# Overview Genesis Contamination Control and Curation

Judy Allton, Eileen Stansbery, Kim Cyr, Jack Warren, Carol Schwarz, Jerome Hittle, Karen McNamara, Mike Calaway, Melissa Rodriguez, P. J. Burkett, Vern Lauer, Carla Gonzalez, Kimberly Allums



### **ASTROMATERIAL CURATION**



- Preservation of scientific integrity
  - Controlled environment storage and handling
  - Controlled documentation and sample accountability
- Characterizing the collection
- Dissemination of information about the collection
- Allocation of samples for research and education
- Reserve portion for future studies

Responsibility assigned to Director of the Johnson Space Center per NASA Policy Directive 7100.10E



### **ASTROMATERIAL CURATION**



- Begins with mission design and hardware design
  - Set requirements for contamination control based on science requirements
  - Active participation in mission planning
- Continues through fabrication, cleaning and assembly
  - Attention to detail of fabrication and assembly process is critical
  - Active participation and contamination control oversight
- Continues through launch, flight and return phases
  - Active participation
- Recovery operations optimized for scientific integrity
- Curatorial facility operation for preservation of scientific integrity



#### **CURATION – SCIENCE FROM THE SAMPLES**

- **Sample Characterization** and documentation
- **Dissemination of** information about the collection







# **CURATION – SAMPLE ACCOUNTABILITY**

 Accurate tracking : collection inventories, investigator inventories





### **GENESIS DID IT RIGHT!**



- Mission plan and budget included contamination control and curation from the beginning
- Excellent team work among Principal Investigator, science team, mission design, engineering and curation
- "START CLEAN, STAY CLEAN"
- Post-landing intense collaboration between curation and science team on cleaning methods and cleanliness assessment



#### **PRE-LAUNCH CURATION**



• Assessment of contamination mitigation during flight operations

- Sealed payload open only during collection
- Minimization of thruster plume effects
- Re-entry pressure equalization and ablation gas mitigation
- Choice of clean and cleanable materials for payload fabrication
  - Bare aluminum, minimum lubricants and adhesives
- Construction of ISO Class 4 cleanroom for payload cleaning & assembly
  - Cleaning with megasonically energized ultrapure water: 18 meg-Ohm-cm
  - Assembly and sealing of payload
- Archiving of flight reference coupons and environmental monitoring witness plates
- Clean sample storage under nitrogen



#### PRE-LAUNCH CURATION: ISO 4 laminar flow cleanrooms





# **PRE-LAUNCH CURATION: Cleaning with UPW**

- 18 MΩ–cm resistivity
- <5 ppb TOC
- Ultrasonic or megasonic energy
- Ionic concentration low parts per trillion = "hungry water"







#### PRE-LAUNCH CURATION: Clean assembly, HEPA-filtered people

**JSC** 





#### **PRE-RECOVERY CURATION**



#### Instrumentation for surface cleanliness assessment

- High resolution optical scanning for particulates
- Ellipsometry mapping for molecular films







# **PRE-RECOVERY CURATION**







- Capability for clean subdivision of collectors
  - Laser scribing backside
  - Manual cleaving







### **POST-LANDING CURATION**



#### • Landing site recovery

- Field recovery to UTTR cleanroom before sunset
- Removal of collector fragments from canister
- Imaging and packaging of >10,000 fragments
- Transport to JSC in less than a month





#### **JSC CURATION**





- Secure nitrogen storage
- ISO Class 4 handling
- Sample characterization
- Sample information dissemination
- Sample allocation



### JSC CURATION: Secure nitrogen storage



# **JSC CURATION: Sample characterization**

- Material
- Solar wind regime
- Imaging
- Size and surface quality















JSC CURATION: Dissemination of sample information, facilitation of peer review, allocation





- Online catalog updated monthly
- Newsletter
- Investigator Guidebook
- Genesis Oversight Subcommittee of CAPTEM reviews sample requests and recommendations to Discipline Scientist at NASA HQ
- Public display samples





