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ABSTRACT 

Stress rupture is a failure mechanism where failures can occur after a period of 
time, even though the material has seen no increase in load.  Carbon/epoxy composite 
materials have demonstrated the stress rupture failure mechanism.  In a previous work, 
a model was proposed for stress rupture of composite overwrap pressure vessels 
(COPVs) and similar composite structures based on strength degradation.  However, 
the original model was limited to constant load periods (holds) at constant load.  The 
model was expanded in this paper to address arbitrary loading histories and 
specifically the inclusions of ramp loadings up to holds and back down.  The 
broadening of the model allows for failures on loading to be treated as any other 
failure that may occur during testing instead of having to be treated as a special case.  
The inclusion of ramps can also influence the length of the “safe period” following 
proof loading that was previously predicted by the model.  No stress rupture failures 
are predicted in a safe period because time is required for strength to decay from 
above the proof level to the lower level of loading.  Although the model can predict 
failures during the ramp periods, no closed-form solution for the failure times could be 
derived. Therefore, two suggested solution techniques were proposed.  Finally, the 
model was used to design an experiment that could detect the difference between the 
strength decay model and a commonly used model for stress rupture.  Although these 
types of models are necessary to help guide experiments for stress rupture, only 
experimental evidence will determine how well the model may predict actual material 
response.  If the model can be shown to be accurate, current proof loading 
requirements may result in predicted safe periods as long as 1013 years.  COPVs 
design requirements for stress rupture may then be relaxed, allowing more efficient 
designs, while still maintaining an acceptable level of safety.   

NOMENCLATURE 

A normalized parameter used in iterative solution for tf 
b nonlinearity parameter in strength decay model 
c time scale parameter in strength decay model 
PDF probability density function 
R ramp rate for applied stress 
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ℝ reliability 
 
s(t) instantaneous strength (strength of a given test specimen at some point in time) ݏᇱ  derivative of strength with respect to time 
so initial strength in a given test specimen 
SR stress ratio, ratio of stress level to the strength scale parameter 	ॺ	෢ scale parameter for Weibull distribution of initial strengths 
t time 
tref classic model reference time to failure (scale parameter at SR=1) 
α     Weibull shape parameter for strength 
β  Weibull shape parameter for time to failure 
σ stress  
ρ  classic model parameter for sensitivity to stress ratio 
 
Subscripts 
1 start of a load step 
2 end of a load step 
f failure point 
i iteration count 

 

INTRODUCTION 

Stress rupture is a failure mechanism where failures can occur after a period of 
time, even though the material has seen no increase in load.  Carbon/epoxy composite 
materials have demonstrated the stress rupture failure mechanism.  One application 
where stress rupture may be critical is in Composite Overwrap Pressure Vessels 
(COPVs).  COPVs are used in the aerospace industry to transport gases under very 
high pressures (e.g., 5000 psi).  This application may be worse than others because the 
composite material tends to be uniformly loaded at elevated stress levels for prolonged 
periods of time.  As seen in Figure 1, COPVs come in various sizes and are either 
cylindrical or spherical in shape.  Several varieties of composite overwrap have been 

used, including Kevlar/Epoxy, but most COPVs in current use in the aerospace 

       

Figure 1.  Composite overwrap pressure vessels (COPV) 



industry are made with carbon fibers.  Because these critical structures operate under 
very high pressures, a failure of a vessel would likely lead to loss of life and/or 
property.     

A COPV structure is made of a thin metal liner that is then wrapped with 
composite.  To avoid stress rupture in the composite, the pressure in the COPV is 
normally limited to a relatively low percentage of the vessel burst pressure (typically 
less than 50%).  Reliability models are used to predict the likelihood of stress rupture 
at various stress levels.  By keeping the stress level in the composite low, the chance 
of a failure is kept acceptably small (e.g., 1 in 1 million).  The reliability models are 
based on experimental data, but there is significant extrapolation from the reliability 
levels where tests can be performed to the predictions of reliabilities that are desired.  
For example, a test of a million vessels to show a one in a million chance of failure is 
not feasible.  Because of the high cost of vessels, stress rupture is often tested on 
smaller specimens such as individual strands, which are a single tow of fiber (perhaps 
1000 fiber filaments) impregnated with a polymer.  These strand specimens exhibit the 
stress rupture phenomenon and are much cheaper test specimens than full COPVs.  An 
example of composite stress rupture data that can be collected is presented in Figure 2 
[1].  The data in Figure 2 are collected from strands and each individual point 
represents one failure. Different numbers of specimens were tested at each load level, 
and the percentage that survived the testing are noted to the right in the figure.  Two 
things are clear from the stress rupture data presented in Figure 2:  as the stress level 
(i.e., load) is decreased, the percentage of surviving specimens grows dramatically; 
and the time to failure of apparently identical test specimens under identical loading 
can be vastly different.   

