCHS), a
national sample of Canadians aged 12 and older. We pooled data
from CCHS participants interviewed between 2001 and 2005. The
household-level and person-level response rates for the CCHS sur-
vey years 2001e2005 ranged from 85 to 87% and 91 to 93%,
respectively (Statistics Canada, 2013a,b,c). Multiple logistic regres-
sion models were used to assess associations between air pollution
and respiratory and allergic health outcomes across Canada. The
main analyses were restricted to respondents aged 20e64; how-
ever, results for younger and older groups were also examined.

2.1. Study population

To address the study objectives, we conducted analyses in three
different populations for each pollutant of interest (PM2.5 and NO2).
Due to differences in ground-based monitoring and RS coverage for
different pollutants, the number of participants included in each
group differed slightly for the two pollutants analyzed. The three
populations were as follows:

1) Respondents livingwithin 40 kmof a regulatorymonitoring
station (N ¼ 123,039 for PM2.5; N ¼ 119,282 for NO2) were
assigned estimates of pollution generated by both regulatory
monitoring and RS. Analyses performed in this group were
used to compare associations between air pollution and res-
piratory health outcomes based on RS versus ground-based
regulatory monitoring.

2) Respondents living further than 40 km from the nearest
regulatory monitoring station (N ¼ 88,750 for PM2.5;
N ¼ 93,686 for NO2) lived outside the range recommended for
regulatory monitoring coverage (Environment Canada, 2005;
Environment Canada, 2011). This group was used to examine
whether air pollution is associated with respiratory health ef-
fects in remote and rural areas (outside the catchment area of
regulatory monitoring networks) using RS to estimate
exposure.

3) All respondents (N ¼ 211,789 for PM2.5; N ¼ 212,968 for NO2)
were used to examine associations between air pollution and
respiratory/allergic health outcomes at a national scale using
RS to estimate exposure.

2.2. Air pollution data

Fig. 1 shows the concentrations of PM2.5 and NO2 based on
satellite RS as well as the locations of regulatory monitoring sta-
tions from the NAPS network during the study period. Estimates of
PM2.5 and NO2 concentrations based on RS were assigned to CCHS
participants by residential six digit postal code centroid in areas for
which satellite-based concentrations were available. Pollution
concentrations measured at regulatory monitoring stations were
assigned to all respondents living within 40 km of the monitoring
station. If more than one station was located within 40 km of the
respondent, the concentration from the nearest monitor was
assigned. Maps showing multi-year average RS concentrations of
PM2.5 and NO2 for major cities in Canada are provided in the Sup-
plemental Information (Suppl. Figs. 1 and 2).

2.2.1. Remotely sensed estimates of air pollution
Satellite RS concentrations for PM2.5 were calculated using the

methodology previously described by van Donkelaar et al. (2010).

Ground-level PM2.5 concentrations were derived from satellite
measurements of aerosol optical depth (AOD) from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and theMultiangle
Imaging Spectroradiometer (MISR) satellite instruments (Kahn
et al., 2009; Levy et al., 2007) located on the Terra satellite which
has been circumnavigating the globe and collecting measurements
for approximately 10 years.

AOD is a measure of light extinction by atmospheric aerosols.
AOD from MODIS (at 10 km resolution) and MISR (at 18 km reso-
lution) were re-gridded to a spatial resolution of 0.1� � 0.1�

(approximately 10 km � 10 km at mid-latitudes) using a within-
grid area-weighted average to account for partial coverage of grid
cells by individual satellite pixels. These gridded AOD were com-
bined with linearly interpolated simulated aerosol vertical struc-
ture and scattering properties from the GEOS-Chem chemical
transport model (www.geos-chem.org) to produce a global raster
surface of PM2.5. Estimates of PM2.5 for each grid cell are based on at
least 50 satellite retrievals averaged over the six-year period be-
tween 2001 and 2006. Yearly variation in sampling had less impact
than the seasonal sampling cycles resulting from retrieval limita-
tions over snow-covered regions. Both seasonal and yearly sam-
pling bias were corrected using simulated sampling effects. The
number of observations for each grid cell is typically 300e500 as
shown in Fig. 7 of van Donkelaar et al. (2010). The global
population-weighted average number of retrievals per grid cell
(plus or minus standard deviation) is 297 (�202). The RS data were
corrected for non-continuous sampling as described in van
Donkelaar et al. (2010). RS derived long-term mean PM2.5 values
were in close agreement (r ¼ 0.8, slope ¼ 1.1, n ¼ 1057) with in situ
ground-based regulatory measurements in both Canada and the
United States (van Donkelaar et al., 2010).

