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Abstract

Turbine disks in some advanced engine applications may be exposed to temperatures above 700 °C
for extended periods of time, approaching 1,000 h. These exposures could affect the near-surface
composition and microstructure through formation of damaged and often embrittled layers. The creation
of such damaged layers could significantly affect local mechanical properties. Powder metal disk
superalloys LSHR and ME3 were exposed at temperatures of 704, 760, and 815 °C for times up to
2,020 h, and the types and depths of environmental attacked were measured. Fatigue tests were performed
for selected cases at 704 and 760 °C, to determine the impact of these exposures on fatigue life. Fatigue
resistance was reduced up to 98% in both superalloys for some exposure conditions. Tensile tests were
also performed to help understand fatigue responses, and showed corresponding reductions in ductility.
The changes in surface composition and phases, depths of these changed layers, failure responses, and
failure initiation modes were compared.

Introduction

To screen the fatigue resistance of nickel-based disk superalloys, conventional low cycle fatigue tests
are often performed with cycles having periods of 0.1 to 120 s, in the interests of combining cyclic lives
of up to 10,000 cycles with affordable test durations of near 100 h. However, environmental exposures at
high temperatures of 650 to 815 °C in actual service can approach 1000 h in aerospace gas turbine
engines, and 10,000 h in land-based gas turbine engines. The disk temperatures in both classes of engines
are anticipated to rise, as higher compressor discharge air temperature is known to improve fuel efficiency
and performance (Ref. 1). Turbine disk rims are cooled by compressor discharge air, and their
temperature tracks closely with compressor discharge air temperature.

Exposures at a temperature of 870 °C have been shown to produce significant reductions in fatigue
resistance of blade superalloy Rene 80 (Ref. 2). Oxide layers were identified as the cause, along with an
underlying region where ¥ precipitates had been dissolved. Fatigue lives could be largely recovered by
removing the oxidized layers. Exposures at disk application temperatures of 650 to 704 °C have also been
shown to reduce fatigue lives of powder metal disk superalloys Udimet 720 and ME3 (Ref. 3). It was
shown that the exposures could cause a change in the locations of failure initiation sites from internal
flaws to surface oxidation damage, which in turn reduced the fatigue lives. However, this response was
intermittent depending on exposure conditions, and often confounded the effects of exposures with that of
crack location on fatigue life. It has often been observed that disk fatigue specimens failing from cracks
initiating at defects on the surface have lower corresponding fatigue lives than those failing from internal
cracks initiating at defects far from the surface (Ref. 4). This has been associated with differences in
stress intensity due to longer surface crack initiation sites, and environmental interactions for accelerated
crack initiation and growth at surface versus internal cracks (Ref. 5). More recent evaluations of exposure
effects on disk superalloys have been performed on notched fatigue specimens, where the stress
concentration of the notch encourages cracking at the notch root. Here, the superalloy RR1000 (Ref. 6)
was shown to form recrystallized grains with porosity within the underlying region where y” precipitates
had been dissolved, while ME3 (Ref. 7) instead had fingers of Al,O; extending into a recrystallized zone.
Both alloys had significant reductions in fatigue life after exposures at 700 to 815 °C. However, it is not
clear if these exposure effects were enhanced by the concentrated stresses at the exposed notch surfaces.
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The objective of this study was to screen the effects of high temperature exposures in air on the
microstructure and fatigue properties of two powder metal disk superalloys. Fully machined mechanical
test specimens of LSHR and ME3 were exposed at 704, 760, and 815 °C, for times up to 2,020 h.
Uniform gage and notch gage fatigue tests were performed at 704 or 760 °C, allowing the effect of
concentrated notch stresses to be ascertained. Tensile tests were subsequently performed to further
investigate cracking of the identified environment-affected surface layers. The effects of exposures on
fatigue life, tensile strength, and tensile elongation were compared. The associated failure modes and their
relationships to exposure-induced changes in compositions and phases near the surface were determined.

Materials and Test Procedures

Materials

The compositions in weight percent of the tested materials are listed in Table 1. The compositions of
LSHR and ME3 are similar, with the biggest differences in Mo, Nb, Ta, and W contents. LSHR contains
less Mo and Ta, but more W and Nb than ME3. LSHR (Ref. 8) superalloy powder was obtained from
Special Metals Corp. This powder was atomized in argon, screened to —270 mesh, sealed in a stainless
steel container, and then consolidated by hot isostatic pressing. The consolidated material was
subsequently extruded and isothermally forged into several flat disks. Stacked rows of rectangular blanks
each about 13 mm square and 66 mm long were extracted throughout the forged disks, with their lengths
oriented parallel to the disk plane. The blanks were placed vertically within an enclosing fixture and
supersolvus solution heat treated at 1171 °C for 2 h in a resistance heating furnace. The assembly of
blanks and enclosing fixture was then removed to cool in static air. This gave a near-linear cooling rate of
the blank cores, averaging 72 °C per minute cooling rate down to 870 °C. The blanks were subsequently
given an aging heat treatment of 855 °C for 4 h followed by 775 °C for 8 h. Blanks of similar dimensions
were also extracted from the web and rim of several fully heat treated disks of ME3 (Ref. 7), which had
been subjected to similar thermo-mechanical processing conditions. The ME3 blanks were selected from
the disks at locations having comparable cooling rates after the solution heat treatment to that of the
LSHR blanks. But unlike LSHR disks, the ME3 disks were fully heat treated before blank extraction, so
MES3 blanks were directly machined into notch fatigue and tensile specimens.

Fatigue and tensile specimens were machined using low stress grinding procedures, with the gage
sections finally polished parallel to the loading direction, in order to not exceed 0.21 pum average
roughness. LSHR uniform gage fatigue specimens had a gage diameter of 4.8 mm across a gage length of
13 mm. ME3 cylindrical notched specimens (Fig. 1) had minimum diameter of 5.1 mm, with a geometric
elastic stress concentration factor K, = 2. Several LSHR specimens were also prepared with the
cylindrical notch configuration of Figure 1, for consistent fatigue test comparisons with ME3.
Accompanying LSHR and ME3 tensile specimens having a nominal gage diameter of 4.1 mm across a
gage length of 21 mm were also machined.