In order to make reliability predictions at lower loads where COPVs are used, data 
like that shown in Figure 2 are often modeled with an empirical reliability model such 
as the one known as the “classic model” given by eq. 1 [2, 3]. 

 

Figure 2.  Time to failure data from a stress rupture study on IM6 
composite test specimens[1] 



 ℝ = ݁ିቌ ೟೟ೝ೐೑ቀ	഑	ॺ	෢ቁషഐቍ
ഁ
 (1) ℝ is the predicted reliability for the test specimens that have been held under constant 

stress ߪ		for a period of time, t.   ߩ, ,ߚ and	ݐ௥௘௙ are material parameters used to fit the 
model to the test data.  The model is scaled to the initial strength of the test specimens 
using the 	ॺ	෢ parameter, which is the scale parameter from a Weibull distribution fit to 
the measured strength distribution.  By normalizing the model with the strength 
parameter, it is assumed that the stress rupture response of a strand will be similar to 
that of a full vessel.  The parameter ߪ 	ॺ	෢⁄  in eq. 1 is often referred to as the stress 
ratio, SR.   

Although eq. 1 is written for a constant stress level, it can be extended to any load 
history.  To explain how the classic model predicts failures under varying stress level 
conditions, a “video playback” analogy will be used.  A video could be recorded of the 
failures from a group of test specimens held at a constant stress level.  Because carbon 
epoxy stress rupture has demonstrated a decreasing failure rate, the “playback” of the 
video would show several failures early in the stress period, but the rate of failures 
would slow overtime.  Increasing the load level at any point in the testing acts as if the 
video playback was switched to “fast forward.”  The pattern of failures would stay the 
same, but the rate at which they occur would increase.  Similarly, lowering the load 
would act to put the video into “slow motion” where the rate of failures would 
decrease.  Using this video playback concept, eq. 2 predicts the failures if all the 
specimens were held at a reference stress level, ߪ௥௘௙.  Equation 3 translates actual time 
at different stress levels into effective time, teff, or the equivalent amount of time if the 
entire stress history had been at the reference stress level. [4].  

 ℝ = ݁ି൮ ೟೐೑೑೟ೝ೐೑൬	഑ೝ೐೑	ॺ	෢ ൰షഐ൲
ഁ

   (2) 

 

                          where    	ݐ௘௙௙ = ׬	 ൬ఙ[௧]ఙೝ೐೑൰ఘ ௧଴ݐ݀   (3) 

Since ߪ௥௘௙ can be canceled out of eq. 2 once eq. 3 is substituted into the equation, the 
choice of the reference stress level is arbitrary and can be chosen to be the dominant 
level of loading during testing.   At any point in time and at all stress levels, there is 
some chance of a failure occurring.   

Other models for stress rupture have also been postulated.  A much earlier work 
had proposed a capability degradation model, but the early work was formulated 
around time dependent crack growth equations instead of strength decay [5].  Yet 
another stress rupture model was formulated around creep in the matrix causing 
delayed failures in fibers that accumulate to cause specimen failure [4], but this 
micromechanics model is not formulated in a way that can be readily validated [6]. 

In a previous work by the author, a new strength decay model was proposed in 
which the scatter in stress rupture times was attributed to the variation in initial 
strengths.  Strength decays over time until the strength level drops to the applied stress 



level, at which point the material fails.  Equation 4 shows the strength degradation law 
that was proposed.  Constant stress level stress rupture data can be fit with the strength 
decay model as well as they can be fit to with the classic mode.  In fact, the two 
models can be made to give essentially the same predictions of reliability under 
constant stress conditions.  

 
௦[௧]ఙ = ൬ቀ௦೚ఙ ቁ௕ − ௧௖൰భ್  (4) 

In the strength decay model, b and c are material constants.  The parameter b describes 
the shape of the strength curve as it decays, and c scales the curve in time.  The 
predicted reliability from the strength decay model is given by eq. 5 once the initial 
strength, so, required for a failure at a given time was determined from eq. 4 [7]. 