Satellite RS NO2 concentrations were calculated by Lamsal et al.
(2008, 2010) and inferred from tropospheric NO2 columns
retrieved from the OzoneMonitoring Instrument (OMI) on the Aura
satellite, which has been collecting daily global measurements
since 2004 with a resolution of 13 km� 24 kme26 km� 128 km.
Data with a spatial resolution of finer than 19 km � 65 km were
used here. Lamsal et al. (2008, 2010) derived ground level con-
centrations by applying local scaling factors from GEOS-Chem to
tropospheric NO2 measurements retrieved by OMI in 2005e2007
to produce a ground level NO2 surface of long-term average NO2
concentration with a spatial resolution of approximately of
0.1� � 0.1�. Remotely sensed ground level NO2 is significantly
correlated with daily in situ measurements (r ¼ 0.3e0.9;
mean ¼ 0.7, N ¼ 307) with a tendency for higher correlations in
polluted areas (Lamsal et al., 2008, 2010). The seasonal spatial
correlation over these 307 sites is 0.8 (Lamsal et al., 2010).

2.2.2. Estimates derived from ground-level monitoring
Ground-level regulatory monitoring stations in the National Air

Pollution Surveillance (NAPS) networkwere selected based on their
availability of PM2.5 and NO2 data. A monitoring station was
selected if at least half of the ground-level samples collected during
the period of interest (2001e2006 for PM2.5 and 2005e2007 for
NO2) were available for that station. Furthermore, stations used to
estimate ambient concentrations had to provide approximately
even coverage (approximately 50 � 10%) across warm and cold
months (May to September, and November to March,
respectively). Approximately 90 stations for PM2.5 and 42 stations
for NO2 were excluded based on these criteria.

The closest station to the CCHS respondents e based on the
latitude/longitude coordinate of their residential postal code
centroid at the time of the health survey e was identified among
the stations with valid measurements. The distance in kilometers
between the ground-level monitoring station and the respondent’s
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postal code centroid was also determined for all the CCHS
respondents.

As recommended by Environment Canada, the estimates of
ambient air pollution derived from the ground-level monitoring
stations were not considered representative of the respondents’
residential exposure if their postal code centroid was located
further than 40 km from the closest station (Environment
Canada, 2005; Environment Canada, 2011). In total, the esti-
mates among respondents living within 40 km of a station

originate from 120 different stations for NO2 and 122 stations for
PM2.5.

The calculation of PM2.5 averages has been described in depth by
Crouse et al. (2012). Briefly, PM2.5 estimates (from 2001 to 2006)
were calculated from the average of three samplers available at
each station: TEOM, TEOM with Dryer only and BAM 35% RH. The
values collected by the two TEOM samplers were adjusted for
season and region, and daily averages were created only if 18 hourly
samples or more were available.

Fig. 1. A,B Multi-year average concentrations of A) PM2.5 and B) NO2 derived from RS in Canada. Maps depicting RS concentrations in major Canadian cities are provided in the
Supplemental Information (Suppl. Figs. 1 and 2).
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2.3. Health outcomes

Lifetime diagnosis of asthma, allergy and chronic bronchitis by a
physicianwere self-reported by CCHS participants. Individuals who
reported experiencing asthma symptoms in the 12 months pre-
ceding the survey were classified as having current asthma. Al-
lergies were limited to non-food related allergies. For all health
outcomes, missing values were classified as not having the adverse
health outcome of interest.

2.4. Covariates

Individual level covariates were derived from the CCHS survey
and were self-reported. Household level income adequacy and ur-
ban residence were derived using algorithms developed by
Statistics Canada (2001). Income adequacy was based on household
size and income, while participants residing in a continuously built
up area with a total population greater than 1000 and a population
density greater than 400 per square kilometer were classified as
urban residents by Statistics Canada (2013a,b,c). All covariates, with
the exception of body mass index (BMI) and household income
adequacy, were modeled as binary variables. Missing BMI values
were imputed as the median BMI for the respondent’s age, sex, and
ethnicity. Missing household income values (used to calculate in-
come adequacy) were imputed as the median by age, sex, and
household education. Missing values for binary covariates were
assigned as the value corresponding to the largest sub-group. These
imputations were made to minimize the impact of missing values
on the calculation of air pollution health risks.

