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Abstract

Dynamic flight environments in which objectives and
environmental features change with respect to time pose
a difficult problem with regards to planning optimal
flight paths. Path planning methods are typically com-
putationally expensive, and are often difficult to imple-
ment in real time if system objectives are changed. This
computational problem is compounded when multiple
agents are present in the system, as the state and ac-
tion space grows exponentially. In this work, we use
cooperative coevolutionary algorithms in order to de-
velop policies which control agent motion in a dynamic
multiagent unmanned aerial system environment such
that goals and perceptions change, while ensuring safety
constraints are not violated. Rather than replanning new
paths when the environment changes, we develop a pol-
icy which can map the new environmental features to a
trajectory for the agent while ensuring safe and reliable
operation, while providing 92% of the theoretically op-
timal performance.

Introduction
Mobile robot coverage tasks such as those involving Un-
manned Aircraft Systems (UAS) are continuously becom-
ing more prevalent in industrial, military, and academic ap-
plications, in part due to their fast deployment times and
ability to reach areas that ground locomotive systems can-
not reach (Caballero et al. 2008). One important area of re-
search is payload directed flight, where UAS must obtain as
much information from an area as possible in a given amount
of time, and potentially change their flight plans based on
dynamic information obtained from the environment (Lee,
Yeh, and Ippolito 2010). Traditional search algorithms are
capable of developing flight plans, but are often too compu-
tationally expensive for dynamic multiagent environments.
The dynamic nature of the environment requires altering
flight plans in real time, which is computationally intractable
in a multiagent system with an exponentially large search
and action space.

In order to address the challenge of and further the abil-
ity to dynamically adjust routes in a multiagent payload di-
rected flight system, this research incorporates cooperative

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

coevolutionary algorithms, an extension of evolutionary al-
gorithms for multiagent systems (Fogel 1994). Control poli-
cies which change flight trajectories based on dynamic envi-
ronmental data are learned, allowing for real time trajectory
adjustments based on changes in the state space. Such con-
trol policies become necessary as search algorithms become
too slow to operate in real-time. In these missions, flight
safety is extremely important; safety requirements, such as
minimum separation between aircraft, must always be met.
In this work, we present a cooperative coevolutionary algo-
rithm which produces UAS control policies which ensure
that system safety constraints are not violated.

Domain and Approach
We model multiagent payload directed flight as follows. Lo-
cations of potential Points of Interest (POIs) are arranged in
an m by m grid where each point is one unit of distance apart
from adjacent points. At the beginning of the experiment, n
agents are initialized at random locations in the domain. At
each timestep, only a subset of the POIs are observable. Over
the course of an episode, all POIs are active once; the goal
of the agents in the system is to observe each POI while en-
suring minimum separation between aircraft are maintained.
The system evaluation function is the number of POIs ob-
served during the episode, minus a penalty for each time the
safety constraint is violated. We use a cooperative coevolu-
tionary algorithm to find control policies for the agents in
the system.

The cooperative coevolutionary algorithm used in this re-
search is a modification of that found in (Colby and Tumer
2012), with two key modifications. First, we add a large
penalty to the system evaluation function for any violations
of safety constraints, in order to encourage agents to learn
safe policies. Second, if the algorithm begins converging to
a solution which does violate safety constraints, mutation
rates are increased in order to guide the algorithm to another
region of the solution space.

Results
The potential POI locations were distributed in a 10 by 10
grid, with 10 agents moving within the environment. Each
event in the simulation lasted for 25 timesteps, and 25 differ-
ent POIs were active at any given time step. A comparison of
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Figure 1: Payload Directed Flight domain. At any given mo-
ment, only a subset of the POIs are available to be observed.
Aircraft have a finite region around them in which observa-
tions can be made.

our cooperative coevolutionary algorithm and a finite-time
horizon recursive best first search is shown in Figure 2.

Due to the increased complexity of this domain result-
ing from the dynamic environment and increased number
of POIs, a full search cannot be completed to create flight
plans for an entire simulation. As the active POI locations
change with respect to time, flight plans need to be dynam-
ically changed in order to ensure that newly activated POIs
are observed. Thus, we use a recursive best first search al-
gorithm with a finite time window, where new flight plans
were generated every 5 time steps. Every 5 time steps, an
RBFS algorithm is completed to maximize the number of
POIs to be observed over that time window, while ensuring
that no safety violations occur. Although the flight plans are
always optimal for the finite time window, they do not form

Figure 2: 10 by 10 grid with 10 agents. Finite time horizon
RBFS results in 87% coverage, while the CCEA results in
92% coverage with no separation violations.

a globally optimal solution for the length of the entire simu-
lation. This is seen in Figure 2, where the RBFS obtained an
average coverage of 87% of the POIs in the domain.

For the CCEA, coevolution was allowed to proceed for
5000 generations. For mutation, 5 weights were selected at
random from each network, and a random variable drawn
from a Gaussian distribution with zero mean and a variance
of 2 was added to each weight. There were 125 statistical
runs conducted, with the error bars in Figure 2 reporting the
error in the mean. As in Figure 2, the error bars are very
small, and are often obscured by the plot symbols. After 125
statistical runs, the average performance of the CCEA corre-
sponded to 92.05 ± 1.56% POI coverage, with a maximum
of 100% coverage and a minimum of 88% coverage. Every
single statistical run of the CCEA outperformed the aver-
age RBFS performance. There were no safety violations in
any of the converged policies from any of the 125 statistical
runs. As seen in Figure 2, the CCEA outperforms the RBFS
search while ensuring that safety violations do not occur.

Discussion
As UAS tasks grow in complexity or the time available
for these tasks decreases, adding more aircraft to the sys-
tem allows for efficient completion of these tasks. However,
adding more agents to the system results in an exponen-
tial growth of the state and action space, rendering tradi-
tional search algorithms intractable. The search algorithms
may still be used with finite time horizons, but this results
in severely suboptimal policies. In this research, we present
a cooperative coevolutionary algorithm to develop control
policies in multiagent payload directed flight. Our algorithm
results in better learned performance than the finite time
horizon search algorithms, while ensuring that safety con-
straints are still satisfied. The key contribution of this work
is to demonstrate that multiagent learning can provide su-
perior performance to traditional learning algorithms, while
ensuring system constraints are not violated by the learned
control policies.
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