 ℝ = ݁ିቀೞ೚	ॺ	෢ቁഀ  (5) 

Equation 5 describes a Weibull distribution with a shape parameter ߙ and a scale 
parameter 	ॺ	෢. 

To make the strength decay model produce similar reliability results to the classic 
model, the following strength decay parameters were used:  c=tref,  ܾ = ߙ and  ߩ  The reliability equations are not identical in form, and there is some difference in  .ߚ	ߩ=
predicted reliabilities at very short times.  However, at longer times where stress 
rupture reliability is available, the models give essentially the same results. 

Although the reliability predictions from the classic model and the decay model 
were quite similar for constant stress cases, the results were quite different following a 
proof loading where an initial elevated load level is applied to the specimen followed 
by a lower level of loading.  In fact, the strength decay model predicted a “safe period” 
following the proof loading because time was required for the strength to decay from 
some value higher than the elevated stress level to a the lower stress level.  During this 
safe period, no failures would be predicted.  No safe period is predicted by the classic 
model. 

In the previous derivation, the strength decay model was limited to constant stress 
load steps.  This constraint limited the breadth of problems that could be addressed by 
the model.  In this paper, the model will be expanded for arbitrary loading.  Several 
implications of the expanded model will be discussed.  The new expanded model will 
then be used to plan a test series based on a complex load history to help validate the 
model. 

STRENTH DECAY UNDER ARBITRARY LOADING  

Derivation of Strength decay law 

Equation 4 was derived based on the theory that a relationship between internal 
strength and stress level would control the time to failure, which would occur when 
the strength equals the stress level.  The strength is unknown for most of the life of the 
material and only becomes known at failure.  Equation 4 was derived by working 
backwards from the observed reliability results and assuming a Weibull distribution of 
initial strengths as opposed to working forward from a governing equation.  Equation 
3 begins when the strength level is so, which implies that any previous load history 



does not influence the rate of strength decay going forward.  This allows eq. 4 to be 
recalculated for a second period at constant load.  The final strength after the first 
period becomes the initial strength in the second, and t becomes the time in the second 
period.  The original strength decay model was shown in the initial published work to 
have significantly different predictions of reliability following proof loading compared 
to the classic model [7].   

Equation 4 does not hold for arbitrary loading histories.  The relationship of time t 
to strength s in the equation assumes that the stress has been constant for the entire 
period.  For arbitrary loading, an equation describing the change in strength is 
necessary, and this equation cannot be directly dependent on time.  To be consistent 
with the earlier assumptions that the internal strength state variable is sufficient to 
record the past life of the composite, the instantaneous change in strength,  ݏᇱ, can 
only be a function of current state variables and material parameters, as shown in eq. 
6. 

[ݐ]′ݏ  = ,[ݐ]ݏ]݂ ,[ݐ]ߪ ܾ, ܿ	]  (6) 

A governing equation for the strength decay should be of the form that satisfies eq. 
6 and, when integrated over a constant load period, should recover eq. 4.  Equation 7 
meets these criteria. 

[ݐ]ᇱݏ  = − ఙ[௧]௕௖ ቀ௦[௧]ఙ[௧]ቁଵି௕   (7) 

By separating variables as shown in eq. 8 and integrating with σ remaining 
constant over the period, eq. 4 can be derived from eq. 7. 

ݏ݀	௕ିଵݏ  = 	− ఙ್[௧]௕௖  (8)  ݐ݀	

Note that just taking a derivative of eq. 4 would result in an equation for ݏᇱ[t] that is a 
function of t, and this would imply a history dependence, which violates earlier 
assumptions made in the model development.   

Assuming eq. 7 as the governing equation for strength decay, the strength after any 
arbitrary loading can be predicted from any starting point where the current strength is 
known.  Deriving equations for the strength decrease after specific load histories will 
prove to be helpful.  The strength decrease during a constant stress increase from zero 
stress can be derived using eq. 8. 

