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The compilation of global Landsat data-sets and the ever-lowering costs of
computing now make it feasible to monitor the Earth’s land cover at Landsat
resolutions of 30 m. In this article, we describe the methods to create global
products of forest cover and cover change at Landsat resolutions. Nevertheless,
there are many challenges in ensuring the creation of high-quality products. And
we propose various ways in which the challenges can be overcome. Among the
challenges are the need for atmospheric correction, incorrect calibration
coefficients in some of the data-sets, the different phenologies between compila-
tions, the need for terrain correction, the lack of consistent reference data for
training and accuracy assessment, and the need for highly automated character-
ization and change detection. We propose and evaluate the creation and use of
surface reflectance products, improved selection of scenes to reduce phenological
differences, terrain illumination correction, automated training selection, and the
use of information extraction procedures robust to errors in training data along
with several other issues. At several stages we use Moderate Resolution Spectro-
radiometer data and products to assist our analysis. A global working prototype
product of forest cover and forest cover change is included.

Keywords: Landsat; land cover; forest cover change; global mapping; global
monitoring

1. Introduction

Realizing the potential of digital earth is dependent on many issues. One of the more

important is to have internally consistent data-sets to populate it. The availability of

global data-sets from Landsat has the potential to significantly improve the

characterization of the Earth’s land surface. This article outlines some of the

opportunities offered by these data-sets with reference to land cover and specifically

*Corresponding author. Email: jtownshe@umd.edu
$The contributions of the different authors can be found in Appendix 1.
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to forest cover. It also analyzes some of the challenges in using these data-sets and

how they can be overcome.

Land cover change is one of the most important drivers of changes in the Earth

System. Of all land cover changes, deforestation is one of the most significant

because of the magnitude of the resultant transformations in biophysical and

ecological properties. Forest cover change (FCC) is highly relevant to the global
carbon cycle, changes in the hydrological cycle, an understanding of the causes of

changes in biodiversity and in understanding the rates and causes of land use change

(Band 1993, Lal 1995, Houghton 1998, Pandey 2002). As a consequence, a number

of national and international programs call for routine monitoring of global land

cover FCCs, including the US Global Change Research Program (USGCRP 1999),

Global Observation for Forest and Land Cover Dynamics (GOFC�GOLD) (Skole

et al. 1998, Townshend et al. 2004), and the Global Climate Observing System

(GCOS 2004).

In recent years there has been increasing emphasis on the need for products

derived from Landsat resolution data. Requirements for such products are specified

in many documents, including the Earth Science Data Record (ESDR) Community

White Paper on Land Cover/Land Change (Masek et al. 2006) GOFC�GOLD’s Fine

Resolution design documents (Skole et al. 1998, Townshend et al. 2004) and the

Integrated Global Observation Strategy’s theme Integrated Global Observation of

the Land theme (Townshend et al. 2010). Landsat-class resolutions are essential for
land cover change detection because of the fine scale of many such changes especially

those resulting from anthropogenic factors. A substantial proportion of the

variability of land cover change has been shown to occur at resolutions below 250

m (Townshend and Justice 1988).

Estimating forest cover and measuring FCC are two of the more common uses of

Landsat data. Landsat-class data have primarily been used at relatively local scales

for forest change detection. Skole and Tucker (1993), Tucker and Townshend (2000),

Steininger et al. (2001), Zhang et al. (2005), and Huang et al. (2007) are some of the

few studies that executed wall-to-wall change detection at national scales. The Forest

Resource Assessment of the United Nations’ Food and Agriculture Organization

(FAO) carried out limited Landsat-based sampling of change detection to assist the

estimation of global tropical forest change rates between 1990 and 2000 (FAO 2001).

DeFries et al. (2002) calculated global tropical forest change based on Advanced

Very High Resolution Radiometer (AVHRR) data along with regional rates of

changes estimated from Landsat data. Although the last two studies involved use of

selected Landsat imagery and products, they were not used to carry out wall-to-wall
change mapping for the entire study area. More recently Landsat samples combined

with wall-to-wall data-sets have been used to provide estimates of forest loss in the

tropics (Hansen et al. 2008) and subsequently for the globe (Hansen et al. 2010).

Previously, continental or even global-scale analysis using Landsat data was

generally regarded as not feasible. This was because of the absence of well-registered

multi-temporal data-sets, variations in sensors, the need for intensive human input

during post-processing, variations in spectral responses of forests, the efforts needed

to create data-sets for accuracy assessment, and the very large computational and

storage demands in carrying out the analysis. Another major impediment was high

data costs for global data-sets, a factor which was reduced after charging for Landsat

data by the United States Geological Survey (USGS) was eliminated in 2008.

2 J.R. Townshend et al.
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In this article, we discuss some of the challenges and strategies for the global use

of Landsat data. In the present article ‘global’ refers to global wall-to-wall analysis of

the Earth’s land surface. We first discuss selection of data-sets and how some of the

existing global data-sets published by the USGS should be refined. Then the need for
surface reflectance products is discussed requiring atmospheric correction of the

Landsat data-sets. Reduction of terrain effects through rectification is also essential

as is correction for variations in solar illumination geometry. The challenges of

assembling training data for global analysis are outlined as well as the requirement

for data for error estimation. Procedures for global classification are discussed finally.