Test Procedures

Most exposures were conducted in conventional resistance heating box furnaces in lab air, with all
specimens and blanks air cooled after exposures. Fully machined specimens were exposed after being
wiped with cotton soaked in acetone, and then ethanol. Several additional exposure conditions were
investigated, including: 1) oversized specimen blanks were sometimes exposed in air for selected long
exposures at 704, 760, and 815 °C before machining into specimens, in order to assess the effects of the
exposures on superalloy microstructure and properties remote from the surface; 2) fully machined ME3
notched gage fatigue specimens were wrapped with Ta foil to getter remnant oxygen and then were
exposed in a vacuum pressure not exceeding 9x107 torr; 3) cyclic exposures in air were conducted on
uniform-gage LSHR fatigue specimens to assess cyclic effects. All cyclic specimens were heated to
815 °C and cooled to approximately 32 °C. Here, the machined specimens were suspended from a
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horizontal alumina tube while a standard resistance-heating horizontal tube furnace automatically
translated over the specimens during the 60 min heating cycle. The furnace automatically translated away
from the specimens during the 20 min cooling cycle, to cool in static air. A typical heating and cooling
cycle is shown in Figure 2, showing outputs from attached platinum-rhodium “Type R” thermocouples.
These specimens were exposed to 440 cycles.

LSHR and ME3 were tested in different, yet complementary manners to screen the effects of the
exposures on fatigue life for two different fatigue conditions. Fatigue tests of LSHR specimens with
uniform gages were performed at 760 °C, and tests of ME3 specimens with notched gages were
performed at 704 °C. Temperature was measured using chromel-alumel “Type K thermocouples
contacting the specimens. Fatigue tests were performed in accordance with fatigue test specification
ASTM E466-07. All fatigue tests used a sinusoidal waveform cycling stress at a constant frequency of
0.33 Hz. LSHR specimens were tested using a uniaxial electro-mechanical testing machine having a
resistance heating furnace. A maximum stress of 841 MPa and minimum stress of —428 MPa was applied
in all tests. Preliminary testing of LSHR showed these cyclic stresses are typical stabilized values
generated in strain-controlled tests at a total strain range of 0.76 percent and minimum/maximum strain
ratio of 0, which typically resulted in surface-initiated fatigue failures and limited the fatigue life for
specimens without long prior exposures in air (Ref. 8). However, no extensometer for strain
measurements was attached to the specimens in the present fatigue tests, in order to avoid contacting the
exposed surfaces.

Fatigue tests of notched gage ME3 specimens were performed using uniaxial servo-hydraulic testing
machines with resistance heating furnaces. A maximum stress of 855 MPa and minimum stress of
43 MPa were applied in all tests, which were performed at 704 °C. Previous testing of ME3 using this
notched gage specimen with these test conditions produced mean fatigue lives of 24,000-78,000 cycles
and encouraged transgranular surface-initiated fatigue cracks to limit fatigue. (Ref. 9). For all fatigue
tests, one-way statistical analyses of variance in fatigue lives were performed using JMP Version 10 (SAS
Institute Inc., Cary, NC, 1989-2013) software, to test for significant differences in mean life response.
Stepwise multiple linear regressions were also performed using this software, with a 90% probability of
significance required for inclusion of any variable. This software was used to “code” all variables (V), by
normalizing them using Equation (1):

V =(V = Viuia)/(Viange/2) (D

This normalized each variable } to values of —1 to 1, so comparisons could be made of the relative
influence of each significant variable, by directly comparing the magnitudes of their coefficients in the
regression equation (Ref. 10).

Tensile tests were performed in general accordance with ASTM E21-05 and ASTM G129-00. Tests
on LSHR were performed at 704 and 760 °C in air on a servo-hydraulic testing machine, using a
conventional resistance heating furnace. Tensile tests of LSHR performed at 760 °C used a displacement
rate of 0.1041 mm/s, which produced an average strain rate 5.0x107 s, to simulate conditions
experienced in the uniform gage fatigue tests. Companion tensile tests of LSHR were also performed at
704 °C with a much slower displacement rate of 0.0017 mm/s and average strain rate of 8.3x10” s per
ASTM G129-00, to screen strain rate dependence and temperature dependence of exposure effects on
tensile response. Tests on ME3 were performed at 704 °C in a vacuum chamber held at a vacuum
pressure not exceeding 8x10° torr, integrated in an electro-mechanical universal testing machine.
Resistance-heating elements were used to heat the specimen. These tensile tests in vacuum were
performed at displacement rates of 0.0017 mm/s and 0.017 mm/s, which produced average strain rates of
8.3x107° s'and 8.3x10™* s, respectively. However, no extensometer for strain measurements was attached
to the specimens in the tensile tests, to avoid contacting the exposed surfaces.

ASTM grain sizes were determined from etched metallographic sections using linear intercepts of
circular grid overlaps on optical images in accordance with ASTM E112-10 linear intercept procedures
using circular grid overlays on optical images. Precipitate microstructures were characterized using field
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emission scanning electron microscopy on metallographically prepared and etched sections.
Metallographic sections were swab etched with 25% acetic acid, 25% nitric acid, 25% HCI, 25% H,O,
1% HF by volume. While it is recognized that imaging of the finest tertiary y” precipitates is
compromised using this approach, it was still considered sufficient for this study to make relative
comparisons among exposure conditions. The area of each precipitate was measured using SigmaScan
Pro (Systat Software Inc., San Jose, CA) image analysis software by thresholding based on image
brightness. The equivalent radius of a circular precipitate was also calculated from each precipitate’s area.
Fracture surfaces were examined to determine failure initiation sites using scanning electron microscopy.