2.5. Neighborhood variables

Neighborhood level (ecological) variables were derived for each
Dissemination Area (DA) based on socioeconomic and demographic
characteristics from the 2001 Canadian census (Crouse et al., 2012).
Values for the neighborhood level variables were assigned to par-
ticipants based on the 2001 census DA corresponding to the resi-
dential postal code (Wilkins and Peters, 2012). These variables
included the proportion of households in the highest and lowest
income quintiles, proportion of homes in need of major repairs,
proportion of the adult population in the following groups:
currently unemployed, less than high school education, recent
immigrants, recentlymoved, spoke English as a second language, or
single parent. Neighborhood level variables did not contribute
significantly to the model results and therefore were not included
in the final models reported in this paper.

2.6. Exclusion criteria

Consistent with previous analyses reported by Crouse et al.
(2012), the following groups were excluded from the analyses: 1)
respondents living in the Yukon, Northwest Territories or Nunavut
(N w5000); 2) first generation immigrants (N w51,000), and 3)
respondents greater than 80 years old (N w12,000). Respondents
for whom immigration status was not available were also removed
from the pool of CCHS respondents (N w11,000). First, there is
greater uncertainty about previous exposures among non-
Canadian born respondents. Furthermore, first generation immi-
grants are more likely to live in large metropolitan areas with
higher levels of ambient pollution, but also tend to have better
health and health behaviors compared with the Canadian-born
population (Ali et al., 2004; McDonald and Kennedy, 2004;
Villeneuve et al., 2011). Second, the Yukon, Northwest Territories,
and Nunavut were excluded because RS estimates of air pollution
were not available for the northern areas of Canada. Finally, elderly

respondents (80 years of age or older) were excluded because
potential relocation to institutional or family assisted living
introduced potential exposure misclassification for exposure based
on residential location. The elderly were also excluded due to
potential differences in their health profile (e.g., the survivor ef-
fect) due to attrition of less healthy individuals from the
population.

2.7. Statistical analyses

Descriptive statistics for air pollution, health outcomes, and
covariates were generated in each population of interest. We also
examined correlations between household level ambient concen-
trations of PM2.5 and NO2 based on concentrations at the nearest
monitoring station within 40 km and the RS concentration for the
10 � 10 km area grid occupied by the home.

Associations between ambient air pollution and chronic respi-
ratory health outcomes were assessed using logistic regression
models at the individual level. Multiple logistic regression models
for adults aged 20e64 were adjusted for age, sex, ethnicity, BMI,
urban residence, household socioeconomic status (SES variables
included post-secondary education and income adequacy), and
tobacco smoke (Equation (1)). Tobacco smoke variables included
current smoking, past smoking, and exposure to second-hand
smoke at home.

Health outcome ¼ b0 þ bapXap þ bageXage þ bsexXsex

þ bethXeth þ beduXedu þ biabia þ bBMIXBMI

þ bcsXcs þ bpsXps þ bshsXshs þ burXur þ ε

(1)

ap ¼ air pollution
age ¼ age
sex ¼ sex
eth ¼ ethnicity
edu ¼ education
ia ¼ income adequacy
BMI ¼ body mass index
cs ¼ current smoker
ps ¼ past smoker
shs ¼ second hand smoke
ur ¼ urban residence
Models for teenagers (aged 12e19) and older adults (aged 65e

80) were adjusted for the same factors with the exception of BMI,
which was not available for these age groups. Potential interactions
of air pollution with gender, BMI, and income adequacy were also
tested. All statistical analyses were conducted using SAS Enterprise
Guide 4.2 and SAS 9.2 (Cary, North Carolina).

2.8. Multi-level spatial modeling

We used logistic-binomial models implemented by the paired-
Poisson approach (Renjun et al., 2003) to examine spatial clus-
tering of air pollution health risks in the total population (ages 20e
64) at the census division level. The magnitude and significance of
the associations between air pollution and health outcomes for
multi-level models were similar to the results of the simpler mul-
tiple logistic regression models; therefore we presented results
from the simpler models.

2.9. Sensitivity analyses

Sensitivity analysis of health outcome datawas performed using
individuals from the CCHS 2001 cycle for whom age of diagnosis
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was available. These analyses were limited to respondents diag-
nosed with asthma in the 5 years preceding their interview.

We also conducted sensitivity analyses among respondents
living within 10 km of the nearest regulatory monitoring station.
These health models were limited to adults aged 20e64 in the
2001e2005 pooled dataset who lived within 10 km of the
nearest regulatory monitoring station at the time of the CCHS
interview.

3. Results

3.1. Socio-demographic, health, and air pollution exposure in the
study population

Table 1 provides descriptive statistics for respondents aged 20e
64 in the total study population, and stratified by proximity to the
nearest ground-based monitoring station. The stratification is
based on proximity to PM2.5 monitors; however, the same associ-
ations were observed when stratifying by NO2 monitor location
(results not shown).