Computational power was once regarded as a major barrier to large area analysis

of Landsat-class data. This is no longer the case as is demonstrated by the fact that

the authors use a relatively modest set of Oracle 4150 servers, with 184 processing
cores in total, which is capable of carrying out atmospheric correction of a complete

Landsat global data-set in approximately 4 days and to carry out change detection

using support vector machines (SVM) can be completed in approximately a week.

Much more effort is normally required in the painstaking tasks of data-set assembly

and performance assessment.

2. Selection of data-sets

The task of carrying out global analysis of Landsat data has been made

immeasurably easier by the assembly of global data-sets by the USGS and NASA

from existing archives. There are now several freely available Global Land Survey

(GLS) data-sets (Table 1) (Gutman et al. 2008). These collections were created by

identifying optimal scenes as close to the nominal date of the collection as available.
For GLS 2005 out of the nearly 500,000 Landsat images that have been acquired

around the globe during 2004�2007, the optimal 9500 scenes have been selected

based on several criteria including acquisition date, cloud cover, gap-fill coverage,

sensor choice, time of year and geographic uniformity (Gutman et al. 2008). As

Table 1 shows some of the selected scenes had a somewhat different date of collection

compared with the nominal one. Scenes were selected to minimize cloud cover and

also to be closest to the date of maximum greenness (though see Section 4).

The use of GLS data-sets is facilitated by the fact that they have been
standardized: all images are orthorectified in a Universal Transverse Mercator

projection with a WGS84 datum, they have been resampled by cubic convolution,

and are in a GeoTIFF data format. All epochs are registered to the GLS 2000

standard, which also forms the benchmark for the ‘standard’ L1T product from the

US Landsat archive. Although the data are freely available from the USGS the large

number of images in each data-set does pose logistical issues in downloading them.

Table 1. Global land survey collections.

Dataset Acquisition year range Number of Images

GLS 1975 1972�1987 7592

GLS 1990 1984�1997 7375

GLS 2000 1999�2003 8756

GLS 2005 2003�2008 10,273

GLS 2010 2007�2011 9000

International Journal of Digital Earth 3
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Complete GLS data-sets on hard discs have been made available through the

University of Maryland’s Global Land Cover Facility (http://glcfapp.glcf.umd.

edu:8080/order/index.jsp).

The way in which the images were selected has been progressively refined.
Overall, the GLS 2005 data-set is superior to any other GLS in terms of data quality

(Franks and Headley 2008). Previous GLS data-sets were single-sensor data-sets;

Multispectral Scanner (MSS) was used for GLS 1975, Landsat 5 for GLS 1990, and

Landsat 7 for GLS 2000. GLS 2005 had a richer selection of imagery to choose from

by expanding the available data sources to include both Landsat 5 and 7, as well as

images from Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) and Earth Observing Mission 1 (EO-1) (the use of the last was restricted to

islands and reefs). Moreover, previous GLS data-sets put a high priority on cloud-
free coverage, but at the expense of obtaining optimal leaf-on seasonality.

Consequently, for some regions such as the dry deciduous tropics the GLS 1990

and GLS 2000 data-sets are less useful for mapping land cover conditions because

many images were collected during leaf-off. In GLS 2005 greater weight is put on

selecting leaf-on images at the expense of being as cloud-free as possible. The GLS

2010 data-set, covering imagery from 2009 to 2011 has just been released in early

2012.

Global Land Survey data-sets were preceded by NASA’s global Landsat data-sets
created by the Earthsat Corporation known as GeoCover for 1975, 1990, and 2000

(Tucker et al. 2004), and the Mid-Decadal GLS data-set jointly assembled by NASA

and the USGS for 2005. Although GeoCover and GLS used essentially the same

Landsat acquisitions for each location for the 1975, 1990, and 2000 epochs, there are

differences: one key issue is that these earlier data-sets are at 28.5 m rather than the

30-m resolution of the GLS data-sets. Given the improvements in the processing and

selection of images for the GLS global collections it is recommended that these are

used in preference to the earlier ones.

3. Refinement of global data-sets

Comprehensive global coverage of Landsat data has become much more reliable,

since the adoption of Landsat 7’s Long-Term Acquisition Plan (Arvidson et al.

2001). This plan coupled with the astonishing longevity of Landsat 5 means there are

essentially no gaps in Landsat records for GLS 2000, 2005, and 2010. Figure 1 shows

the coverage for GLS 1975, 1990, 2000, and 2005. The initial GLS 1975 did have
substantial gaps notably in South America, and no images were available for the

entire eastern Siberia (Figure 1). Gaps in the former have been almost entirely filled

using images from the Brazilian space agency INPE, which made scenes available

from its archives. Unfortunately no substitute images have been found for northeast

Asia.

Examination of the GLS data-sets revealed that some scenes had significant

deficiencies relating in particular to inappropriate phenology of the selected images.