Results and Discussion

Microstructures
Internal Microstructures

Internal microstructures for unexposed test materials are shown in Figure 3, including magnified
views of the secondary and tertiary y’-precipitates. Mean linear intercept ASTM grain size and the
measured dimensions of the secondary and tertiary y” precipitate are listed in Table 2. LSHR had a finer
average grain size of 15 um, compared to ME3 at 29 pm. Secondary y” precipitates in LSHR were a
mixture of rounded cubes and moderately extended cubes, having lobes growing at the corners. The area
of each precipitate was measured, and the equivalent radius of a spherical particle is also compared in
Table 2. ME3 predominantly had larger precipitates on either size basis, with much more extended
growth of lobes at the cube corners. This was due to the different and slower initial cooling path after
solution heat treatment for the ME3 disk material, heat treated as large disks (Ref. 11). Tertiary y”
precipitates were consistently near spherical, and slightly larger for ME3 than for LSHR. MC carbides
were often observed along with fewer M;B, borides within grains of both superalloys, while MC and
M,;C; carbides and M;B, borides were observed along the grain boundaries of LSHR (Ref. 8 to 12).

Internal microstructures are also shown after an exposure of 815 °C at 2,020 h in Figure 3e and 3f.
Secondary and tertiary y” precipitate dimensions are also listed for this material condition in Table 2.
Secondary vy’ precipitate size increased after aging LSHR, while precipitate size actually decreased for
MES3. This was apparently related to the stability of the highly extended, lobed precipitates in ME3. Work
on other disk superalloys has shown these particle shapes can be unstable in certain exposure conditions,
and that they evolved into smaller, more equiaxed shapes (Ref. 13). Tertiary y” precipitates were no
longer observed in both alloys, and were apparently dissolved during coarsening of secondary y”
precipitates. This was observed both for specimens and blanks subjected to this exposure.

Surface Microstructures

To assess influence of aging exposures on mechanical properties, surface microstructure were
examined in detail. With increasing exposure time and temperature, oxides grew on the surfaces of LSHR
and ME3 in a very similar manner, Figure 4 and Figure 5. Cross section evaluations of accompanying
exposed coupons indicated that complex changes occurred near the surface during exposures for both
ME3 and LSHR. Continuous Cr,O; was observed on the surface, along with faceted grains of TiO,. The
TiO, grains became noticeably larger and more abundant with exposure time. Internal branched Al,04
fingers were evident beneath the outer Cr,O;-TiO, scale, even for the shortest exposures. These Al,O;
fingers extended into a zone of the alloy that was recrystallized, and where y* precipitates were also
dissolved. The depth of y* precipitate dissolution extended slightly further than the Al,Os fingers.

Microprobe evaluations revealed that the exposures led to chemical and phase alterations near the
surface that extended beyond the oxide layers. This is illustrated in Figure 6, for an ME3 specimen
exposed at 815 °C at 2,020 h. The recrystallized y’'-dissolution layer was depleted in Cr, Ti, Al, and Ta in
comparison to the deep interior, due to the formation of the major oxides. Within 30 um of the oxidized
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surface, the grain boundaries are depleted in Cr, Mo, Co and enriched in Ni relative to remote interior
grain boundaries. Due to their high Cr, Mo, and Co content, M,;C; carbides image brightly in back-
scattered SEM (BSE) due to their high refractory content and primarily reside at the grain boundaries.
More infrequent M;B,; borides, enriched in Mo, Cr, and W, and MC carbides, enriched in Ti, Ta, and Nb,
reside mostly within the grains (Ref. 7 and12). The BSE image in Figure 6 shows a region extending in
further than the precipitate-free zone is depleted in the bright M,;C¢ carbides at the grain boundaries. For
this exposure condition, at roughly 50 um depth there is a clear transition from negligible minor phase
particle number density at the grain boundaries to full density. Near the surface, Cr from M,;C; carbides
and M;B; borides apparently diffused out to help sustain the Cr,0O5 scale growth, resulting in the local
dissolution of these minor phases. Mo and Co also accumulated underneath the external scale in the y'-
dissolution layer. This resulted in adjacent superalloy grain boundaries that were depleted in Cr, Mo, and
Co. The MC carbides appear to be stable during exposure and were present within the minor phase
dissolution zone.

Tables 3 and 4 compare the thicknesses of the outer oxide scale, alumina finger penetration, y’-
dissolution layer, and the minor phase dissolution zone, for various exposure conditions of each alloy.
Comparisons of the oxide scale thickness, alumina finger length, and y'-dissolution layer for both alloys
as functions of exposure time are shown in Figure 7. For ME3 (Ref. 7), invariant of time and temperature,
the minor phase dissolution zone thickness was three times greater than that of the y’-dissolution layer
(where Al,O5 fingers reside), which were roughly three times greater than the external oxide scale
thicknesses. As these layer thicknesses are additive, for the most aggressive 815 °C at 2,020 h exposure
imaged in Figure 6, removal of material to a depth of ~20 um was necessary to eliminate both the
external Cr,0s3-TiO; scale and internal branched Al,O; fingers, while material removal to a depth of
~50 um was necessary to eliminate the minor phase dissolution zone. Measurements for the mean oxide
scale thickness and alumina finger length did not vary statistically between the two alloys for the majority
of the exposure conditions, with the exception of 704 °C 100 h and 704 °C 440 h conditions. The mean
v’ -dissolution layer thicknesses for LSHR showed agreement with ME3 for the 815 °C isotherm,
however, showed slight differences for the 704 and 760 °C exposure conditions, possibly an indication of
coupon-to-coupon variability.

