

Hydrogen and Methane Loaded Materials for Mitigation of GCRs and SPEs

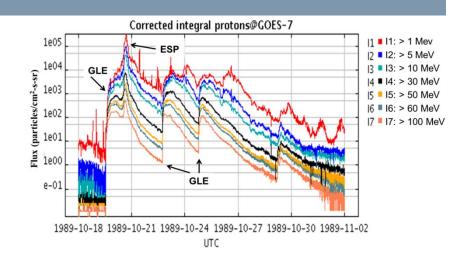
Kristina Rojdev, Ph.D. (NASA-JSC) William Atwell (Boeing Technical Fellow – Retired)

American Society for Gravitational and Space Research Pasadena, CA October 22-26, 2014

Outline

- Introduction
- Previous Work
- Hydrogen-loaded GCR Investigation
- Methane-loaded (GCR & SPE) Investigation

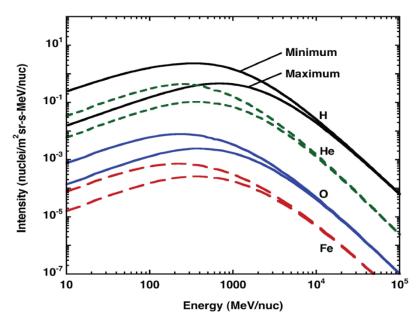
Introduction


- Fuel cell research focused on hydrogen loading of materials in which the hydrogen can be easily released for use as fuel
 - Space radiation research focused on low-Z materials
 - Can we use a similar concept of loading materials with low-Z substances to increase the radiation mitigation properties of the material?
- 3 classes of materials
 - Metal organic frameworks (MOFs)
 - Metal hydrides (MHs)
 - Nano-porous carbon composites (CNTs)
- Method: HZETRN transport code
 - Tissue detector
 - Output: Dose (cGy)

- Investigated 64 H-loaded materials
- HZETRN 2005 transport code
 - No restrictions on the energy grid for the SPE
- Focused on 19-24, October 1989
 Solar Particle Event (SPE)
 - Particularly hard event
- Compared with typical spacecraft material (aluminum) and "gold standard" materials (HDPE)

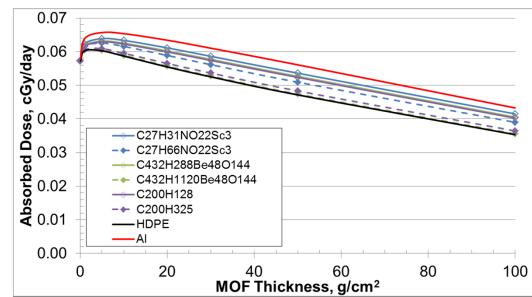
	MOFs	CNTs	MHs	Total
Dose < HDPE	1	7	1	9
HDPE < Dose < AI	9	7	14	30
AI < Dose	0	0	25	25

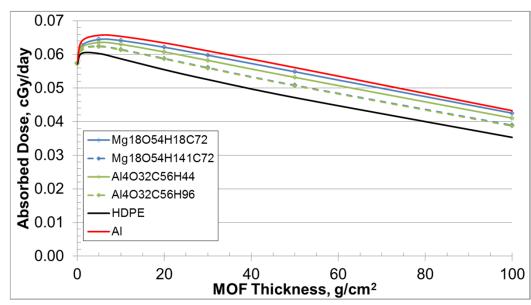
Atwell, W., Rojdev, K., Liang, D., Hill, M., "Select Materials as Space Radiation Shielding Mitigators: Metal Hydrides, MOFs, and Nano-Porous Carbon Composites," *International Conference on Environmental Systems*, Tucson, July 2014.