׬     ௦[௧]௦೚ݏ݀		௕ିଵݏ = ׬ − ሺோ௧ሻ್௕௖ ௧଴ݐ݀	  

             
௦್[௧]ି௦బ್௕ = − ሺோ௧ሻ್శభோ	ሺ௕ାଵሻ		௕	௖		 

[ݐ]ݏ                         = ቀݏ଴௕ − ௧ሺோ௧ሻ್௖ሺଵା௕ሻቁଵ/௕  (9) 

where R is the ramp rate of the linearly changing stress from σ =0, so σ[t]=Rt. 
Similarly the strength at the end of a constant ramp starting at some arbitrary stress 

level would be 

[ଶݐ]ݏ  = ቀݏ௕[ݐଵ] − ሺோሺ௧మି௧భሻାఙభሻభశ್ିሺோ	௧భାఙభሻభశ್௖ሺଵା௕ሻோ ቁଵ/௕  (10) 



Note that R can be positive or negative depending on whether the applied stress is 
increasing or decreasing, and the subscript 1 implies the beginning of the load period 
while 2 implies the end. 

Equation 4 provides the expression for a constant load case, but it is repeated here 
as eq. 11 with updated notation, using subscripts 1 and 2.   

ଶݏ  = ଵߪ ൬ቀ௦భఙభቁ௕ − ௧௖൰ଵ/௕  (11) 

With eq. 10 and 11, more complex load histories can be predicted such as that 
shown in Figure 3.  Note that for each step t1, s1, σ1 refers to the beginning of the step 
and t2, s2 and σ2 refer to the end of the step.  The material parameters used to create the 
figure are based on classic model parameters commonly used for the T1000/epoxy 
material [4], namely	ߩ	114=, β =0.22, and tref  =0.001 hr.   These parameters will be the 
basis for all the predictions presented in this paper.  As described previously, the 
classic model parameters correspond to the following decay model parameters: 
b =114, c =0.001 and 25.08 = ߙ.  Note that in Figure 3, the length of time in each 
period is longer than typically used in testing so that the decay pattern can be more 
easily seen.  Normally, ramps would be faster, and the hold during proof loading 
would be shorter.  

Equation 10 was generated for a linear ramp, but other loading cases could also be 
derived from eq. 7 such as a logarithmic or parabolic load step.  Although other types 
of steps are possible, the ramp and constant load steps can be combined to provide 
reliability predictions for a large number of practical problems.  

 
 

Figure 3.  Strength decay with complex load history 



Time to Failure 

In using a model like the strength decay model that starts with a distribution in 
strength, one might want to know given an initial strength, when a given specimen 
will fail.  This is particularly important in Monte Carlo simulations where samples can 
be randomly selected from the distribution in strengths to determine the resulting 
distribution in failure times.  A proposed stress history might become complex, as 
shown in figure 3. 

Equation 12 predicts the time to failure for a constant stress period.  The equation 
was derived in reference 7 by assuming that failure will occur when the strength 
equals the current stress level.  Therefore, eq. 12 results from setting s[t] equal to σ  in 
eq. 4. 

௙ݐ  = ܿ ൬ቀ௦೚ఙ ቁ௕ − 1൰  (12) 

For a constant ramp from zero stress, [ݐ]ߪ =  Equation 13 is derived by setting  .ݐ	ܴ
the applied load equal to the instantaneous strength but cannot be solved as a simple 
closed form expression for tf. 

௙ݐ	ܴ  = ቆݏ଴௕ − ௧೑൫ோ	௧೑൯್௖ሺଵା௕ሻ ቇଵ/௕  (13) 

Similarly, eq. 14 is the expression for failure after a ramp from an arbitrary load.  The 
equation is only slightly more complicated than eq. 13, but it too cannot not be easily 
expressed as a closed form expression for tf.   

ଵߪ  + ܴሺݐ୤ − ଵሻݐ = ቀݏଵ௕ − ሺோሺ௧౜ି௧భሻାఙభሻభశ್ିሺோ	௧భାఙభሻభశ್௖ሺଵା௕ሻோ ቁଵ/௕  (14) 

Two methods for solving the problem are suggested: the “forward” solution, and the 
“backward” solution. 

 
FORWARD SOLUTION 
 

The forward solution solves eq. 14 iteratively.  First, check to see if a failure 
occurred in the ramp period by using eq. 15. 

ଵߪ  < ଶߪ			݀݊ܽ	ଵݏ >  ଶ  (15)ݏ

If eq. 15 is satisfied, then sometime during the ramp from t1 to t2, the stress exceeded 
the strength, and a failure occurred, resulting in the need to determine the precise time 
to failure.  If eq. 15 is not satisfied, then no failure occurred, and a failure in a 
subsequent loading period can be explored. 

To solve for a failure in the ramp from t1 to t2, one should solve for the root of eq. 
16, which is just a reformatted version of eq. 14. 