Effect of Exposures on Fatigue Life
Uniform-Gage Fatigue of LSHR

Fatigue tests of uniform-gage specimens of LSHR were performed at 760 °C, with a maximum stress
of 841 MPa and minimum stress of —428 MPa applied in all tests. Preliminary testing of LSHR had
shown these cyclic stresses are typically stabilized values generated in strain-controlled tests at a total
strain range of 0.76 percent and minimum/maximum strain ratio of 0. These preliminary tests were
performed at a frequency of 0.5 Hz for 24 h, then continued at a higher frequency of 10 Hz. The short
total test times and associated exposures encouraged internal- initiated failures at grain facets or non-
metallic inclusions in tests at 704 and 760 °C, but surface initiated failures at 815 °C (Ref. 14). Such
response has also been observed in ME3 (Ref. 15). The subsequent tests performed here on LSHR at
760 °C with the same applied stresses but a slower, constant frequency of 0.33 Hz, however, encouraged
surface-initiated cracks to limit fatigue life, even for specimens without prior exposures. This testing
temperature of 760 °C and frequency of 0.33 Hz allowed only minor surface oxidation during fatigue test
durations of up to about 50 h, but this likely combined with cyclic relaxation of compressive residual
stresses near the surface (Ref. 16) and was sufficient to typically result in surface-initiated failures.

The lives for fatigue tests of LSHR are compared in Table 5 and Figure 8. Stepwise linear regressions
were performed on log(life), using variables of temperature, log(time), and their product. The resulting
linear regression equation is given in Figure 9a, along with comparisons of estimated and actual lives.
This equation indicated that increasing exposure temperature and increasing time reduced fatigue life.
Their coefficients indicated they had comparable effects, when increased from minimum to maximum
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settings employed here. The product of temperature and time also had a significant effect, indication their
effects were enhanced for combinations of high temperature and long time. This regression equation gave
a fairly high coefficient of determination (R?) of about 0.87, but had a lack of fit that was significant at a
probability of over 95%. As shown in Figure 9a, this lack of fit was evident at intermediate exposure
conditions, where only small reductions in mean fatigue life were observed. Regressions of fatigue live
versus depths of oxide scales, fingers, and dissolution zones each also had this problem of lack of fit, with
poor agreement at intermediate exposure conditions. The coefficient of determination was not improved
using any of these depths, or when using their sum. This is exemplified in Figure 9b, using the sum of
oxide scales, fingers, and dissolution zones depths for a total depth of damage. Fatigue life decreased with
increasing total depth of damage.

Fatigue lives for each condition were compared by one-way analyses of variance, and then grouped
where no significant difference in life was observed. Exposures at 704 °C for 100 h gave no significant
reduction in mean life for these limited tests, and could be grouped with unexposed specimens (Group N).
However, longer exposures at 704 °C and exposures at higher temperatures significantly reduced mean
fatigue life, at a statistical confidence of at least 95%. Specifically, exposures at 704 °C for 440 h and
2,020 h, 760 °C for 440 h, and 815 °C for 100 h, had comparable mean fatigue lives representing
relatively low effects on life (Group L), about 50% of unexposed life. The mean lives for these different
exposure conditions were statistically equivalent at a confidence of over 90% and significantly less than
Group N fatigue life. But isothermal or cyclic exposures at 815 °C for 440 h produced significantly lower
fatigue lives than Groups N or L. These conditions gave equivalent mean fatigue lives at a confidence of
over 95% (Group M), and more severely reduced fatigue mean life to 20% of unexposed life. The highest
reduction in mean fatigue life was observed for an exposure of 815 °C for 2,020 h (Group H), which
reduced mean fatigue life by 98% or about 2% of the unexposed mean fatigue life.

Material blanks were also aged at 815 °C for 2,020 h before machining into specimens, to assess
microstructure aging effects. These LSHR specimens had about 25% lower mean fatigue lives than
unexposed specimens, at a statistical significance of over 95%. The data is plotted in Figure 8 for
comparison. This reduction is likely due to reductions in strength, often observed after overaging (Fig. 3)
of the strengthening y' precipitates (Ref. 17). However, the fatigue lives of samples extracted from these
aged blanks were significantly higher than for machined specimens that were tested after an exposure for
the same duration and temperature.

Several specimens were subjected to cyclic exposures giving an accumulated time of 440 h at 815 °C,
for comparison to specimens given static exposures of 440 h at 815 °C. The surfaces of fatigue specimens
typically looked very similar after these two exposure conditions, although the outer oxide layers
appeared to spall in several locations during cyclic exposure, Figure 10a and b. Energy-dispersive X-ray
spectroscopy (EDS) indicated that the Cr-rich oxide layer spalled off in some locations, leaving the
underlying Al,O;-rich layer uncovered. Nevertheless, corresponding mean fatigue lives of the isothermal
and cyclic exposures were equivalent at a confidence of 95% (Group M, Fig. 8).

Notch Fatigue of ME3

Fatigue tests of ME3 were performed on notch specimens at 704 °C. The stress concentration of the
notch forced the failure initiations to remain at the surface, and did not allow internal crack initiation sites
such as inclusions or large grains to limit life. The testing temperature was not expected to cause rapid
surface changes during the fatigue test durations of up to about 50 h, based on the examinations of
coupons exposed at 704 °C. This fatigue test condition could represent a disk feature such as a bolt hole
or fillet for a service application near highest current disk temperatures.

The MES3 fatigue lives are compared in Table 6 and Figure 11. For unexposed and exposed
conditions, fatigue life varied more for ME3 notched fatigue tests than for LSHR uniform gage fatigue
specimens. This gave increased root mean square error in regression equations, but still allowed
inspection of trends. Stepwise linear regression was again performed on log (life), using variables of
temperature, log(time), and their product. The resulting linear regression equation is given in Figure 12a,
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along with comparisons of lives estimated by the equation and actual lives. This equation again indicated
that increasing temperature and time reduced fatigue life. Temperature had the strongest influence on
fatigue life here, based on the higher magnitude of the coefficient for temperature than for time. The
product of temperature and log(time) did not have a significant effect on life, indicating no significant
enhancement for combinations of high temperature and high time as observed for LSHR uniform gage
fatigue specimens. Regressions of fatigue life versus depths of oxide scales, fingers, dissolution zones,
and their sum each did not give improved coefficients of determination or root mean square errors. This is
illustrated in Figure 12b, again showing fatigue life decreased with total depth of damage.