This is especially troublesome for change detection since differences simply due to
phenology may result in spurious identification of change. In theory the images that

were chosen were close to peak greenness. A test was conducted for the Korean

peninsula (Kim et al. 2011). For 2000 and 2005 most scenes were found to have

images from very different times of years resulting in wildly improbable rates of

4 J.R. Townshend et al.
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deforestation using spectral change detection methodology. A tool was constructed

to allow automated querying of the USGS Global Visualization Viewer (GloVis)

database (glovis.usgs.gov/). We used Moderate Resolution Spectroradiometer

(MODIS) data to characterize the phenology of every scene and identify scenes

acquired on dates within 75% of peak greenness. For 9 of the 11 scenes substitute

images were found which had phenologies which met the above criterion. Figure 2
shows the resultant substitution for part of one scene and the greatly improved

change results.

Subsequently we have performed a global analysis for GLS 2000 and 2005 and

have identified many scenes where the selected images were collected at dates quite

distant from the peak greenness. Figure 3 shows the substitutions for GLS 2000 and

2005. Our analysis somewhat exaggerated the severity of the problem since it includes

scenes with a low phenological amplitude (e.g. tropical rain forests), where we do not

need to substitute for such images.
It is unclear why the algorithm used for scene image selection for GLS failed at

times to identify the best scenes. It may be that for some scenes additional images

from non-US ground receiving stations may have been selected after initial selection

from US holdings.

4. Production of surface reflectance images

In order to carry out a global analysis of Landsat data it is highly advantageous that

the pixel values in all images represent the same physical values. The DNs in Landsat

images do not directly represent any physical values and they vary depending on the
Landsat mission and the agency generating the image. Coefficients are almost always

provided with calibration coefficients so the DNs can be converted to top of the

atmosphere radiance values. The latter however do not consistently represent surface

conditions because of variable atmospheric effects and this in turn will hinder

Figure 1. GLS data coverage. The large gap in coverage for South America for GLS 1975 has

been filled by the data provided by INPE.

International Journal of Digital Earth 5
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automated global analysis. As a consequence it is highly desirable that we estimate

surface reflectance by carrying out atmospheric correction so that we have more

consistent imagery for mapping change. Also it helps in the development and use of

cross-sensor algorithms using a common radiometric basis, for example, from

MODIS and Landsat. In addition use of reflectances will allow us better to integrate

observations with ground-based measurements of reflectance, and to facilitate use of

canopy reflectance models to support, for example, the creation of biophysical

products.

Before describing the methods used to generate the surface reflectance values

through atmospheric correction, significant problems with the original GLS 1990

data-set’s gain and bias coefficients need to be noted. Nearly half of these images

were processed by different agencies using different versions of Landsat processing

systems. As a result, different rescale gain and bias values were reported (Figure 4).

These coefficients are not compatible with recent coefficients published by the

USGS, that is, they yield incorrect top-of-atmosphere (TOA) reflectance values if

used with the equations provided (Chander et al. 2004, 2009).
To obtain proper calibration coefficients these images need to be reprocessed

from Level 0 using the current version of the USGS Landsat processing system. The

Figure 2. Spurious change detection caused by images with very different phenologies in

deciduous woodland in South Korea (Kim et al. 2011) when using GLS data-set (top row).

The substituted scene for 2006 clearly produces a much more realistic depiction of change than

when the leaf off image is used (bottom row). The left and middle columns are the input

Landsat images with bands 5, 4, 3 shown in red, green and blue. In the forest change maps

(right column), persisting forest, persisting nonforest, forest loss and forest gain are in green,

light pink, red and cyan, respectively.

6 J.R. Townshend et al.
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USGS is currently attempting to acquire Level 0 data and plans to reprocess them so

that correct values can be derived and used.

Atmospheric correction of the Landsat images is based on the algorithm

developed for the MODIS (Vermote et al. 2002) based on the 6S radiative transfer

code. It was adopted for use with Landsat data and was implemented as part of the

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) developed

at NASAGoddard Space Flight Center (Masek et al. 2006, Huang et al. 2009a,b). As

an adaptation of the MODIS Adaptive Processing System (Justice et al. 2002) for

processing Landsat data, the LEDAPS allows rapid processing of large quantities of

Landsat images to produce surface reflectance products from the raw radiometry. It

has been used to produce a surface reflectance record consisting of over 2000

Landsat images over North America (Masek et al. 2006). Song et al. (2001) showed

how use of surface reflectance can improve the change detection using Landsat data.

Figure 3. Substitutions (red quadrangles) made for GLS 2000 and 2005 because of

phenological problems in the original GLS data-sets.

International Journal of Digital Earth 7
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The 6S radiative transfer code is used to compute the transmission, intrinsic

reflectance, and spherical albedo for relevant atmospheric constituents (Vermote

et al. 1997), and to calculate surface reflectance by compensating for atmospheric

scattering and absorption effects on the TOA reflectance. The atmospheric

constituents include ozone, water vapor, and aerosols. Ozone concentration was

derived from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7,

Meteor-3, and Earth Probe platforms as well as from NOAA’s Television Infrared

Observation Satellite Program’s, Operational Vertical Sounder’s, ozone data when

TOMS data were not available. Column water vapor was taken from the reanalysis

data of NOAA National Centers for Environmental Prediction (NCEP) (available at

http://dss.ucar.edu/datasets/ds090.0/). Digital topography (1 km GTopo30) and

NCEP seal level pressure data were used to adjust Rayleigh scattering to local

conditions. Aerosol optical thickness was directly derived from the Landsat image

using the dark, dense vegetation method of Kaufman et al. (1997).