Socio-demographic characteristics and disease prevalence varied
by proximity to a ground-based monitor. The prevalence of both
allergies and respiratory disease (with the exception of chronic
bronchitis) was greater among respondents living within 40 km of a
monitoring station compared with participants living greater than
40 km from the nearest regulatory monitoring station (p < 0.01).
Participants living within 40 km of a monitoring station were more
likely to live in an urban area, be female, have some post-secondary
education, and be at the extremes of income adequacy, while those
living more than 40 km from a monitor were older, had higher BMI,
and were more likely to be exposed to tobacco smoke (p < 0.01).
Respondents living within 40 km of the nearest ground-level
monitoring station were also exposed to higher levels of ambient
pollution compared with those living further than 40 km from the
nearest monitoring station (p < 0.01) as estimated with RS. This

trendwas consistent across pollutants. These resultswere consistent
with expected differences between urban and rural populations.

The distribution of exposure to ambient pollution differed be-
tween estimates based on RS and nearest ground-level monitoring
station. Briefly, estimates of PM2.5 and NO2 based on ground-level
monitoring were normally distributed, whereas RS estimates
were right-skewed. The range of ambient NO2 concentrations
based on ground-level monitoring was also greater than the range
of estimates derived from RS (Table 1). RS mixing ratios averaged
over roughly 100e1000 km2 are substantially lower than those
from point monitors, which tend to be located near emission
sources to address regulatory objectives and which suffer inter-
ference from other reactive oxidized nitrogen species (EPA, 1975;
Fehsenfeld et al., 1990; Dunlea et al., 2007; Steinbacher et al.,
2007; Lamsal et al., 2008). Diurnal variation also plays a role
since the RS measurement is made between 1 and 2 pm local time
when NO2 levels tend to be low due to photochemistry (Lamsal
et al., 2008). Finally, the observed differences between RS and
regulatory monitoring distributions may be due to the different
spatial scales for these measurements e e.g., regulatory monitory
data represent point measurements, while RS values reflect average
concentrations in 10 � 10 km grid cells.

In this study, we compared ambient concentrations assigned to
each study home based on RS in a 10 � 10 km grid cell occupied by
the home versus in situ measurements collected at the nearest
monitoring stationwithin 40 km of the home. Correlations between
average household-level concentrations based on RS and measure-
ments at the nearest regulatory monitoring were 0.73 and 0.70 for
PM2.5 and 0.58 and 0.53 for NO2 at households within 10 km and
40 km, respectively, of the nearest regulatory monitoring station.
The correlation between RS and in situ estimates decreased as the
distance to the nearest monitor increased (Table 2). Scatterplots
showing multi-year average concentrations based on RS versus
regulatory monitoring at the regulatory monitoring sites are pro-
vided in the Supplemental Information (Suppl Figs. 3 and 4).

Table 1
Socio-demographic characteristics, health outcomes, and household level pollution estimates for the study population (ages 20e64).

Participants residing within
40 km of regulatory
monitoring station (N ¼ 123,039)

Participants residing more
than 40 km from regulatory
monitoring station (N ¼ 88,750)

(Total) National study
population (N ¼ 211,789)

Mean (±StDv) Mean (±StDv) Mean (±StDv)
Age (years) 41.40 (�12.27)** 43.03 (�12.26)** 42.08 (�12.29)
BMI 25.90 (�4.94)** 26.60 (�5.11)** 26.19 (�5.03)

Frequency (%) Frequency (%) Frequency (%)
Female 66,170 (53.8%)** 46,957 (52.9%)** 113,127 (53.4%)
Caucasian 100,900 (82.0%) 72,577 (81.8%) 173,477 (81.9%)
Post-secondary education 86,201 (70.1%)** 55,470 (62.5%)** 141,671 (66.9%)
Urban residence 104,058 (84.6%)** 48,720 (54.9%)** 152,778 (72.1%)
Income adequacy Frequency (%) Frequency (%) Frequency (%)
Lowest quintile 17,281 (14.1%)** 10,875 (12.3%)** 28,156 (13.3%)
Highest quintile 36,099 (29.3%)** 19,162 (21.6%)** 55,261 (26.1%)
Exposure to tobacco smoke Frequency (%) Frequency (%) Frequency (%)
Current smoker 37,418 (30.4%)** 28,994 (32.7%)** 66,412 (31.4%)
Past smoker 51,573 (41.9%)* 37,678 (42.5%)* 89,251 (42.1%)
Exposed to second-hand smoke 12,442 (10.1%)** 10,885 (12.3%)** 23,327 (11.0%)
Health outcomes Frequency (%) Frequency (%) Frequency (%)
Asthma (ever) 11,562 (9.4%)** 7217 (8.1%)** 18,779 (8.9%)
Current asthma 6996 (5.7%)** 4136 (4.7%)** 11,132 (5.3%)
Allergies 37,766 (30.7%)** 23,027 (26.0%)** 60,793 (28.7%)
Chronic bronchitis 3801 (3.1%) 2708 (3.1%) 6509 (3.1%)
Ground based monitoring Mean (±StDv) Mean (±StDv) Mean (±StDv)
NO2 (ppb) 11.24 (�4.72) NA NA
PM2.5 (mg m�3) 8.74 (�2.19) NA NA
Remote sensing Mean (±StDv) Mean (±StDv) Mean (±StDv)
NO2 (ppb) 1.48 (�1.13)** 0.46 (�0.35)** 1.05 (�1.02)
PM2.5 (mg m�3) 9.05 (�3.77)** 5.63 (�1.95)** 7.62 (�3.56)