As for uniform gage fatigue of LSHR, ME3 notch fatigue lives for each condition were compared by
one-way analyses of variance, and then grouped where no significant difference in life was observed,
Figure 11. After exposures at 704 °C for 100 h and 440 h, no significant reductions in mean life were
identified with these limited notched fatigue tests. However, exposures of 704 °C for 2,020 h and those at
760 and 815 °C gave significantly lower mean life than unexposed specimens, at a statistical confidence
of 95%. Yet, the exposure conditions of 704 °C for 2,020 h and 760 °C for 440 h appeared to be
transitional, and gave more widely varied lives that spanned between multiple groups. These required
comparisons of failure modes, to confirm the group classifications. The largest reduction in mean fatigue
life was again observed for the exposure condition producing the largest surface layer thicknesses, 815 °C
for 2,020 h, which reduced mean fatigue life by 99%. Also, specimens exposed at conditions giving
comparable intermediate values of surface layer thicknesses, 704 °C for 2,020 h, 760 °C for 440 h, and
815 °C for 100 h, had statistically equivalent mean fatigue lives at a confidence of 95%. This indicated
that fatigue life was related to the depth of environmental attack. However, as will be shown in failure
mode evaluations, both crack initiation and crack growth modes were affected by the exposures.

Material blanks aged at exposure conditions of 815 °C for 440 h and 2,020 h and then machined into
specimens (Table 6), as well as specimens exposed in vacuum at 815 °C for 440 h (Table 7), all had
fatigue lives not significantly reduced from that of unexposed specimens. These results are included for
comparison in Figure 11. Therefore, the debits in fatigue life associated with exposures for notched
specimens were due to environmental attack, and not due to aging of the remote interior microstructure
during pre-exposures. Several specimens were exposed at 815 °C for 2,020 h and then polished to remove
only the outer oxide scales (20 um), or all oxide scales and the minor phase dissolution zones (50 um).
For these samples, fatigue lives are also included in Figure 11. Polishing to a depth of 20 um only slightly
improved fatigue life for this exposure condition, while removing 50 pm restored life to unexposed levels.

The effects of exposure on fatigue lives of LSHR and ME3 could be compared by normalizing fatigue
lives of exposed specimens by mean fatigue life of unexposed specimens, Figure 13. Notch fatigue life of
ME3 appeared to be influenced more by exposures at intermediate temperatures and times than for
uniform gage life of LSHR. This could be due to differences in how the fatigue lives of the varied
materials, specimen configuration, and test conditions were influenced by intermediate exposures.
Therefore, several notch fatigue configuration specimens were prepared from LSHR blanks, some
exposed at an intermediate condition of 815 °C for 440 h, then all were fatigue tested at 704 °C using the
same conditions as for the ME3 notched specimens. Unexposed LSHR specimens had about 35% higher
notched fatigue life than for ME3 in these conditions, attributable to the finer LSHR grain size (Fig. 3).
Nevertheless, the normalized mean fatigue life of exposed notch specimens of LSHR were reduced by
this exposure just as for ME3, and did not appear to be alloy dependent, Figure 13b. This may be related
to the concentration of stresses produced by the notch at the exposed surface. However, dissimilar failure
modes could also be operative for the two alloys, and should to be compared.

Effect of Exposures on Fatigue Failure Modes
Uniform-Gage Fatigue of LSHR

Failure initiation modes of the LSHR tested specimens are compared in Figures 14 to 18. To gain
further information of failure initiation modes, typical secondary cracks are also presented in the gage
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sections of variously exposed specimens in Figure 19. Figures 14 to 17 show the failure modes of
specimen failures were grouped according to failure mode and associated fatigue life, indicated as Groups
N, L, M, and H in the fatigue life plot of Figure 8. For each unexposed specimen, usually one
transgranular crack initiated at the specimen surface, normal to the loading axis, to cause failure, Figure
14. In some cases, these cracks initiated at angled faces of grains adjacent to the surface, but these shifted
to transgranular crack growth within 10 pm of the surface. These cracks then grew in a predominantly
transgranular mode normal to the loading axis. This failure mode was also usually observed after
exposures of 100 h at 704 °C, and could be grouped with unexposed specimens in showing no consistent
change in failure mode or life (Group N).

However, for Group L specimens exposed at 704 °C for 440 h and 2,020 h, 760 °C for 440 h, and
815 °C for 100 h, consistent changes in failure mode were observed, Figure 15. For this group, more
cracks were present in the oxide scales coating the sides of these specimens, Figure 19b to 19¢. While
shorter cracks were roughly normal to the loading axis, they sometimes joined to follow the boundaries of
underlying grains. Usually, a singular failure initiation point was observed on each fracture surface as in
Figure 15a, but occasionally multiple crack initiation points were observed, Figure 15b. The main crack
became more torturous and mixed in mode, with several grain boundary surfaces evident adjacent to the
cracked oxide scales of the specimen surface as shown in Figure 15, as indicated by rounded contours of
grain boundaries and the rougher texture produced by coarser secondary y” particles precipitating and
growing along grain boundaries. However, these initial cracks at surface grain boundaries only grew to a
depth of about 30 um, then transitioned to transgranular crack propagation through adjoining interior
grains.

Group M specimens, subjected to a constant exposure for 440 h at 815 °C and cyclic exposure for a
cumulative hot time of 440 h at 815 °C, had a more extended intergranular failure initiation mode, Figure
16. More frequent cracking of the outer oxide scales was observed, with a mixture of shorter cracks
roughly normal to the loading axis, and longer cracks linked to follow the boundaries of underlying,
unrecrystallized grains, Figure 19j and 19k. The main failure initiation point had grain boundaries
exposed by intergranular crack growth to a depth of about 60 pm, Figure 16. This was again followed by
a transition to predominantly transgranular crack propagation further into the specimen interior. Their
mean fatigue lives represented about 20% of unexposed mean fatigue life.