Explicit atmospheric correction of MSS data is not currently possible because of

the lack of shortwave infrared bands. Until recently it was also hindered by relatively

poor knowledge of calibration coefficients but MSS calibration for Landsats 1�3 has

recently been reworked and standardized (Markham andHelder in press), so it should

be much improved. Instead, radiometric matching techniques can be used to adjust

per-band radiometry to match a corresponding image. While this will not result in

true surface reflectance, we believe it will be sufficient for many types of change

detection over the long 15-year-period between the GLS 1975 and GLS 1990. Such

techniques have been developed and used to normalize satellite data-sets in many land

cover change studies (e.g. Hall et al. 1991, Elvidge et al. 1995, Cohen et al. 1998). An

alternative is to explicitly correct for Rayleigh scattering and gaseous absorption of

MSS using historical climatology data (e.g. NCEP) and just assume a constant

aerosol loading.

Figure 4. Scenes with problematic gain and bias values for GLS 1990. The color coding

represents the different gain values for band 1. Other bands have different values, but the same

spatial pattern.

8 J.R. Townshend et al.
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Quality Assessment (QA) of every Landsat image is highly desirable because (1)

errors could be introduced at any of the many steps between data acquisition and

surface reflectance generation, and (2) QA results from one image are not usually

extensible to another because each image is processed independent of other images.

Because the MODIS on the Terra satellite and Landsat 7 are only half an hour apart

following the same orbit, it has been possible to create an automated Landsat�
MODIS Consistency Checking System that automatically matches Enhance The-

matic Mapper Plus ETM�and MODIS observations and derives a set of agreement

metrics (Gao et al. 2006, Feng et al. 2011). Since MODIS surface reflectance

products have been assessed comprehensively (e.g. Vermote et al. 2002, Liang et al.

2002, Kotchenova and Vermote 2007, Vermote and Kotchenova 2008), and each of

the six Landsat spectral bands overlaps with a MODIS band, they can be used to

assess the quality of Landsat surface reflectance products. Our procedures involve

the comprehensive checking of every single Landsat scene.

Most Landsat images have been found to have close agreement with MODIS

reflectance products (Figure 5). The discrepancies between the Landsat and MODIS

reflectance products are generally within the uncertainty allowed by instrument

specifications � the greater of 0.5% absolute reflectance or 5% of the retrieved

reflectance value. Where disagreements have been found, they are all explicable. The

most common issues are cloud movement between Landsat and MODIS overpasses,

saturation in a Thematic mapper (TM)/ETM� image but not MODIS, incorrect

rescaling gains in Landsat metadata and corrupted Landsat imageswhich needed to be

replaced. In a few cases problematic MODIS data caused the disagreement: examples

include the saturation of the MODIS 2.2 micron Short-wave Infrared (SWIR) band

over very bright targets during the first few months after the Terra launch.

Comparisons have also been made with Aeronet data and IKONOS reflectance

data, and analysis of inter-annual stability of Landsat 5/7 reflectance time series. All

indicate the satisfactory quality of the Landsat reflectance values (Feng et al. 2012).

Figure 5. Typical agreement between ETM�and MODIS reflectance values for a single

Landsat scene.
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The orbit of Landsat 5 images is 8 days apart from that of Terra. Hence the

viewing geometry of the images will be different and bidirectional effects will confuse

the comparison. Hence it is recommended that the MODIS NBAR product is used

where corrections for view angle effects have been made in assessing the Landsat
surface reflectance values. While MODIS NBAR data can also be used to QA the

Landsat 7 reflectance products, MODIS daily data provide a more direct comparison

because Terra MODIS and Landsat images acquired on the same day are expected to

have very similar values. Assuming temporal changes due to land cover change and

inter-annual variability are relatively small within a Landsat scene, the MODIS

NBAR may be used to QA pre-MODIS Landsat surface reflectance products.

Correction of Landsat images for internal bidirectional effects especially in the

tropics is desirable but has not yet been carried out by the authors for the global
data-sets.

The Landsat Reflectance products are initially being made available through the

Global Land Cover Facility (www.landcover.org).

Identifying pixels contaminated by cloud or cloud shadow is necessary to avoid

them falsely flagging FCC or in providing incorrect retrievals of other land surface

attributes (Huang et al. 2010). We have relied on the implementation of LEDAPS

(Masek et al. 2006), which currently implements two cloud masks � a version of the

Landsat Automated Cloud Cover Assessment algorithm (Irish 2000) and a more
aggressive mask based on MODIS spectral tests (Ackerman et al. 1998). Shadows are

calculated from the latter using the known solar geometry and an estimate of cloud

height based on the temperature difference between known cloudy pixels and NCEP

surface temperature. The two methods can be combined using a voting methodology

in order to produce a cloud and cloud shadow mask.