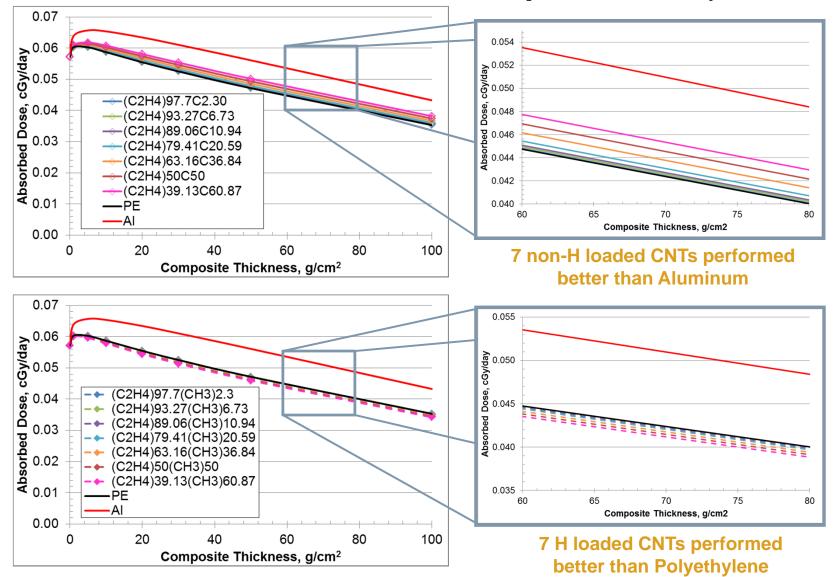
Hydrogen-Loaded

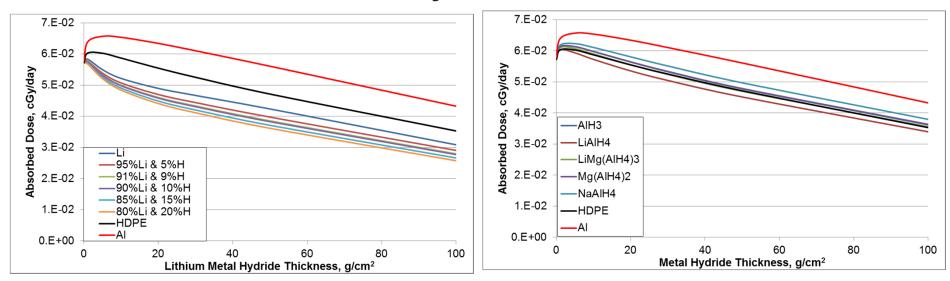
Galactic Cosmic Ray Investigation

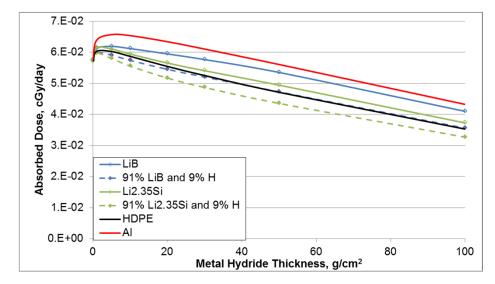

Methods


- 64 materials (same as previous study)
 - 40 metal hydrides (interstitial:26, non-interstitial:7, solution:7)
 - 10 metal organic framework (non-loaded:5, H-loaded:5)
 - 14 carbon composites (non-loaded:7, H-loaded:7)
- Compare with HDPE and AI
- 1977 solar min GCR
- HZETRN 2010

(MOFs)


Results: Metal Organic Framework




All 10 MOFs performed better than Aluminum

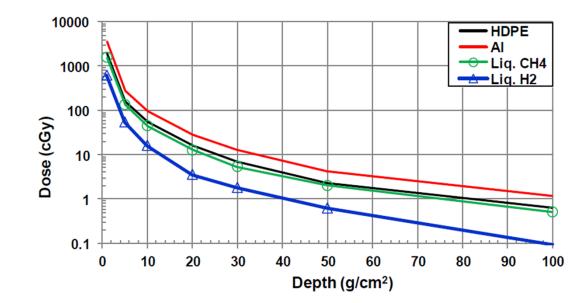
Results: Carbon Composites (CNTs)