Finally, for the most severe exposure at 815 °C for 2,020 h of Group H specimens, extensive cracking
of the oxide layers and adjoining recrystallized grains was evident on the specimens’ sides (Fig. 19g) and
along the fracture surfaces, Figure 17. Crack initiation and propagation of the adjoining unrecrystallized
grains remained predominantly intergranular until final overload failure. This was associated with the
highest effect on mean fatigue life of all tested conditions, with the 98% reduction giving about 2% of
unexposed mean fatigue life. This indicated that both crack initiation and crack growth modes could be
affected by the exposures, and explained why estimations of fatigue life assuming only enhanced crack
initiation at oxide layers of varied depth were insufficient.

There were several exceptions to the above trends. One unexposed specimen, which failed from an
aluminum oxide granulated inclusion at the specimen surface shown in Figure 18a, had a lower life than
Group N specimens at a statistical confidence of over 95%, yet it exhibited transgranular crack initiation
and growth. Previous work has shown that inclusions intersecting a disk superalloy specimen surface can
inordinately reduce fatigue life, and this should be considered a separate failure mode whose probability
of occurrence can depend on the inclusion number density, inclusion size, and surface area of the
specimen gage section (Ref. 4), as well as the specimen surface and fatigue test conditions. Specimens
aged as blanks at 815 °C for 2,020 h had lower mean life than Group N specimens, at a statistical
confidence of over 95%, yet transgranular crack initiation and growth. One of these specimens failed
from a near-surface pore (Fig. 18b), while another failed from an internal inclusion. However, three other
specimens tested after short exposures at low temperatures had cracks initiating from internal inclusions,
but no significant divergence in life from others at the same exposure condition. The lower life after aging
the blanks could also be related to a reduction in strength brought on by extended coarsening of the vy’
precipitates producing the changes evident in Figure 3.
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Longitudinal metallographic sections were also prepared for selected failed specimens, to examine
gage cross sections containing secondary surface cracks adjacent to the dominant failure initiation site,
and are shown in Figure 20. These locations would be unloaded as the dominant crack grew, and not
subjected to higher stresses often generated near final specimen failure. These locations were also
observed before sectioning for comparisons, shown previously in Figure 19. As shown in Figure 19a, 19h
and 20a, group N specimens had very few secondary cracks, which grew from the surface across grains
roughly normal to the loading axis. Group L specimens had more frequent secondary cracks, Figure 19¢
through Figure 19¢ and Figure 20b. These were often still relatively flat and normal to the loading axis,
initiating in the outer oxide layers. Secondary cracks for Group M specimens sometimes linked together
to outline underlying grain boundaries, and then grew along grain boundaries for a short distance, as
shown in Figure 19j and 19k. Finally Group H specimens had very many cracks in the recrystallized zone
along the alumina fingers, Figure 20d. Some of these cracks then propagated as intergranular cracks
extending into the specimen interior, evident on the section’s adjacent fracture surface.

Notch Fatigue of ME3

Failure initiation modes of ME3 in the notch fatigue tests at 704 °C are compared in Figure 21-24. All
failures initiated from the notch surface. The dominant failure initiation modes could be divided into three
groups of N, M, and H (Fig. 11) according to failure modes and fatigue lives, but their associations with
exposure conditions were less rigid than for the uniform gage fatigue specimens. This could be due in part
to the fact that a far smaller volume was highly stressed near the notch root for ME3, in comparison to
that for the uniform gage section for LSHR. Therefore, representative images are presented to describe
each group for ME3, rather than exposure condition.

Group N specimens failed from primary cracks initiating and propagating in a predominantly
transgranular fashion through grains, with crack growth roughly normal to the loading axis, Figure 21.
This most often occurred for unexposed specimens, and sometimes after exposures of 704 °C for 100 h,
440 h, and 2020 h. In some cases, cracks initiated at angled faces of grains adjacent to the surface, but
these shifted to transgranular crack growth within 10 pm of the surface. Specimens failed from either one
or two primary crack initiation points, indicated by the arrows in Figure 21. Fatigue life for these
specimens remained within 28,326 to 100,256 cycles.

Group M specimens failed from primary cracks that started more torturous and mixed in mode, with
several grain boundary surfaces evident adjacent to the cracked oxide scales of the specimen surface as
shown in Figure 22. These initial cracks at surface grain boundaries usually only grew up to one grain
deep, typically about 30 um, then transitioned to transgranular crack propagation through grains further
interior. This most often occurred for specimens exposed at 704 °C for 440 h and 2020 h, 704 °C for
440 h, and 815 °C for 100 h. With the thicker oxides generated by some exposures, fatigue encouraged a
higher number of cracks along the notch surface than for Group N specimens, which produced more
numerous crack initiation sites on the fracture surface. These surface cracks were similar to those of the
uniform gage specimens, although restricted to the highly stressed notch root section. But this failure
mode was also observed for one unexposed specimen and for one specimen exposed at 815 °C for 440 h,
showing the mode was not dependent only on exposure condition and associated outer surface layers for
notched specimens. Fatigue life for these specimens ranged from 2,430 to 30,472 cycles.

Group H specimens had extensive cracking across more expansive oxide layers and recrystallized
grain zones along the notch surface and at many failure initiation sites on the fracture surfaces, as shown
in Figure 23. Environmental exposures caused the adjacent unrecrystallized grains’ boundaries to be
degraded, leading to intergranular propagation that extended into the interior for several hundred microns.
This failure mode was observed for exposures at 815 °C for 440 and 2,020 h. Fatigue life for these
specimens ranged from 397 to 874 cycles.

Additional tests were performed with altered exposure and testing conditions, to further examine the
relationships between fatigue life and failure modes, Table 7. ME3 notch specimens were exposed in
vacuum at 815 °C for 440 h, and others were aged as blanks at exposure conditions of 815 °C for 440 h
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and 2,020 h and then machined into specimens for testing. Their fatigue lives were not significantly
reduced from that of unexposed specimens. This indicated the debits associated with exposures were due
to environmental attack and that aging of the remote interior microstructure during pre-exposures did not
significantly affect notch fatigue life in these test conditions. Yet, they had a different failure mode. After
transgranular crack initiation as for unexposed specimens, crack propagation transitioned to become
predominantly intergranular, as shown in Figure 24. An intergranular crack propagation mode was also
observed for specimens exposed at 815 °C for 2,020 h and then re-polished to selectively remove surface
layers, which will be discussed below. Long term aging of the internal microstructure at these conditions
had apparently increased the potential for intergranular cracking during notch fatigue tests. It is not clear
why this shift in crack propagation mode was not observed in tests of uniform gage LSHR specimens
aged at 815 °C for 2,020 h, but this apparently was related to the different testing configuration and
conditions.