5. Reducing the effects of terrain

The GLS data-sets have undergone orthorectification using procedures similar to

those applied in the creation of the global GeoCover data-sets (Tucker et al. 2004).

The National Imagery and Mapping Agency (now the National Geospatial Agency)

provided geodetic control points to the Earth Satellite Corporation where they were

used in data processing. The goal for the horizontal Root Mean Square Error

(RMSE) of these data-sets is better than 50 m in positional accuracy. To match GLS

2000 as closely as possible, the GLS 2005 data-set is based on the same Digital

Elevation Model (DEM) inputs as GLS 2000. Within the USA, the USGS National
Elevation Data-set’s digital topography was used, while Shuttle Radar Topography

Mission (SRTM) data are used for the rest of the globe up to 608 in latitude. In far

northern regions othorectification uses either the Canadian Digital Elevation Data

(CDED) or Digital Terrain Elevation Data (DTED) topographic data-sets.

Orthorectification significantly reduces the effort of georegistering images and

makes the task of change detection much easier and more reliable. Nevertheless, the

nominal RMSE values of 40�50 m are substantially greater than the pixel size and

hence errors due to relatively small amounts of misregistration will inevitably occur
(Townshend et al. 1992). The quality of the output scenes depends upon the accuracy

of the geometric control and topography (Gutman et al. 2008). Some scenes may

display geodetic errors greater than 50 m especially in mountainous areas and where

the DEM was of poor quality.

10 J.R. Townshend et al.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
C

ha
ng

lin
 W

A
N

G
] 

at
 0

9:
02

 2
4 

A
ug

us
t 2

01
2 



Another issue relating to terrain is effects due to variations in illumination.

Variations in the solar zenith and azimuth angles can lead to spurious differences in

land cover being detected. Hence, especially in more rugged areas, it will be

important to make terrain corrections. One such simple characterization is based on
normalizing for the Illumination Condition factor (IL) which describes the incident

solar radiation on any terrain slope facet:

IL ¼ cosZ� cosS þ sinZ� sinS� cos UZ � USð Þ
where Z, the solar zenith angle; S, the slope angle; Fz, the solar azimuth angle; Fs, is

the aspect angle of the incline surface.

The correction calculates the dependency of reflectance on IL within discrete

ranges of vegetation greenness and then transforms the image radiometry to

eliminate the dependency (Tan et al. 2010)

Figure 6 shows graphically the importance of such corrections in rugged areas

where the calendar dates of the two images are different, though note in this case that

the difference in date is quite modest. Without making topographic corrections
spurious changes in land cover will frequently be identified. More sophisticated

corrections could in principle be made allowing for diffuse radiation and reflection

from surrounding terrain (e.g. Dubayah 1992).

6. Training data

Land cover characterization and change detection requires an effective classification

algorithm which is in turn dependent on adequate training. To make global mapping

at the Landsat resolutions feasible, automated methods requiring minimal human

Figure 6. Illumination correction showing original sub-scenes (top row), the corrected images

(bottom row) and the results of change detection without and with correction (right column).

Many of the changes using the uncorrected images are clearly spurious. In the change maps

(right column), persisting forest, persisting nonforest, forest loss and forest gain are in green,

light pink, red and cyan, respectively.
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inputs are critical. This section describes a training-data automation (TDA)

procedure for deriving training data for forest change analysis. Their use in

classification will be described in Section 7.

Gathering comprehensive training data for the whole of the Earth’s land surface

is clearly very challenging logistically, since collection of adequate training data is

one of the most time-consuming components of land cover characterization and

change detection using remote sensing. Although there are training data associated

with several global land cover products at coarser resolutions of 250 m and coarser,

their value for finer resolution Landsat data is less clear, nor are they usually made

available in user-friendly forms for other users. For some countries such as the USA

and Brazil considerable amounts of data are available, but the different definitions of

land cover types throughout the world make such training data challenging to use

without considerable care in cross comparisons.

For the task of mapping FCC globally, we have adopted a somewhat different

approach. Note that we are concerned with cover type and we are not using the term

‘forest’ to indicate a type of land use. Specifically we first identify training data

automatically (Huang et al. 2008). This procedure first uses local image windows to

identify forest training samples (Figure 7). Automation is made possible by the

following: (1) forests are one of the darkest vegetated surfaces in satellite images

(Colwell 1974, Goward et al. 1994, Huemmrich and Goward 1997), (2) the presence

Figure 7. Training-data automation: an initial selection of training data is carried out by the

use of the peak in the red response. Then a forest index is used to refine training areas for

nonforest (Huang et al. 2008).

12 J.R. Townshend et al.
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of forest within each local window is determined using to the MODIS vegetation

continuous fields (VCF) tree cover product (Hansen et al. 2002).