Results: Metal Hydrides

- 9 materials performed better than polyethylene
- 6 materials performed better than aluminum
- 25 materials performed worse than aluminum (not shown in the graphs)

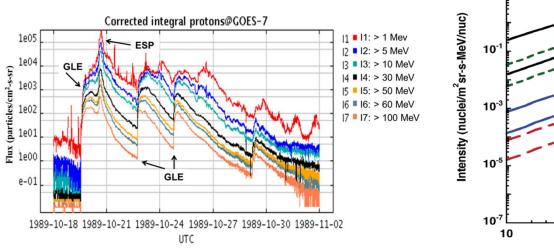
Summary and Recommendations

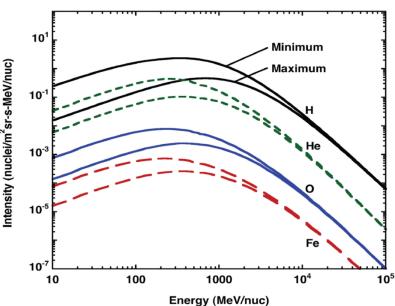
	MOFs	CNTs	MHs	Total
Dose < HDPE	0	7	9	16
HDPE < Dose < AI	10	7	6	16
AI < Dose	0	0	25	25


- Focus on hydrogenated CNTs
- Focus on lithium metal hydrides

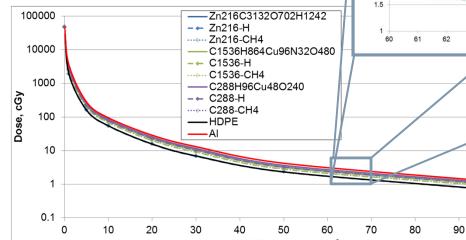
Methane-Loaded

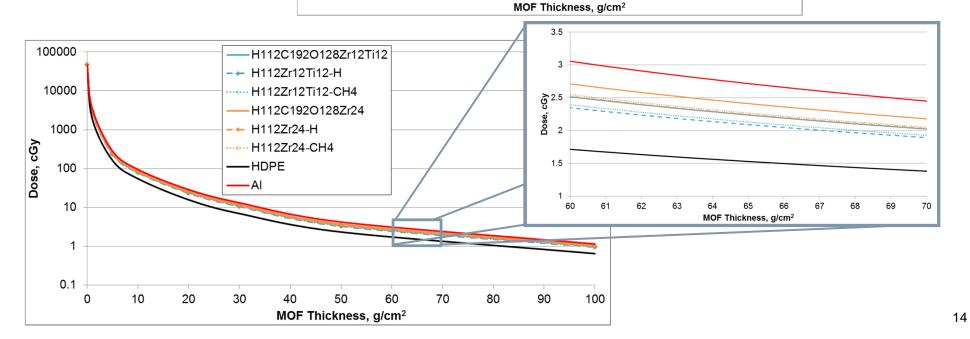
Solar Particle Events Galactic Cosmic Rays

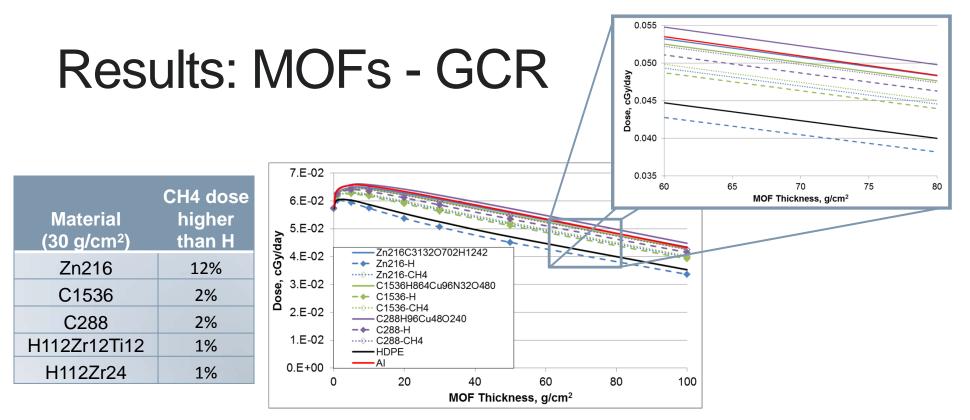

Why Methane?