#### JSC CURATION: Collaboration with science team, cleaning samples



- JSC optical imaging between cleaning steps
- JSC cleaning with ultrapure water (UPW)
- JSC use of UV ozone to remove molecular film



#### Sample History



After UPW cleaning (Step 1)



After UV ozone cleaning (Step 4)



After ToF-SIMS analysis (Step 5)



After UPW cleaning (Step 8)

- 1. UPW cleaned (2/21/2007) \*
- 2. 25Mg implant, SIMS analysis (6/12/2007)
- 3. 54Fe implant, SIMS analysis (5/1/2011)
- 4. UV ozone (6/22/2011) \*
- 5. ToF-SIMS (3/11/2013) \*
- 6. UPW cleaned (8/21/2013) \*
- 7. HCl, hot xylene (8/28/2013) \*
- 8. UPW cleaned (9/4/2013) \*
- 9. ToF-SIMS (3/14/2014)

UPW= Ultra Pure Water

\* Followed by optical imaging



#### Optical Images of 60341



Location of high magnification optical images and ToF-SIMS scans. Overall image taken after 3rd UPW cleaning-Step 8. The bright areas are oxidation introduced during SIMS analysis.



- 1. Step 6 shows UPW cleaning effectively removed handling debris documented in step 5 (ToF-SIMS);
- 2. Acid cleaning, hot xylene treatment, and ultrasonic cleaning (step 7) added contamination to positions A and B, but removed in C and D;
- 3. Images from step 8 show contamination from step 7 handling was partially mitigated in A and B, but there were few visible changes in C and D.



60341 TOF area 1 before Ar sputtering Positive ion imaging

Field of view: 500.0  $\times$  500.0  $\mu$ m<sup>2</sup>



A) ToF-SIMS Area 1 after Step 4 Before Ar sputtering

#### **ToF-SIMS** Results

# $\begin{array}{l} 60341 \ TOF \ area \ 1 \ after \ Ar \ sputtering \\ Positive \ ion \ imaging \\ \ Field \ of \ view: 500.0 \times 500.0 \ {\rm ym}^* \end{array}$



#### B) ToF-SIMS Area 1 after Step 4 After Ar sputtering

#### Positive ion imaging Field of view: 500.0 × 500.0 pm<sup>2</sup> UC: 1, TC: 5.000e+000 MC 4 TC 4 379e+003 NC 5, TC 6207e+000 MC 5, 10 2213e=003 MO: 15, TC. 7.639e-002 MG 3. TC 1 080e-002 507 MC. 50, TC 5-370e+005 MC. 14, TC: 2,500e+004 MC 2.TC 1.548e+002 NC 5 TO 3 616-003 Ca\* MC 3, TC 1,406+103 MC: 15 TC 1 210e+000 2, TC 3.370e+002 MC 2, TC 1, 730e+002 MC. 6. TC. 3 093e+0

**JSC** 

#### C) ToF-SIMS after Step 8 (last UPW)

SLG4H=D1\* MC 14 TC 1.126+004

SIC JIL\* MC\* 4P TC B #He+004

15:10:2.441a+004



#### **GENESIS SAMPLE CLEANING**



**Particle removal - UPW** • megasonic



**JSC** 



**GENESIS EARTH RETURN - 10th** 



# JSC CURATION: precise sample subdivision





# JSC CURATION: clean sample subdivision



- Subdivision of polished aluminum –
- Yield material for noble gas analysis and two craters





### JSC CURATION: clean sample subdivision





# JSC CURATION 10 YEARS: Samples characterized

ARRAY

MATERIAL

LOWN AREA (mm2)