The identified forest training pixels are then used to calculate a forest index (FI)

measuring the likelihood of a pixel being forest in reality. The most unlikely forest
pixels are identified as nonforest training pixels. Recognizing that the training pixels

delineated in this way are mostly pure training samples, a neighborhood algorithm is

used to locate training pixels close to class boundaries. Specifically, less pure forest

pixels are chosen as forest training pixels if they immediately neighbor previously

identified pure forest pixels. Similarly, less pure nonforest pixels are determined

according to the FI value and nearness to nonforest training pixels. This method

creates dense sets of global ‘training data’ adapted to local conditions, which are then

used locally as input to the classifier, with each scene having its own unique training
data-set.

An alternative but related approach is to use forest cover data directly from other

sources. The MODIS VCF product at 250 m resolution can be used to identify

similar sized training areas on Landsat scenes with an estimated percentage cover

taken from the MODIS product. In this approach we derive training data with

percentage cover associated with each and then estimate percentage forest cover and

the amount of FCC using techniques such as regression trees.

These are two possibilities for automating the creation of global training data,
but there will doubtless be many others. Both approaches will inevitably result in

training data-sets with errors and hence there is the need to use information-

extraction algorithms resistant to errors as described next.

7. Characterization of forest cover and change

The literature is replete with many different methods of land cover characterization.

The authors’ particular focus is in change detection and specifically in FCC
detection. A wide range of techniques exist for cover change analysis using satellite

data. Comprehensive reviews and comparisons of these techniques have been

provided in several publications (e.g. Gordon 1980, Singh 1989, Lunetta and Elvidge

1998, Coppin et al. 2004, Lu et al. 2004). Many techniques have been tested with

varying levels of success over small areas (e.g. Jha and Unni 1994, Cohen et al. 1998,

Lyon et al. 1998, Tokola et al. 1999, Franklin et al. 2002). However, only a few were

used to produce FCC products for large areas, and these typically required intensive

human inputs in order to achieve satisfactory results (e.g. Skole and Tucker 1993,
Townshend et al. 1995, Loveland et al. 2002, Huang et al. 2007).

As pointed out in the previous section producing globally consistent and reliable

FCC products at affordable costs requires highly automated change detection

algorithms requiring minimal human inputs. To meet this challenge we have

developed a method integrating TDA and SVM.

Previously we have used decision tree algorithms to develop land cover

classifications at global scales (e.g. Hansen et al. 1996, DeFries et al. 1998, Hansen

et al. 2000). However, SVM has theoretical advantages and has demonstrated
superior performance and hence provide a good solution for global FCC analysis.

SVM is a group of relatively new machine learning algorithms designed to find

optimal classification solutions (Vapnik 1998), which are achieved by using the

optimal boundary between classes as the classification boundary. As shown in Figure

International Journal of Digital Earth 13
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8, there can be many class boundaries that are sufficient to completely distinguish

between classes for a given training data-set. SVM uses support vectors and a pair of

optimal hyperplanes to define the optimal boundary. The optimal hyperplanes are

defined using a vector w and are located by maximizing the distance between them.

The value of SVM compared with decision trees and neural networks has been

demonstrated in several previous studies (e.g. Chan et al. 2001, Huang et al. 2002;

Pal and Mather 2005). Subsequently we applied SVM for change detection and

showed that the accuracies were close to those produced with intensive human

interventions (Song et al. 2005).

A key feature of SVM is its resistance to error in training data, which is especially

important because of our need to automate change detection given the very large size

of the global data-sets. In experiments we progressively added noise representing error

into training data and we have consistently found that SVM is more resistant to the

introduction of random errors than other methods such as decision trees or neural

networks (Figure 9)

Since training the SVM can be automated it is possible to automate the entire

multi-temporal SVM classification approach for FCC analysis. Using the 1990 TM

images and 2000 ETM� images, we tested the TDA�SVM method over 19 study

areas selected from major forest biomes across the globe (Huang et al. 2008), with

each test area being at least a complete Landsat scene. High-resolution IKONOS

images and independently derived reliable reference data-sets were used to calculate

accuracy estimates for the developed FCC products. Not only the overall accuracies

of products were well above or near 90%, the class specific user’s and producer’s

accuracies were also quite high, with over half of those values being over 90%, 30%

being over 80%, and the remaining being over 70% (Table 2).

At the conclusion of the previous section we referred to an alternative procedure

for deriving training data using the MODIS-derived VCF product. In this alternative

procedure resultant training data are labeled with % forest cover using the MODIS

product; this approach allows their use in estimating changes in the percentage cover

rather than a discrete change from forest to nonforest.

Figure 8. A hypothetical classification problem showing the optimal boundary defined by

support vectors (circled points) and a pair of optimal hyperplanes for an arbitrary two-class

problem with the classes represented by solid and empty points (left). Nonlinear optimal

boundaries defined by SVM using the RBF kernel function (right) (Song 2010).

14 J.R. Townshend et al.
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Figure 9. Impact of errors in training data on the performance of different classifiers. (A)

Variation in classification accuracy for the maximum likelihood classifier (MLC), ARTMAP

neural net (NN), decision tree (DT), support vector machines (SVM), and kernel perceptron

(KP). (B) Graphical depiction of the impact of 30% training data error for DT and SVM.