[t]ܨ  = ଵߪ + ܴሺt − ଵሻݐ − ቀݏଵ௕ − ሺோሺ୲ି௧భሻାఙభሻభశ್ିሺோ	௧భାఙభሻభశ್௖ሺଵା௕ሻோ ቁభ್ = 0  (16) 

A solution for the root of F[t] can be found using the following iteration (Newton’s 
Method), 



௜ାଵݐ  = ௜ݐ − ி[௧೔]ிᇲ[௧೔]  (17) 

Because b can be large (i.e., 100 to 150), eq. 17 can be slow to converge.  To speed 

convergence, a change of variables is suggested.  Let ݔ = ቀఙభାோሺ୲ି௧భሻ௦భ ቁ௕ and   ܣ =ܿሺ1 + ܾሻܴ   which leads to  

௜ାଵݔ  = ௜ݔ − ೣ೔ಲ 	ቀ஺ା௦భ	௫೔భ/್ቁିଵି഑భಲ ቀ഑భೞభቁ್ଵା൫ଵାଵ ௕ൗ ൯		ೞభಲ 		௫೔భ/್   (18) 

Starting with ݔ௢ = ሺݏଶ ⁄ଵݏ ሻ௕, tf and sf can be calculated from the converged solution 
using  

௙ݏ  = ௙ݐ	   ሻଵ/௕   andݔଵሺݏ = ଵݐ + ௦భሺ௫ሻభ/್ିఙభோ     (19) 

Note that if R is positive, slightly faster convergence can be attained by letting xo=1. 

BACKWARD SOLUTION 

The forward solution solved for tf given an initial strength, but an iterative solution 
was required.  If one starts with a specified value of tf , the equations can be rewritten 
to work backwards to the required initial strength and then to the reliability prediction 
using eq. 5.  This method may also allow one to concentrate on predictions where the 
chances of failure are small without a large number of Monte Carlo simulations. 

Equations 4 and 10 can be reformulated as eq. 20 and 21 to calculate s1, given s2.  
One can work backwards from a failure point where tf =t2 and ߪ =  ଶ, through aݏ
complex load history, to the initial strength in the first loading period, where so = s1. 

Constant stress:  ݏଵ = ߪ ൬ቀ௦మఙቁ௕ + ሺ௧మି௧భሻ௖ ൰ଵ/௕ (20) 

Ramp: ݏଵ = ቆݏଶ௕ + ሺ௧మି௧భሻ	൫ோሺ௧మି௧భሻ൯್௖ሺଵା௕ሻ ቇଵ/௕  (21) 

One additional check however must be made.  Although eq. 20 and 21 will 
calculate the initial strength required for failure at the proposed time, they cannot 
determine whether a failure could have occurred earlier in the load history.  Figure 4 
shows strength degradation predictions for a proof loading case assuming two 
different initial strengths.  Using eq. 20 and 21, a normal failure at t =0.019 hr. would 
require an initial strength, so=0.987. However, using the same equations, failures at 
0.0025, 0.003 and 0.01 hr. would all require an initial strength of so=0.982.  Since a 
test specimen can only fail once, it would have already failed by the time it reached 
0.01 hr.  To protect against identifying a fictitious failure, one should check the end of 
each previous load step to insure that σ2 < s2.  If a previous failure occurred, there will 
not be a future failure, and the originally proposed failure time is part of a safe period.  
In Figure 4, again the T1000/epoxy material parameters were used as presented 
earlier, but the stress levels shown are highly elevated above what would normally be 
used to better illustrate the nature of the strength decay. 



IMPLICATIONS OF RAMPS ON RELIABILITY PREDICTIONS  

Implications for Initial Strength  

The extension of the strength decay model to include ramps may seem like a 
small adjustment to the model, but it has a few important consequences.  One 
implication involves the interpretation of initial strength.  In the original 
formulation without ramps, the initial strength was assumed to be the measured 
nominal strength from tests.  But strength tests are not instantaneous jumps to 
failure, they are normally constant ramp tests as shown in Figure 5.  The time scale 
of the ramp is normally small compared to the time scale at which stress rupture 
tests are conducted.  With the strength decay model, the strength of the material is 
dropping very quickly as the stress approaches the strength value.  The ramp rate 
may not be fast in comparison to this drop in strength.  Therefore, the difference in 
initial strength to the strength that can be measured in a test may be significant, 
especially since the time-to-failure can be quite sensitive to the initial strength.  
When the time-to-failure in strength testing is known, eq. 22 can be used to correct 
the measured strength to more accurately predict the initial strength of the material.  
Measured strength is characterized by the nominal value and the spread.  Since a 
Weibull distribution in initial strength is assumed, the nominal strength is the 
Weibull scale parameter, and the spread is characterized by the shape parameter.  
Figure 5 shows that the drop in strength during a constant ramp test is similar for a 
range of initial strength values.  Because the drop in strengths is similar, the spread 
of the distribution may not be significantly affected.  