AREA ATALOGED (mm2) TOTAL CATALOGED (%)

| MATERIAL<br>ARRAY |   | FLOWN AREA<br>(mm2) | AREA<br>CATALOGED<br>(mm2) | TOTAL<br>CATALOGED<br>(%) |  |
|-------------------|---|---------------------|----------------------------|---------------------------|--|
| CZ Si             | В | 56493               | 2102.0                     |                           |  |
|                   | С | 112986              | 5125.2                     | 1.8                       |  |
|                   | H | 43939               | 2219.0                     | 5.1                       |  |
|                   | E | 56493               | 2415.7                     | 4.3                       |  |
|                   | L | 56493               | 2426.7                     | 4.3                       |  |
| FZ Si             | В | 125540              | 4580.7                     |                           |  |
|                   | С | 100432              | 4.500.7                    | 2.0                       |  |
|                   | Н | 106709              | 1846.8                     | 1.7                       |  |
|                   | E | 106709              | 2412.8                     | 2.3                       |  |
|                   | L | 138094              | 1192.9                     | 0.9                       |  |
| DOS               | В | 18831               | 1502.0                     |                           |  |
|                   | С | 18831               | 1502.9                     | 4.0                       |  |
|                   | H | 25108               | 523.7                      | 2.1                       |  |
|                   | E | 25108               | 985.8                      | 3.9                       |  |
|                   | L | 25108               | 730.4                      | 2.9                       |  |

Data as of January 2009

|                             |              |         |       | <u>1</u> | ~       | <u> </u> |  |  |
|-----------------------------|--------------|---------|-------|----------|---------|----------|--|--|
|                             |              | В       | 25108 | 10076.0  |         |          |  |  |
|                             |              | С       | 25108 | 10970.0  | 21.9    |          |  |  |
|                             |              | SAP     | Н     | 25108    | 12147.4 | 48.4     |  |  |
|                             |              |         | E     | 31184    | 15096.6 | 48.4     |  |  |
|                             |              |         | L     | 25108    | 2796.6  | 11.1     |  |  |
|                             | SOS          | В       | 31385 | 33600.2  |         |          |  |  |
|                             |              | С       | 25108 | 55090.2  | 59.6    |          |  |  |
|                             |              | Н       | 25108 | 14878.5  | 59.3    |          |  |  |
|                             |              | E       | 25108 | 16078.6  | 64.0    |          |  |  |
|                             |              | L       | 25108 | 9542.6   | 38.0    |          |  |  |
|                             |              | В       | 31184 | 20110.4  |         |          |  |  |
|                             |              | С       | 40499 | 50110.4  | 42.0    |          |  |  |
|                             |              | AlOS    | H     | 31385    | 14747.8 | 47.0     |  |  |
|                             |              | E       | 37461 | 16488.8  | 44.0    |          |  |  |
|                             |              | L       | 25108 | 7992.7   | 31.8    |          |  |  |
|                             |              | В       | 24907 | 31052.1  |         |          |  |  |
|                             |              | С       | 40499 | 51952.1  | 48.9    |          |  |  |
|                             | AuOS         | AuOS    | Н     | 62167    | 19060.8 | 30.7     |  |  |
|                             |              | E       | 43738 | 29398.4  | 67.2    |          |  |  |
|                             |              | L       | 43336 | 6744.4   | 15.6    |          |  |  |
|                             |              | В       | 12353 | 6068.3   | 49.1    |          |  |  |
|                             | CCo-<br>AuOS | CCa     | С     | 0        | 0.0     | 0.0      |  |  |
|                             |              | Н       | 0     | 0.0      | 0.0     |          |  |  |
|                             |              | AuOS    | E     | 0        | 0.0     | 0.0      |  |  |
|                             |              | 0511501 | L     | 0        | 0.0     | 0.0      |  |  |
| GENESIS FARTH RETURN - 10th |              |         |       |          |         |          |  |  |

 Sapphire based: 15-49% cataloged

**JSC** 

 Silicon based: 1-5% cataloged

Oct. 7-9, 2014



# **JSC CURATION 10 YEARS: Samples allocated**

- JSC
- 653 Genesis-flown samples
- 327 reference collectors
- 28 research groups in 6 countries