Persisting forest, persisting nonforest and forest loss are in green, yellow and red, respectively

(Song 2010).
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8. Post-processing

Post-processing is frequently carried out to reduce errors in the resultant products. In

the past this has often been carried out using human interpreters who manually

modify images (e.g. Huang et al. 2007). For a global data-set such human

intervention is impractical if applied to the whole globe. We have implemented a

consistency and quality checking (CQC) process, which uses other data sources to

identify areas with major discrepancies from existing sources. This process is

designed to highlight scenes where the FCC products’ performance may be

unsatisfactory.
In the CQC process, the FCC products are used to calculate percent forest cover

(PFC) within 10-km grid cells, which are then be compared with values from the

MODIS VCF product. A good FCC product for a particular WRS2 tile should have

PFC values consistent with those derived using an existing reliable land cover

product (Figure 10). Inconsistencies between the two sets of PFC values are

indicators of uncertainties in either the FCC product or the existing land cover

product, or both. When a FCC product is found problematic through the CQC

process, additional training data are introduced and the images are reclassified using

the SVM to improve the FCC product. The additional training data will be derived

by extracting from our global training data pools we have accumulated through

Table 2. Overall, user’s and producer’s accuracies (%) of TDA�SVM derived FCC products

evaluated using independent reference data-set (N/A: accuracy was not calculated because the

reference data did not have information for the concerned FCC class).

Accuracy measure Persisting forest Persisting nonforest Forest loss Forest gain

Eastern Virginia, USA, WRS2 path 15/row 34: overall accuracy�92.7

User’s accuracy 96.7 94.9 88.2 74.5

Producer’s accuracy 96.7 86.2 88.3 88.4

Southeastern Finland, WRS2 path 187/row 17: overall accuracy�94.8

User’s accuracy 96.7 96.1 80.6 95.9

Producer’s accuracy 97.9 93.3 96.3 82.2

Central Mississippi, USA, WRS2 path 22/row 37: overall accuracy�89.4

User’s accuracy 95.8 92.2 85.7 72.6

Producer’s accuracy 88.0 95.3 80.7 88.9

Central western Washington, USA, WRS2 path 46/row 27: overall accuracy�94.4

User’s accuracy 93.4 93.0 98.2 100.0

Producer’s accuracy 99.5 99.6 100.0 70.6

Connecticut, USA, WRS2 path 13/row 31: overall accuracy�96.5

User’s accuracy 98.5 95.2 88.2 80.5

Producer’s accuracy 99.7 92.2 100.0 77.6

Eastern Paraguay, WRS2 path 224/row 78: overall accuracy�94.2

User’s accuracy 76.5 95.9 83.9 N/A

Producer’s accuracy 93.0 91.3 80.4 N/A

Western Paraguay, WRS2 path 228/row 75: overall accuracy�89.6

User’s accuracy 89.8 96.4 85.1 N/A

Producer’s accuracy 93.1 79.7 91.8 N/A
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previous land cover activities (DeFries and Townshend 1994, DeFries et al. 1995,

1998, Hansen et al. 2000, 2002) and using ultra-fine high-resolution images from

systems such as IKONOS, QuickBird, and OrbView.

Doubtless there are alternatives to these proposed approaches but any must

include a very high degree of automation because of the enormous number of scenes

to process globally.

9. Estimation of product error

Estimation of errors in the resultant products is essential but poses particular

challenges, because of the variability in appearance of land cover types across the

globe and the absence of reliable test data-sets. High-resolution images with 5 m or

less resolution can be a valuable source of information because for some cover types

at least they are readily recognizable by visual interpretation. Forest cover and water

bodies fall into this category. Figure 11 shows a web-based tool allowing rapid

labeling of FCC on multi-temporal Landsat images using coregistered very fine

resolution satellite data.

Comparing products with others that have had their accuracy assessed is an

alternative approach as previously shown in Figure 10. We can extend this approach

by comparing the results with a synthesis of multiple products. Song et al. (2011)

used a regression tree model to integrate forest cover from GLC 2000, MODIS VCF,

GLCC, GlobCover, and the standard MODIS classification to create a 5-km

product. Comparison with validated North American products indicates that this

synthesis is substantially more accurate than any of the individual products. The

synthesis can now be used elsewhere in the world to assess the reliability of our forest

products. An alternative approach would be to use crowd-sourcing derived data as in

the Geo-Wiki Project (Fritz et al. 2009). Considerable effort will be needed to apply

Figure 10. Percent forest cover (PFC) within 10-km grid cells for the 2000 epoch calculated

using a TDA�SVM derived FCC product and the standard MODIS VCF tree cover product.

The near 1:1 relationship between the two sets of PCF values is an indicator of the high quality

of the TDA�SVM derived FCC product.
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these methods comprehensively and create statistically robust error estimates

globally and locally.

10. Concluding comments and future implications

The assembly of global Landsat data collections such as those of the GLS coupled

with rapidly declining cost of computing and improved analytical methods makes

feasible the monitoring of the whole Earth’s land surface using Landsat data.

Figure 11. Web-based forest change labeling tool allowing rapid labeling of forest cover and

change using fine-resolution imagery automatically coregistered to multi-temporal Landsat

images.