 	ॺ	෢௧௥௨௘ = 	ॺ	෢௠௘௔௦௨௥௘ௗ ቀ1 + ௧೑௖ሺଵା௕ሻቁଵ/௕  (22) 

 

Figure 4.  Strength decay with proof loading 



When comparing the classic model to the decay model, one additional 
correction should be made.  If the classic model uses 	ॺ	෢௠௘௔௦௨௥௘ௗ and the decay 
model uses 	ॺ	෢௧௥௨௘, the models will give different results for large values of t, unless 
c is also corrected as given by  

 ܿ = ௥௘௙ݐ ቀ 	ॺ	෢೟ೝೠ೐	ॺ	෢೘೐ೌೞೠೝ೐೏ቁ௕  (23) 

This correction is only needed when trying to make direct comparisons between the 
classic and decay models.  Otherwise, c is determined by fitting to experimental 
results from stress rupture tests.  For the T1000 parameters being used in this paper, 
the two corrections are 	ॺ	෢௧௥௨௘ =	 1.0022		ॺ	෢௠௘௔௦௨௥௘ௗ  and b =0.78 tref   for a 2 
minute strength test. 

Implications for decreasing load periods 

A second consequence for the inclusion of ramps in the model occurs when 
unloading.  If loading and unloading occur instantaneously, then no change in strength 
is predicted due to the unloading and reloading.  A change in strength caused by the 
loading and unloading might seem like a small effect because the time spent loading 
and unloading is normally small.  However, by neglecting it, a safe period is always 
predicted when going from a higher load level to a lower load level.  The safe period 
is predicted because of the modeling assumption that it takes time for a strength value 
that did not fail at the higher level to drop to the lower stress level.  Figure 6 shows a 
proof loading case with a slow ramp rate.  With the ramp included in the model, it is 
clear that, depending on the ramp rate and the material parameters, a failure may occur 
during the unloading or reloading periods.  Notice that the failures on unloading and 
reloading require almost identical initial strengths.  The probability, therefore, of 
having precisely the correct initial strength to cause one of these failures would be low 
but finite.  When failures during unloading are possible, no safe period would be 
predicted during the subsequent constant load period.  These failures are only possible 
when the strength falls faster than the unloading rate.  This implies that, to preserve the 

 

   Figure 5.   Strength decay while testing for strength 



safe period, unloading more quickly is desirable.  To preserve the possibility of a safe 
period, one would want to assure that the unloading rate is faster than 

 |ܴ| > ఙ௕௖  (24) 

This equation was derived from eq. 7 by assuming the stress level and strength were 
the same at the end of the hold period and calculating the rate of change in strength.  If 
the unloading rate is faster, then the strength and the load level will move apart as the 
ramp occurs, and the rate of strength change will decrease.  If the ramp rate is slower, 
it is possible for the strength to decrease faster than the decreasing stress level, making 
a failure on unloading possible and negating a safe period on reloading.     

Implications for failures on loading 

When testing for stress rupture, the stress level must be elevated to obtain a 
reasonable number of failures in a reasonable amount of time.  Because of the elevated 
loading levels, some specimens can be expected to fail on loading.  With 
instantaneous loading assumed in the original formulation, predictions of reliability 
had to somehow account for these early failures.  This complicated the modeling 
because the initial loading was not actually modeled.  By including the loading ramps, 
failures on loading can be treated just as failures predicted in any other part of the load 
history making the model more consistent. 