*Significantly different at p < 0.05 level.
**Significantly different at p < 0.01 level.
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3.2. Air pollution health effects

Figs. 2e4 show risk estimates for respiratory and allergic health
outcomes associated with PM2.5 and NO2 based on RS and ground-
level monitoring. To facilitate comparison between risk estimates
based on RS and ground level monitoring, all odds ratios were
expressed per interquartile range (IQR) of the pollutant in the
population of interest.

Fig. 2 shows adjusted odds ratios for PM2.5 and NO2 derived
from both RS and regulatory measurements among participants
aged 20e64 living within 40 km of a monitoring station. PM2.5 and
NO2 exposures based on RS were associated with a 6e8% increased

risk per IQR for respiratory health outcomes. Odds ratios and 95%
confidence intervals for RS-based NO2 were as follows: asthma:
1.06 (1.03e1.08); current asthma: 1.06 (1.02e1.09); allergies: 1.07
(1.06e1.09); and chronic bronchitis: 1.07 (1.03e1.12) all calculated
over the IQR of 1.46 ppb. Odds ratios for RS-based PM2.5 were:
asthma: 1.07 (1.04e1.10); current asthma: 1.07 (1.03e1.11); al-
lergies: 1.08 (1.06e1.10); and chronic bronchitis: 1.07 (1.02e1.13) all
calculated over IQR 5.94 mg m�3. Effect estimates based on ground-
level monitoring were similar to RS-based estimates for asthma and
current asthma, and lower for allergies and chronic bronchitis
(calculated over the IQRs of 3.24 mg m�3 for PM2.5 and 5.32 ppb
for NO2).

Fig. 3 shows adjusted odds ratios for PM2.5 and NO2 derived
from RS among participants living more than 40 km from a ground-
level monitoring station. PM2.5 and NO2 exposures based on RS
were associated with a 4e7% increased risk per IQR in respiratory
health problems among participants in areas without ground level
monitoring. Odds ratios for NO2 were: asthma: 1.04 (1.02e1.07);
current asthma: 1.07 (1.04e1.11); allergies: 1.09 (1.08e1.11); and
chronic bronchitis: 1.04 (1.00e1.08) over IQR 0.33 ppb. Odds ratios
for PM2.5 were: asthma: 1.05 (1.03e1.07); current asthma: 1.06
(1.03e1.08); allergies: 1.07 (1.05e1.08); and chronic bronchitis: 1.04
(1.01e1.07) calculated over IQR 1.62 mg m�3.

In the total national study population (Fig. 4), PM2.5 and NO2
based on RS were associated with a 6e10% increase per IQR in
respiratory health outcomes. Odds ratios for NO2were: asthma: 1.07
(1.05e1.08); current asthma: 1.08 (1.06e1.10); allergies: 1.09 (1.08e
1.10); and chronic bronchitis: 1.06 (1.03e1.08) over IQR 1.03 ppb.

Table 2
Correlation coefficients for ambient household level pollutant concentrations based
on remote sensing and measurements at the nearest regulatory monitoring station
by distance to the nearest monitoring station.