18 J.R. Townshend et al.
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Nevertheless, there are major challenges in the creation of internally consistent

products with known statistical errors. For example many images in the GLS

compilations are sub-optimal for forest cover discrimination because they are leaf-

off. We have shown that it is often possible to obtain substitute images to replace

them. Some gaps in the original GLS data-sets especially GLS 1975 have also been

filled. Corrections for topography are also needed in many areas.

Use of the data-sets is made much easier by the production of Landsat surface

reflectance images. We have demonstrated how these can be created using methods

based on MODIS algorithms. MODIS data can also be used to evaluate the

performance of the Landsat surface reflectance images. With some explicable and

identified exceptions the Landsat images provide a very good representation of

surface reflectance. The incorrect calibration coefficients provided for many scenes in

GLS 1990 have prevented the creation of reflectance images, but it will be possible to

replace them with correct values.

Land cover characterization is hindered by the paucity of consistent high-quality

training data. For forest cover the approach we adopted to overcome this issue is

automatically to identify ‘training data’ and then apply classification methods which

are robust to errors in the training data. We have described methods for identifying

potentially poorly characterized images by use of independently created products. In

this way the number of images requiring more intensive post-processing is

considerably reduced. Estimation of errors in the resultant products is hindered by

the absence of globally representative reliable test data-sets. Some approaches to

reduce this problem have been proposed in this article. These have to be of very high

quality, otherwise estimated errors may conflate errors in the product and the test

data-sets themselves.

Figure 12. Preliminary global forest cover change (FCC) map derived using the GLS 2000 and

2005 datasets. The three full resolution examples (each approximately 25 km across) show

deforestation in Lucas do Rio Verde, Brazil (lower left), logging and harvest in south central

Sweden (lower center), FCC primarily due to burning in northeastern China (lower right).
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Using the methods described in this paper (Figure 12), we present a working

prototype global product of forest cover and change defined as those areas with

greater than 30% cover. Currently extensive estimation of errors is being carried out

and once completed a digital version will be made available through the Global Land

Cover Facility. Although reliable estimates of errors for this product remain to be

calculated results of comparisons with products that have had error estimation (see

Figure 10) encourage us to believe that our approach has significant merit. We
believe this is the first global product of any land cover type at Landsat resolution,

specifically for forest cover and FCC to be reported in the refereed literature.

A fundamental problem with any approach using the GLS data-sets is that each

contains only a single image, whereas it is well established that multi-temporal images

are of considerable value for characterizing cover types because of their different

phenologies. It is of course possible in principle to access the archive of Landsat data

at USGS�EDC (EROS Data Center) for free to acquire additional images, but the

task of selecting even one additional image for each scene would be considerable.

Nevertheless, improvements in performance will likely require at least two images for

each scene so that simple indicators of vegetation phenology can be used.

Can our automated approach for training identification be applied to other types

of land cover? There is reasonable expectation that will be possible for some

categories; for example, water has a sufficiently distinctive spectral response that

such an approach is likely to be successful. In the creation of a 250-m global land�
water mask, for all those areas north of the coverage of SRTM at 558N, Landsat data

were used successfully to identify water bodies (Carroll et al. 2009) and that change

detection is feasible.

Changes in data policy were crucial in allowing the creation of global Landsat

collections. Without the policy of making Landsat images freely available the GLS

would have been prohibitively expensive for most users. In creating global sets of

medium resolution images there is in principle no reason to rely solely on Landsat

images, but data policies restrict their availability. Note that for GLS 2005 some data

from ASTER have been used. However, use of other sources is often restricted by

charging and copyright restrictions. Government policies may often limit use of data

in quite complex ways. Considering only Chinese data, some data are openly

available, whereas others are restricted in use. China�Brazil Earth Resources

Satellites (CBERS) archives are now openly available to all (as are those in Brazil

for CBERS), but open availability of data from the more recent Huan Jing (HJ)

satellites is openly available only to Chinese users though with some restricted

availability for others. Beijing-1 satellite is now operated on a commercial basis. A
liberalization of data policies in China and elsewhere would do much to improve the

quality of global medium resolution data-sets: for example there would be a

considerable potential for GLS 2010 to be improved by replacing images with

deficiencies such as poor matching phenology and high cloud cover and in selecting

images closer the nominal 2010 date.

One of the constraints in creating global products is dealing with all the separate

individual scenes. The Web-Enabled Landsat Data (WELD) approach of Roy et al.

(2010) in creating seamless mosaics for the continental US potentially has much to

offer users if the approach was applied globally. Moreover, its selection of ‘optimal’

pixels from multiple images can do much to reduce the effects of clouds and other

image artifacts.
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In conclusion the prospect of global products derived from Landsat data at last

allows the realization of the full potential of Landsat for global land cover

characterization and monitoring. But successful use of existing global compilations

requires considerable understanding of their characteristics and limitations as we

have shown. Creating reliable global products at Landsat resolutions poses major

challenges but the possibilities of overcoming them and the potential resultant

opportunities have been demonstrated in this article.
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