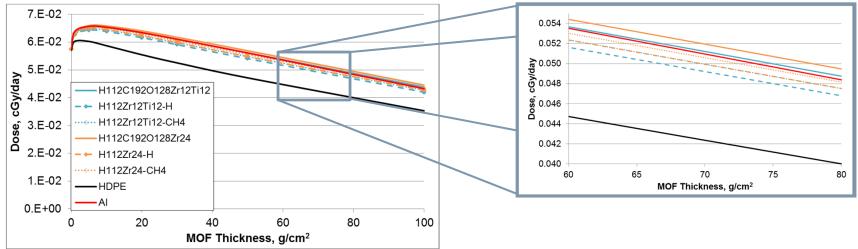

- Problems with hydrogen
 - Stability in changing environmental conditions
 - Safety implications for fires and explosions
- Methane is a slightly better mitigator than HDPE

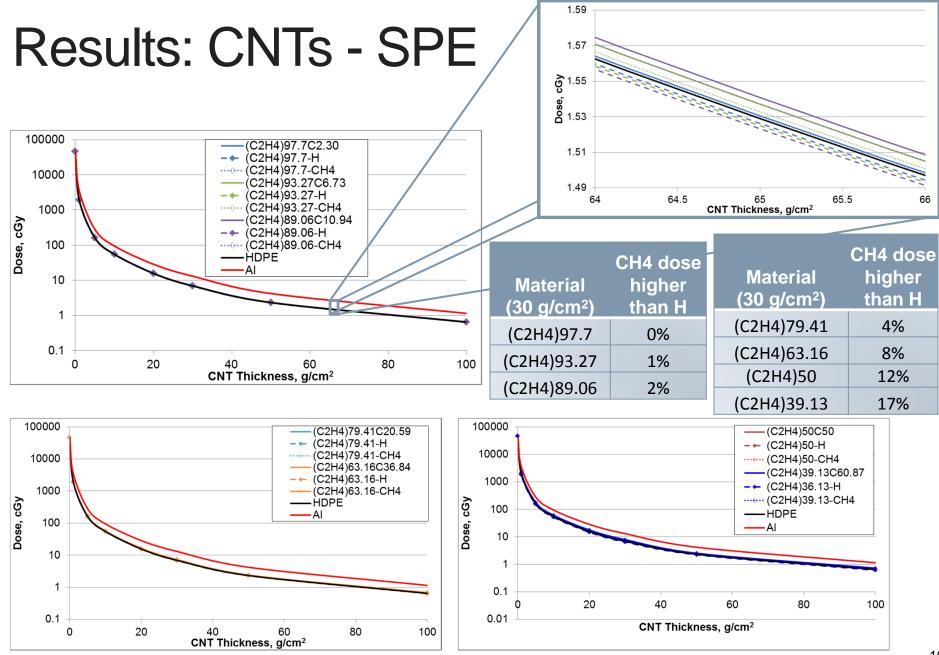
Methods


- 36 materials
 - 15 metal organic framework (non-loaded:5, H-loaded: 5, CH₄-loaded:5)
 - 21 carbon composites (non-loaded:7, H-loaded: 7, CH₄-loaded:7)
- Compare with H-loaded versions, HDPE, and AI
- 1977 solar min GCR
- 19-24 October 1989 SPE
- HZETRN 2010