Distance from home
to nearest regulatory
monitoring station (km)

Household level
estimates of PM2.5

Household level
estimates of NO2

<1 0.74 (N ¼ 7002) 0.60 (N ¼ 6954)
1e2 0.76 (N ¼ 15,002) 0.60 (N ¼ 15,242)
2e5 0.75 (N ¼ 51,633) 0.60 (N ¼ 49,287)
5e10 0.70 (N ¼ 43,918) 0.54 (N ¼ 41,275)
10e20 0.67 (N ¼ 32,398) 0.44 (N ¼ 29,899)
20e30 0.65 (N ¼ 16,147) 0.36 (N ¼ 17,608)
30e40 0.60 (N ¼ 16,070) 0.25 (N ¼ 15,886)

Fig. 2. A,B Odds Ratios for A) PM2.5 and B) NO2.5 derived from RS and NAPS monitoring
among participants (aged 20e64) living within 40 km of a ground-based monitoring
station over the interquartile range (IQR) in pollutant concentration: for NO2, the IQR
was 5.32 ppb for NAPS and 1.46 ppb for RS. For PM2.5, the IQR was 3.24 mg m�3 for
NAPS and 5.94 mg m�3 for RS. Models were adjusted for age, sex, ethnicity, body mass
index (BMI), urban residence, household SES (post-secondary education and income
adequacy), and tobacco smoke (current smoking, past smoking, and exposure to
second-hand smoke).

Fig. 3. A,B Odds Ratios for: A) PM2.5 and B) NO2.5 derived from RS among participants
(aged 20e64) living further than 40 km from a ground-based monitoring station over
the IQR in pollutant concentration: for NO2, the IQR was 0.33 ppb and for PM2.5,
1.62 mg m�3. Models were adjusted for age, sex, ethnicity, body mass index (BMI),
urban residence, household SES (post-secondary education and income adequacy), and
tobacco smoke (current smoking, past smoking, and exposure to second-hand smoke).
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Odds ratios for PM2.5 were: asthma: 1.08 (1.06e1.10); current
asthma: 1.09 (1.07e1.12); allergies: 1.10 (1.09e1.11); and chronic
bronchitis: 1.07 (1.04e1.10) calculated over IQR 3.97 mg m�3.

3.3. Sensitivity analyses

We also examined health models that were limited to re-
spondents living within 10 km of the nearest monitoring station.
Risk estimates based on both RS and regulatory monitoring were
slightly (2e3%) higher than those found in the larger population
living within 40 km of the nearest monitoring stations. However,
risk estimates based on RS and regulatory monitoring for re-
spondents living within 10 km and within 40 km of the nearest
monitoring stationwere highly similar across pollutants and health
outcomes (data not shown).

Associations between air pollution and asthma were similar for
respondents diagnosed within 5 years of the survey compared with
those with a lifetime history of doctor-diagnosed asthma (data not
shown). Associations between air pollution and health outcomes
were weaker among younger (12e19 year old) and older (65e80
year old) age groups for all study populations. This may be due to
higher residential mobility in these age groups resulting in greater
exposure misclassification (because home address was used to
assign exposure), lower disease prevalence (resulting in less sta-
tistical power to identify associations), or decreased susceptibility
to air pollution (e.g., due to a healthy survivor effect among elderly
participants). We also examined the impact of clustering by census
district through multi-level spatial modeling and the results were

similar to those for the multivariate logistic models presented in
the paper; therefore we presented results for the simpler models.

4. Discussion

Previous air pollution studies have primarily focused on urban
populations because urban dwellers are typically exposed to higher
levels of ambient air pollution, and because the resource burden
associated with estimating exposure in rural and remote areas is pro-
hibitive. This study examined the implications of using RS to examine
associations between air pollution and allergic/respiratory health
outcomes among Canadians living in both urban and rural areas.

4.1. Remote sensing versus in situ measurements of air pollution

Remote sensing estimates of ambient PM2.5 and NO2 have been
validated in previous studies which reported strong correlations
between ground-based in situ measurements and RS concentra-
tions for both pollutants (Lamsal et al., 2008, 2010; van Donkelaar
et al., 2010; Lee et al., 2012). RS measures of both PM2.5 and NO2
were significantly correlated with in situ measurements, with
average correlations of 0.8 for PM2.5 (van Donkelaar et al., 2010) and
0.7 for NO2 (Lamsal et al., 2008, 2010) in North America. As in
previous studies, mean NO2 concentration based on RS were
significantly lower than in situ measurements. There are a number
of methodological differences that contribute to this discrepancy.
While the RS estimates are an area average, the ground-based es-
timates are based on fixed-site regulatory monitors, which tend to
be preferentially located near roads and other locations with sig-
nificant human activities where NO2 concentrations are higher. The
RS estimate is recorded between 1 and 2 pm local time when NO2
levels tend to be low, while the ground-based measurements are
averaged across the day. Ground-based monitors also use com-
mercial chemiluminescence analyzers which overestimate true
NO2 due to interference from other reactive nitrogen species. In
addition, RS estimates exhibit higher uncertainty for snow and ice
conditions in winter, resulting in greater exclusion of winter values
from long-term averages. NO2 concentrations are typically higher
in winter; therefore a higher rate of exclusion for winter values
likely results in lower average concentrations for NO2 based on RS.
However, seasonal NO2 concentrations based on RS and in situ
concentrations were highly correlated (Lamsal et al., 2008, 2010).