Prior exposures at intermediate conditions of ME3 notch fatigue specimens appeared to have greater
effects on fatigue life at 704 °C than for LSHR uniform gage fatigue specimens tested at 760 °C, shown
in Figure 13a. However, several LSHR specimens machined into the notch fatigue specimen
configuration, exposed at 815 °C for an intermediate time of 440 h, and tested at 704 °C had comparable
normalized fatigue lives to ME3, Figure 13b. As shown in Figure 25b, LSHR notch fatigue specimens
given this prior exposure had a very similar failure initiation mode as for ME3 specimens in Group H,
with extensive cracking across the oxide layers and recrystallized grain zones along the notch surface, at
many failure initiation sites. Intergranular propagation extended into the interior for 15 to 25 pm, not
nearly as deep as for ME3 specimens. But overall, this showed that notched specimens of both alloys
fatigue tested at 704 °C had lives affected more by prior exposures at these intermediate conditions.

It is curious that aging at 815 °C for 2,020 h in the same furnace reduced fatigue life for LSHR
uniform gage specimens, but did not consistently do so for ME3 notch specimens, Table 6. This could be
due in part to the different coarsening response of the two alloys” y” precipitates, Figure 3. After this
extended aging, ME3 had significantly finer secondary y” precipitates than LSHR, which could explain
the smaller reductions in tensile strength. This also could be associated with the differing effects of aging-
induced reductions in strength on uniform gage versus notched specimens. In the uniform gage of LSHR
specimens, maximum cyclic stresses were maintained by the test control waveform, and reduced yield
and ultimate strength could lower the fatigue stress-life response of aged specimens. But in the notches of
ME3 specimens, maximum cyclic stresses of aged specimens could be reduced in comparison to those of
unexposed specimens, due to more plastic flow in the notch. For the same applied net section stress, this
would produce lower maximum cyclic stresses in the notch of aged specimens than for those without the
extended aging. This could compensate for the lower fatigue stress-life response of aged specimens.

Longitudinal metallographic sections were also prepared across a primary failure initiation location
for selected ME3 specimens, and are compared in Figure 26. As shown in Figure 26a, group N specimens
had few, transgranular secondary cracks. Group M specimens had more numerous secondary cracks,
which sometimes started at grain boundaries but became transgranular during crack growth, Figure 26b.
As observed for uniform gage specimens, Group H specimens had very many cracks of the outer oxide
scales and recrystallize zone, which usually grew along the alumina fingers, Figure 26c. Intergranular
cracks sometimes then extended into the specimen interior.

Effects of Individual Exposed Surface Layers on Fatigue Failures in Notch Specimens

The different surface layers had different compositions and phases, so could have different cracking
properties. Therefore, the effects on fatigue life of individual surface layers generated by these exposures
were examined, by polishing away selected surface layers before fatigue testing. These experiments were
performed on ME3 notch fatigue specimens, in order to ensure all fatigue failures occurred at the polished
notch surface. Samples given the extreme exposure condition of 815 °C for 2,020 h were studied here, as
this exposure gave the largest dimensions of layers and consistently gave the Group H failure mode.
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Polishing away material to a total depth of 20 pm removed the outer Cr,05-TiO, scale plus inner
Al,O5 branched fingers. However, this gave only marginally improved fatigue life, to an average of 1,305
cycles, included for comparison in Figure 11. Fractographic evaluation revealed that the specimens failed
by multiple intergranular crack initiations, with the cracks continuing to propagate along grain boundaries
into the interior, Figure 27a. This life and failure mode remained consistent with that of Group H
specimens.

Polishing away more material to a total depth of about 50 um removed the above layers and also the
minor phase dissolution zone. This gave a significant increase in mean fatigue life to 35,998 cycles,
which is nearly comparable to the mean fatigue life of the unexposed specimens, Figure 11. Furthermore,
a single, transgranular crack initiated failure, Fig 27b, which is typical of unexposed failures. These
aspects of fatigue life and crack initiation mode were consistent with Group N specimens. However, the
deeply polished specimens had intergranular propagation extending over 1 mm in distance before
overload. This crack propagation mode was consistent with Group H ME3 specimens. It would appear the
deeper intergranular crack propagation mode was clearly related to aging of the internal microstructure
during this exposure, as shown for specimens exposed in vacuum and blanks aged at 815 °C for 440 to
2,020 h before machining into specimens.

Effects of Exposures on Tensile Response

Slow strain rate tensile tests described in ASTM G129-00 have often been used to screen the effects
of dynamic environment-assisted cracking. But the standard indicates these tests have also been
successfully used to screen for embrittlement due to prior hydrogen charging and plating processes.
Therefore, tensile tests of varied displacement rates and corresponding strain rates were performed after
exposures of LSHR and ME3, to examine exposure effects on tensile strength and ductility.

LSHR tensile specimens were exposed in air at 704 °C for 2,020 h, 760 °C for 440 h, and 815 °C for
2,020 h, along with blanks that were later machined into specimens. Typical tensile stress-strain curves
are shown in Figure 28a for tests at 760 °C performed with a displacement rate of 0.1041 mm/s and
average strain rate of 5.0x10” s, approximating the rates present for the fatigue tests. Companion tensile
tests of LSHR performed at 704 °C with a much slower displacement rate of 0.0017 mm/s are compared
in Figure 28b. Measured ultimate tensile strength and inelastic strain at fracture are listed in Table 8.
Strengths were not strongly affected by the exposures at 704 and 760 °C. However, the exposure of
815 °C for 2,020 h reduced tensile strength by 150 to 190 MPa in the tensile tests, with greater effects
observed for the slow strain rate testing condition. Yet, blanks exposed 815 °C for 2,020 h and
subsequently machined into specimens produced comparable strengths for those given equivalent
exposures in air. This indicated reductions in strength were primarily due to aging of the overall
microstructure, and is consistent with the lower fatigue life observed for LSHR blanks aged at these
conditions.