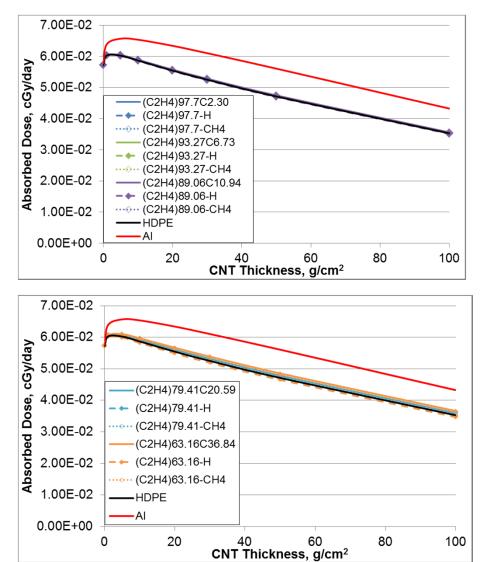


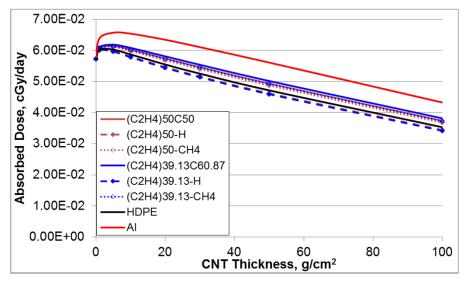

Material (30 g/cm²)	CH4 dose higher than H
Zn216	34%
C1536	3%
C288	0%
H112Zr12Ti12	2%
H112Zr24	1%




3.5

MOF Thickness, g/cm²





Results: CNTs - GCR

Material (30 g/cm ²)	CH4 dose higher than H
(C2H4)97.7	0%
(C2H4)93.27	0%
(C2H4)89.06	1%
(C2H4)79.41	2%
(C2H4)63.16	3%
(C2H4)50	5%
(C2H4)39.13	6%

Summary and Recommendations

- Not much difference in dose between hydrogen and methane loaded materials
 - Concentrate on methane loading to eliminate concerns with hydrogen
- CNTs most promising candidate material

SPE	MOFs	CNTs	Total
Dose < HDPE	1	7	8
HDPE < Dose < AI	14	14	28
AI < Dose	0	0	0

GCR	MOFs	CNTs	Total
Dose < HDPE	1	7	8
HDPE < Dose < AI	11	14	25
AI < Dose	3	0	3

Questions

Contact: kristina.rojdev-1@nasa.gov

Acknowledgements: The authors would like to thank Drs. Daniel Liang, Matthew Hill, and Song Song from the Commonwealth Scientific and Industrial Research Organization for their expertise with this project.

BACKUP

Interstitial Metal Hydrides

- New phases after hydrogen loading
- Non-stoichiometric with variable amounts of hydrogen
- Hydrides form via two mechanisms
 - Adsorption of di-hydrogen
 - Electrolytic reduction of ionized hydrogen on the surface, followed by diffusion of protons into the lattice

Formula	Density (g/cm³)
91% Li _{2.35} Si and 9% H	0.84
91% LiB and 9% H	0.67
96% CaNi ₅ and 4% H	6.60
96% LaNi _{4.7} Al _{0.3} and 4% H	7.60
96% LaNi _{4.8} Sn _{0.2} and 4% H	8.40
$Ti_{0.98} Zr_{0.02} V_{0.48} Fe_{0.09} Cr_{0.05} Mn_{1.5}$	7.20
$Ti_{0.98} Zr_{0.02} V_{0.48} Fe_{0.09} Cr_{0.05} Mn_{1.5} H_{3.3}$	5.80