We compared air pollution estimates assigned to study partic-
ipants based on RS versus regulatory monitoring to examine the
implications of estimating household level concentrations based on
these alternate methods. As expected, estimates of ambient air
pollution at participant homes based on RS and regulatory moni-
toring were highly correlated for participants living near a regula-
tory monitoring station where the concentrations measured at the
monitoring siteweremore likely to reflect household level ambient
concentrations. As the distance between the participant home and
the nearest regulatory monitoring site increased, the correlation
between exposure estimates based on RS and regulatory moni-
toring decreased. These results suggest that for homes located near
a monitoring station both regulatory monitoring data and RS pro-
vided good estimates of household level ambient concentration.
However, for homes located further from regulatory monitoring
stations, RS provided a better estimate of household-level ambient
concentrations for PM2.5 and NO2.

Although these analyses show a high correlation between
household estimates based on remote sensing and regulatory
monitoring, ground level in situ measurements collected at regu-
latory monitoring stations were not used to further evaluate RS
because the spatial scales for RS and regulatory monitoring mea-
surements were not directly comparable. Estimates based on

Fig. 4. A,B Odds Ratios for: A) PM2.5 and B) NO2 and derived from RS among all par-
ticipants (aged 20e64) in the study population over the IQR in pollutant concentra-
tion: for NO2, the IQR was 1.03 ppb and for PM2.5, 3.97 mg m�3. Models were adjusted
for age, sex, ethnicity, body mass index (BMI), urban residence, household SES (post-
secondary education and income adequacy), and tobacco smoke (current smoking,
past smoking, and exposure to second-hand smoke).
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regulatorymonitoring datawere point measurements collected at a
regulatory monitoring station that were applied to participants
living up to 40 km from the a monitoring station, based on the self-
described catchment area for these regulatory monitoring stations.
In contrast, the RS estimates were averages calculated over areas of
approximately 10 � 10 km (Fig. 1) and assigned to participants
residing within those area grids.

4.2. Air pollution health effects

Long-term exposure to air pollution based on satellite RS was
associated with a 6e10% increase in the prevalence of allergies,
asthma, current asthma, and bronchitis per IQR for PM2.5 and NO2
among Canadian adults aged 20e64 years. These results are
consistent with previous research demonstrating respiratory and
allergic health impacts associated with air pollution (Brunekreef
and Holgate, 2002; Byrd and Joad, 2006; Diaz-Sanchez et al.,
2003; Gauderman et al., 2005; Health Effects Institute, 2010;
McConnell et al., 2006; Samal et al., 2008; Samet, 2007; Sarnat and
Holguin, 2007; Wong and Lai, 2004).

Absolute values for pollutant concentrations at the study homes
differed between RS and ground-based monitoring. However, air
pollution risk estimates scaled by pollutant IQR were similar for the
two methods among the population residing near a regulatory
monitoring station, because household level concentrations based
on RS and regulatory monitoring were highly correlated. For both
PM2.5 and NO2, odds ratios for asthma, current asthma and allergies
were similar based on RS and ground level monitoring. Effect es-
timates for chronic bronchitis displayed greater variability, with
significant associations only evident based on RS. However, effect
estimates for chronic bronchitis based on RS and regulatory
monitoring were not significantly different based on overlapping
confidence intervals. Risk estimates based on RS appeared to be
slightly stronger than those based on regulatory monitoring, which
may be due to the improved spatial scale of RS exposure estimates
compared with concentrations measured at the nearest monitoring
site. These results suggest that RS is a comparablemetric to ground-
based regulatory monitoring for estimating long-term exposure to
ambient pollution in a health study.

Crouse et al. (2012) previously reported a significant increase in
mortality associatedwith long-term exposure to air pollution based
on RS. The findings of the current study suggest that RS can be used
to assess air pollution impacts on morbidity as well as mortality.

Importantly, air pollution health effects in this study were not
limited to urban populations with higher pollution levels. Although
the prevalence of asthma and allergies was higher among study
participants residing within 40 km of a ground-level monitoring
station (in predominantly urban areas), the magnitude of air
pollution risk estimates was similar among participants living
further than 40 km from a ground-based monitoring station. This
suggests that air pollution has adverse allergic and respiratory ef-
fects in rural and remote areas with lower ambient concentrations.