Ductility, as indicated by inelastic fracture strain, was reduced by exposures, going from 14 to 20% in
unexposed specimens to as low as 1.9 to 4.2% for specimens exposed 815 °C for 2,020 h. Greater
reductions in ductility were observed in tests at the slower strain rate. This suggested that slow strain rate
tensile tests could be useful for screening exposure effects. On the other hand, blanks exposed at 704, 760
and 815 °C all had higher ductilities than unexposed specimens, at both fast and slow strain rate
conditions. This indicated the reductions in ductility were driven by prior exposures in air, not aging of
the overall microstructure.

Several tensile tests of ME3 were performed in air at 704 °C with a displacement rate of 0.0017
mm/s, just as for LSHR. The response and effects of prior exposure or blank aging of 8§15 °C for 2,020 h
were quite comparable to LSHR, Figure 28b. Therefore, most tensile tests of ME3 were performed at
704 °C in a vacuum pressure not exceeding 8x107 torr, to assess the effects of prior exposures in air
without the influence of an air environment during the tensile test, Table 9. Typical tensile stress-strain
curves are shown in Figure 29, for displacement rates of 0.017 mm/s and 0.0017 mm/s. Ultimate tensile
strength and inelastic strain at fracture are compared in Table 9 and Figure 29. Tensile strength was not
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reduced in tensile tests by exposure of 2,020 h at 704 °C, but was reduced about 80 MPa by exposure of
2,020 h at 815 °C. Unlike tests in air, ductility was only moderately reduced by prior exposures for tensile
tests performed in vacuum, going from 22 to 25% in unexposed specimens to 18 to 19% in specimens
exposed 2,020 h at 815 °C. So exposure effects on ductility were clearly more acute in air. The slower
strain rate decreased ultimate strength by 150 to 200 MPa, for each specimen exposure condition.

Several ME3 specimens were again re-polished after exposure, to remove the external oxide and
oxide subscale from the gage surface (20 um depth removed), and these showed a small improvement in
tensile ductility. However, removal of all discussed layers including the minor phase dissolution zone,
(50 pm depth removed), gave a full recovery in tensile ductility for each strain rate. These re-polished
specimens still had tensile strengths reduced about 80 to 100 MPa (Table 9) from unexposed specimens,
so the strength reductions were confirmed to be due to extended aging of the interior microstructure.
Therefore, while ductility was reduced by the surface zones produced by exposures in air, strength was
reduced in both LSHR and ME3 by extended aging of the interior microstructure, Figure 3.

Typical tensile fracture surfaces are compared in Figure 30. LSHR specimens exposed at 8§15 °C for
2,020 h and tested in air at 704 and 760 °C had very many surface cracks initiated at the outer oxide
layers and then grown by intergranular cracking through the minor phase depleted zone and underlying
superalloy. ME3 specimens exposed at the same conditions in air and tested in vacuum at 704 °C also had
very many surface cracks initiated in the oxide layers, with subsequent intergranular cracking through the
minor phase depleted zone. However, the underlying ME3 superalloy failed by transgranular microvoid
coalescence. Additional exposed ME3 specimens which were polished to remove the outer oxide layers
and minor phase depleted zone also failed by transgranular microvoid coalescence. This indicated that the
intergranular cracking observed for exposed as well as aged specimens required an air environment, and
appeared related to an increased environment susceptibility of aged grain boundaries.

Summary and Conclusions

The effects of high temperature exposures in air on the microstructure and fatigue properties of two
powder metal disk superalloys were determined. Fully machined mechanical test specimens of LSHR and
ME3 were exposed at 704, 760, and 815 °C, for times up to 2,020 h. Coupons and blanks of both alloys
were also exposed at the same conditions prior to machining to isolate the effect of the aging treatment on
microstructures and fatigue properties. The depths of environmental attack were measured for each case.
Uniform gage and notch gage fatigue tests were performed at 704 and 760 °C, for selected exposure
conditions.

Fatigue resistance was reduced up to 98% in both superalloys by selected exposures. This was
associated with enhanced cracking of surface oxide layers, followed by cracking of underlying grain
boundaries depleted of minor phases, which then continued further into the interior. Tensile tests were
subsequently performed to further investigate effects of the exposures on tensile response in air and in
vacuum. The exposures reduced strength due to aging of the internal microstructure, and reduced ductility
due to the enhanced cracking of surface layers. But intergranular cracking of the underlying superalloy
was suppressed for tensile tests in vacuum. The effects of exposures on fatigue life, tensile strength, and
tensile ductility were compared. The associated failure modes and their relationships to exposure-induced
changes in compositions and phases near the surface were determined.

It can be concluded from this work that:

1) Extended exposures on machined specimens in air at high temperatures can produce surface oxide
layers and oxidation-effected zones with enhanced susceptibility to cracking.

2) This can result in significantly lower fatigue lives, strength, and ductility for disk applications
exposed at these conditions, in uniform sections and more acutely at notches.

3) Exposures can also produce aged microstructures having reduced strength and higher susceptibility
to environment-assisted intergranular cracking in air.
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4) Such aged microstructures can still have fatigue lives and ductilities near that of unaged specimens.

5) Cyclic exposures for equivalent cumulative times at temperatures up to 815 °C do not accelerate
this damage.

6) Service exposure limits of temperatures below 704 °C and times below 440 h could be needed in
some disk applications to prevent these effects, as longer exposures near 704 °C or higher temperature
exposures can substantially degrade fatigue lives and ductility without effective environmental barrier
coatings.
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