  

       

Figure 6.  Modeling showing failures on unloading or reloading are possible 



EXAMPLE RELIABILITY PREDICTIONS 

The strength decay model was introduced to help understand the effects of proof 
loading.  The inclusion of ramps provides a realistic model with which to predict the 
reliability following proof loads.  Tests can be planned to distinguish between the 
decay model and the classic model when predicting the effect of proof loading on the 
continued reliability of composite materials.  Testing for the effect of proof is difficult 
for several reasons.  Reliability testing, even without proof, is conducted at highly 
elevated loads.  With proof, there is little room to elevate the nominal test level before 
strength failures would be predicted.  Even if one can apply a proof load without 
breaking the specimen, there is concern about whether this load, which would need to 
be very close to the strength level, could create damage that is not characteristic of a 
normal proof loading.  A normal proof load would be at a level that is significantly 
less than the strength.  Second, proof loading is generally effective at significantly 
reducing the failure rate; therefore it can be difficult to plan an experiment where 
enough failures are obtained to see a significant difference between models.  Although 
models may predict fairly close reliabilities under conditions that can be tested, the 
model predictions can still be quite different when the models are used to extrapolate 
to lower stress levels  where real structures are used.  

The strength decay model is appealing because it can predict a safe period where 
failures are not possible and a means to extrapolate higher stress level testing to lower 
level stress testing.  In the following three test cases, reliability predictions of the 
classic model will be compared to the expanded strength decay model. 

Case 1.  Ramp to Constant Load 

Figure 7 compares predictions of reliability from the classic model to the 
predictions from the expanded decay model for a simple ramp and hold load case.  

 

                    Figure 7.  Comparison of model reliability predictions 
 



The parameters used in the model are for the T1000/epoxy as discussed earlier, but the 
decay model parameters were corrected to account for the difference between 
measured and true initial strength as discussed earlier in the paper.  The c value is 
therefore equal to 0.00078 hr.  Although the true nominal strength is used in the decay 
reliability calculations, the figure presents the stress level as a stress ratio, SR, which is 
the stress level normalized by the measured nominal strength.  This normalization 
allows a direct comparison of the two models for a consistent stress level. 

The reliability prediction for the classic model was calculated from eq. 2, and the 
reliability prediction from the strength decay model is from eq. 5 once the initial 
strength has been determined, given a failure at some point in time.  The reliability 
predictions are the fraction of tests that are expected to survive to a given time and are 
always constant or decreasing since the number of failures cannot decrease with time.  
In test planning, it can also be helpful to consider the probability density function 
(PDF), which is the likelihood of failures occurring at a specific point in time.  A 
simple finite difference method is used here to estimate the PDF as given in eq. 25 for 
both the classic and decay predictions. 

ܨܦܲ  = ℝ[௧]ିℝ[௧ା୼௧]୼௧   (25) 

Note that because the PDF can vary widely in magnitude, it is plotted on a log scale as 
shown on the right hand axis of Figure 7.  From the figure, it is clear that the two 
models are very close for the simple ramp and hold case and that the PDFs for both 
models drop very quickly from the point where the sample first reaches the maximum 
load.  There are subtle differences between the models in the region where the hold 
begins.   The decay model predicts slightly more failures at the end of the ramp and 
fewer failures at the very beginning of the hold region.  Very quickly, both the PDF 
and the reliability predictions become indistinguishable. This trend continued for a 
very long time beyond the plotted time period.  

Case 2.  Proof loading  

The second example case presents a proof load as shown in Figure 8, where a 
short elevated stress level is followed by a longer hold at a lower stress level.  In this 
example the elevated SR is 0.9 followed by a SR of 0.88.  The reliability plots for the 
two models appear identical.  However, the PDF plot is more sensitive to small 
changes in reliability.  By looking at the PDF plot, subtle differences between the 
models can be detected at the very end of the ramp to proof load, and a significant 
difference can be seen in the hold following proof.  Notice that for this case the decay 
model predicts a safe period.  In the safe period, the PDF for the decay model is zero 
because no failures occur, which means that the reliability prediction is constant 
during this period.  In the ramp down after proof and back up, the classic model 
predicts a very low probability of failure that is too low to be plotted on the graph.  
The only significant difference between the two models is in the safe period, which 
only lasts for a short period of time (about 0.1 hr. after reaching 0.88 SR).  The classic 
model predicts a PDF in the same time period of around 0.008 1/hr.  Because the time 
is short and the PDF is low, the classic model predicts a low probability of failures 
occurring in the safe period.  A test program to detect a difference between a low 
probability of failure and no probability of failure would require a large number of test 
specimens.  A better way of testing is needed. 