Formula	Density (g/cm³)
Al ₂ Cu	5.83
Al ₂ CuH	5.39
AIH ₃	2.50
BaAlH ₅	3.30
CaNi ₅	6.60
CaNi₅H ₆	5.01
LaNi _{4.7} Al _{0.3}	8.00
LaNi _{4.7} Al _{0.3} H ₆	6.08
LaNi _{4.8} Sn _{0.2}	8.40
LaNi _{4.8} Sn _{0.2} H ₆	6.38
LaNi ₅	8.20
LaNi ₅ H ₆	6.22
Li _{2.35} Si	1.67
LiB	1.65
SrAl ₂ H ₂	2.64
TiCr _{1.8}	5.70
TiCr _{1.8} H _{3.5}	4.50
TiFe _{0.9} Mn _{0.1}	6.50
TiFe _{0.9} Mn _{0.1} H ₂	5.20

Non-Interstitial and Solution Metal Hydrides

- Non-interstitial
 - Expanded lattice after hydrogen loading
 - Not transformed into new structure
- Solution
 - Do not have transformed crystal structures post-hydrogen loading

Solution Formula	Density (g/cm³)
80% Li and 20% H	0.57
85% Li and 15% H	0.56
90% Li and 10% H	0.55
91% Li and 9% H	0.82
95% Li and 5% H	0.54
Li	0.53
V	6.00

Non-Interstitial Formula	Density (g/cm³)
LiAIH ₄	0.92
LiMg(AIH ₄) ₃	1.80
$Mg(AIH_4)_2$	2.24
NaAlH ₄	1.81
VH	5.60
VH ₂	2.30
Y ₃ Al ₂ H _{6.5}	4.10

Metal Organic Frameworks (MOFs)

- Two components to MOFs
 - Metal ion or cluster of metal ions
 - Organic molecule (i.e. linker)
 - Mono-, di-, tri-, or tetravalent ligands

Hydrogen Loaded Formula	Density (g/cm³)	Non-Hydrogen Loaded Formula	Density (g/cm³)
$Zn_{216} C_{3132} O_{702} H_{14813.5}$	0.2996	$Zn_{216} C_{3132} O_{702} H_{1242}$	0.247
C ₄₃₂ H ₁₁₂₀ Be ₄₈ O ₁₄₄	0.460	C ₄₃₂ H ₂₈₈ Be ₄₈ O ₁₄₄	0.423276
Mg ₁₈ O ₅₄ H ₁₄₁ C ₇₂	0.953	Mg ₁₈ O ₅₄ H ₁₈ C ₇₂	0.905589
$\begin{array}{c} AI_4O_{32}C_{56}H_{96} \\ C_{200}H_{325} \end{array}$	1.680 0.3522	$\begin{array}{c} AI_4 O_{32} C_{56} H_{44} \\ C_{200} H_{128} \end{array}$	1.610 0.314945

Nano-Porous Carbon Composites (CNTs)

Non-Hydrogen Loaded Formula	Density (g/cm³)
$(C_2H_4)_{97.7}C_{2.30}$	0.95
$(C_2H_4)_{93.27}C_{6.73}$	0.96
$(C_2H_4)_{89.06}C_{10.94}$	0.97
$(C_2H_4)_{79.41}C_{20.59}$	1.00
$(C_2H_4)_{63.16}C_{36.84}$	1.04
$(C_2H_4)_{50}C_{50}$	1.10
$(C_2H_4)_{39.13}C_{60.87}$	1.16

Hydrogen Loaded	Density
Formula	(g/cm ³)
$(C_2H_4)_{97.7}(CH_3)_{2.3}$	0.95018
$(C_2H_4)_{93,27}(CH_3)_{6,73}$	0.96054
$(C_2H_4)_{89.06}(CH_3)_{10.94}$	0.9709
$(C_2H_4)_{79.41}(CH_3)_{20.59}$	1.0018
$(C_2H_4)_{63.16}(CH_3)_{36.84}$	1.0436
$(C_2H_4)_{50}(CH_3)_{50}$	1.1054
$(C_2H_4)_{39.13}(CH_3)_{60.87}$	1.1672