4.3. Limitations

Our results suggest that RS can provide a powerful tool for
estimating long-term exposure to both gaseous and particulate air
pollution. However, there are some limitations in the analyses.

The spatial resolution of the pollutant estimates based on remote
sensingwas limited by the current retrievals from available satellite
measurements. The 10 � 10 km resolution for PM2.5 was likely
adequate for estimating exposure to ambient pollution based on the
spatial homogeneity of PM2.5. However, the 10 � 10 km resolution
for NO2 is problematic given the spatial heterogeneity and highly
localized sources of NO2. The risk estimates reported in this study

can at best capture the effects of average NO2 concentration at a
community level, and therefore likely underestimate the “true”
impact of NO2 on these health outcomes. As remote sensing tech-
nology and retrievals improve, future analyses will be needed to
examine air pollution health effects associated with ambient con-
centrations at a smaller spatial scale. The use of satellite retrieval is
still a novel method for estimating ambient air pollution, and is
being constantly improved. For example, enhancements in RS-
based PM2.5 have been observed in the southern prairies and
western mountains due to the effects of surface reflectance on the
retrieval. This issue has been addressed in recent retrievals (van
Donkelaar et al., 2013). There was no evidence to suggest that sur-
face reflectance impacted the analyses reported in this paper.

The goal of this paper was not to evaluate the catchment area for
the regulatory monitoring values, but rather to examine the impli-
cations of using RS to estimate long-term exposure in comparison
with regulatory monitoring values. We therefore used the relatively
large 40 km catchment area prescribed by Environment Canada.
However, we found that effect estimates for RS and regulatory
monitoring were similar when the study population was restricted
to participants residing within 10 km of the nearest monitoring
station. This suggests that the results were not biased by the large
catchment area used for the analyses reported in this paper.

Finally, long-term average pollutant concentrations used to
predict exposure represented multi-year averages for PM2.5 (2001e
2006) and NO2 (2005e2007) based on the availability of remotely
sensed estimates of air pollution. These averaging periods over-
lapped (rather than preceded) the health survey period (2001e
2005). The analyses assumed that relative spatial patterns in long-
term ambient pollution concentrations were stable during the five-
year study period. In other words, we assumed that areas with high
pollutant concentrations were consistently high relative to low
pollution areas during the health survey period.

This assumption was based on the robustness of multi-year
pollution concentrations estimated using RS and on the coarse
spatial resolution of the RS estimates. For example, Crouse et al.
(2012) reported that the 1987e2001 PM2.5 average based on reg-
ulatory monitoring in 11 of Canada’s largest cities was highly
correlated with the 2001e2006 RS PM2.5 (r ¼ 0.89). Furthermore,
associations between air pollution and health reported in this pa-
per were consistent for individual years within the cohort (e.g.,
respondents surveyed in 2001, 2003, and 2005 survey cycles),
suggesting that exposure misclassification generated by using
pollutant concentrations measured during the health survey period
did not change the results of these analyses.

Finally, exposure misclassification may have been introduced by
the lackof residentialhistoryneededtoaccuratelycharacterizehistoric
exposure and inability to verify that exposure preceded diagnoses.
However, analyses restricted to respondents diagnosed within the
five-year period preceding the survey showed similar results.

Despite our efforts to evaluate the air pollution risk estimates
reported in this study, these associations may be biased by self-
reporting, exposure misclassification associated with residential
mobility, and variation in spatial distribution of air pollution over
time. However, the primary goal of this study was not to quantify
the association between air pollution and respiratory disease,
which has been well characterized in the literature, but rather to
examine the utility of using RS to estimate exposure to air pollution
in a health study.

5. Conclusions

Long-term exposure to ambient air pollution as estimated by
ground-based regulatory monitoring and satellite RS was associ-
ated with increased prevalence of allergic and respiratory health
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outcomes among Canadian adults. These associations were signif-
icant in predominantly urban areas with higher ambient concen-
trations and in rural and remote areas with lower concentrations.
Effect estimates were also similar for models using satellite RS
versus ground-based regulatory monitoring to estimate exposure.

The consistency between risk estimates based on RS and regu-
latory monitoring as well as the associations between air pollution
and health outcomes in remote areas demonstrate the utility of air
pollution estimates derived from RS for characterizing long-term
ambient air pollution in rural communities and other areas for
which ground-level air monitoring data are not available. RS pro-
vided a powerful tool for assigning consistently derived estimates
of long-term exposure across both urban and rural populations.
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