It is important to realize that although in this example the safe period is short, with 
actual proof loads in current use, the safe periods could be quite long.  The predicted 
safe period using the same material parameters but with a proof level of SR=0.75 
followed by loading at a SR =0.5 would be 1013  years.  If this safe period could be 
trusted, then COPVs could be designed to be more efficient and still have plenty of 
safe life.  

Case 3.  Multistep testing  

Given the results of the example case 2, it is clear that testing in the safe period is 
critical to differentiate the two models.  However, under elevated stress conditions, the 
safe period can be quite short, and the expected failures from the classic model is also 
quite small.  To accentuate the differences in the models and to maximize the use of a 
limited number of test specimens, a series of increasing proof loads followed by holds 
at a reduced load level is suggested, as shown in Figure 9.  The figure shows 
significant drops in reliability during the proof periods indicating that most failures 
occur during these load excursions.  By choosing a hold time at the reduced stress 
level longer than the safe period, each safe period is followed by a time where the two 
models are in close agreement.  In this example, the first proof is at SR=0.9 which 
results in about 10% of the specimens failing.  The hold period is 3% below the proof 
load and results in a safe period that is only a few minutes long.  With each succeeding 
load series, both the proof level and the following holds are raised by 2%.  By 
summing the expected number of failures in all the safe periods and comparing them 
to the expected failures in the later portion of the holds, a clear difference in the 
models can be detected with a reasonable number of test specimens.  With the 
proposed testing, the classic model would predict that a total of 2.5% of the specimens 

 

                  Figure 8.  Proof loading reliability predictions 



would fail during the seven safe periods and an additional 2.5% would fail during the 
second half of the holds.  The decay model would predict no failures during the safe 
period and 2.5% during the second half of the hold.  This multistep loading procedure 
provides a reasonable test that could be conducted with one or two hundred test 
specimens.  Failures during the safe periods provide a clear distinction between the 
models, and the failures during the second half provide a control to ensure that the 
material properties used in the models are providing appropriate predictions.  This 
example shows how complicated it can be to plan a test series that adequately 
measures the effect of proof loading.  If the proof load is elevated too far above the 
subsequent holds, too few failures would be predicted following the proof.  If the 
loading ramps are too long, then failures could occur during the ramps and no safe 
period would exist.  Models such as this expanded decay model are critical to planning 
successful tests to characterize and capitalize on the true nature of the material. 

Conclusion 

Stress rupture is a critical failure mode for certain composite structures such as 
composite overwrap pressure vessels, and concerns about stress rupture significantly 
limit the structural efficiency of these structures.  A previously proposed reliability 
model for stress rupture is based on strength decay in the material over time and 
assumes that failure occurs when the reduced strength equals the loading level.  The 
previously proposed model was limited to constant stress level loading periods but 
was expanded here to include arbitrary load histories. The inclusions of linear ramps, 
in combination with constant load periods, allows much more realistic load histories to 

 

         Figure 9.  Reliability predictions for proposed multistep proof test 



be modeled than was previously possible.  The time-to-failure during a ramp period 
could not be solved in closed form so two solution techniques were suggested:  (i) 
choose a proposed initial strength and solve for the time to failure using an iterative 
solution;  (ii) choose a time-to-failure and work backwards to the required initial 
strength.  The second solution can be solved in closed form but must be checked to 
insure that the specimen did not fail at some previous point in time.  If failure at a 
given time requires a certain initial strength,  but a specimen with that strength would 
have previously failed, then no failures can occur at the originally proposed time, 
indicating a safe period.  These safe periods are a feature of this decay model and, if 
validated, could lead to more efficient structures while still maintaining the required 
level of safety.  Testing for safe periods to validate this type of model, however, is 
quite difficult because alternate models predict low, but finite, probabilities of failure 
following proof loads.  To validate the model, a series of increasing proof loads, 
followed by lower stressed holds, is suggested.  This provides an efficient use of the 
test specimens even though most of the test specimens will still fail during the proof 
loads.  The inclusion of ramps in the model also highlighted that there may be a 
difference between the initial strength assumed in the model and the strength that can 
be measured during testing.  A correction can be made for this difference.  Yet another 
issue associated with the inclusion of the ramps in the model is that if the loading 
ramps (particularly the unloading ramp) are too slow, then the safe period may be 
significantly reduced or eliminated. The strength decay model ties the distribution in 
initial strengths to stress rupture failures and provides a consistent model for the two 
types of tests.  By including ramps in the decay model, failures that occur during the 
initial loading ramp can be modeled as any other failure. 
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