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ABSTRACT

Despite considerable interest in the application of land surface data assimilation systems (LDASs) for

agricultural drought applications, relatively little is known about the large-scale performance of such systems

and, thus, the optimal methodological approach for implementing them. To address this need, this paper

evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the

system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model, and a sequential data

assimilation filter) against a series of linear models that perform the same function (i.e., have the same basic

input/output structure) as the full system component. Benchmarking is based on the calculation of the lagged

rank cross correlation between the normalized difference vegetation index (NDVI) and soil moisture esti-

mates acquired for various components of the system. Lagged soil moisture/NDVI correlations obtained

using individual LDAS components versus their linear analogs reveal the degree to which nonlinearities

and/or complexities contained within each component actually contribute to the performance of the LDAS

system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter

RetrievalModel (LPRM), a two-layer Palmer soil water balancemodel, and an ensembleKalman filter (EnKF)

is benchmarked. Results suggest significant room for improvement in each component of the system.

1. Introduction

In water limited ecosystems, soil water content in the

root zone is a strong predictor of future vegetation

condition (Adegoke and Carleton 2002; Wang et al.

2007). Therefore, characterization of root-zone soil

moisture plays a critical role for crop yield forecasting

and agricultural drought monitoring systems (Bolten

et al. 2010). The availability of satellite-based remote

sensing data has accelerated the development of drought

earlywarning systems by providing continuous information

in space and time (Hayes et al. 2012). Nonetheless, the

shallow sensing depth (top few centimeters) and un-

certain accuracy of currently available satellite soil

moisture retrievals has necessitated the integration of

hydrologic models and surface soil moisture observa-

tions from satellites through data assimilation tech-

niques to obtain more accurate root-zone soil moisture

estimates. Previous studies have demonstrated that the

assimilation of surface soil moisture retrievals can im-

prove the estimation of root-zone soil moisture by a land

surface model (LSM; Reichle et al. 2002; Crow and

Wood 2003; Reichle and Koster 2005). Specifically for

agricultural drought monitoring, Bolten et al. (2010) and

Bolten and Crow (2012) describe the benefit of assimi-

lating surface soil moisture retrievals from the Ad-

vanced Microwave Scanning Radiometer for Earth

Observing System (EOS; AMSR-E) into the U.S. De-

partment of Agriculture (USDA) modified Palmer soil

moisture model.
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The above-mentioned soil moisture data assimilation

systems encompass three major components: 1) surface

soil moisture retrieval from primary observations,

2) land surface model prediction, and 3) update (anal-

ysis) of the model-predicted soil moisture using a se-

quential data assimilation filter. First, remotely sensed

soil moisture estimates are obtained through appropriate

retrieval algorithms from primary measurements (e.g.,

brightness temperature from passive microwave sensors

and backscattering coefficients from active microwave

sensors). Second, LSMs take meteorological inputs (e.g.,

precipitation and air temperature) and produce soil

moisture state outputs based on the physics represented

in themodel. Finally, themodel-predicted soilmoisture is

constrained by the assimilation of observed soil moisture

to minimize errors in model state and flux predictions.

Although a number of previous studies have demon-

strated the benefits of assimilating satellite-based sur-

face soil moisture into LSMs for root-zone soil moisture

prediction, relatively little is known about the relative

merits of particular retrieval, modeling, and/or data as-

similation strategies. In particular, it remains unclear

what level of complexity and/or nonlinearity is appro-

priate for the system components described above.

Traditionally, the performance of these components has

been evaluated by comparing their output with a set of

independent ground-based data using metrics such as

root-mean-square error (RMSE) or correlation coefficient.

However, this typical evaluation approach does not take

into account the minimum level of expected perfor-

mance that stems from the inputs into the process. As

a consequence, it is difficult to objectively determine the

efficiency of each system component.

A possible way to overcome this limitation is by ex-

amining the relative change of a target metric against a

benchmark set by a competing simpler approach. While

the typical evaluation scheme computes RMSE against

observations, for example, the benchmarking approach

shows a ‘‘change’’ in RMSE versus a competing simpler

model. In this way, benchmarking allows us to directly

assess the value of the more complex model. Therefore,

in order to objectively evaluate the net benefit of any

nonlinear processes, it is desirable to compare the com-

plex nonlinear model against a benchmark established

with a simpler linear competing model (a minimum ref-

erence level). When this benchmarking approach is ap-

plied to each component of a data assimilation system,

the relative weaknesses/strengths of a specific component

can be diagnosed.

Recently, the LSM community has paid increasing

attention to benchmarking approaches for more sys-

tematic and objective evaluation of model performance

(Abramowitz 2005; Abramowitz et al. 2008; Abramowitz

2012; Kumar et al. 2012; Luo et al. 2012). For instance,

Abramowitz et al. (2008) adopted two statistical models

as benchmarks against which the performances of dif-

ferent LSMs were evaluated. The statistical models took

four meteorological inputs (downward shortwave radi-

ation, air temperature, specific humidity, andwind speed)

and were trained to produce the output fluxes (sensible

heat, latent heat, and net CO2 exchange) just as the typ-

ical LSMs do. Since the statistical models do not involve

any physical mechanisms, they can be used to examine

how much impact the input variables have on the output

fluxes and how efficient the nonlinear model physics are

in augmenting this value (Abramowitz 2005).

Here we apply a similar benchmarking approach to

evaluate the performance of each component of a soil

moisture data assimilation system in current operational

use for global agricultural drought monitoring. In par-

ticular, we attempt to assess individual components of

a drought-monitoring soil moisture data assimilation

system and benchmark the efficiency of these compo-

nents relative to simpler, linear retrieval, modeling, and

data integration strategies. In this way, we hope to im-

prove our understanding of skill contributed by various

components of the system and ultimately target specific

aspects of such systems for improvement.

The performance of the data assimilation components

and their benchmarks will be compared using an eval-

uation metric, the lagged rank correlation between the

output of each component and the normalized differ-

ence vegetation index (NDVI), in particular, the 1-month

lagged correlation. This evaluation approach was pro-

posed by Peled et al. (2010) and was applied by Bolten

and Crow (2012) and Crow et al. (2012b) to quantify the

skill of different LSMs in predicting variations in vege-

tative health associated with water stress. The advantage

of this particular evaluation approach is that it over-

comes the spatial limitations of traditional evaluation

approaches for LSMs or retrieval algorithms against in

situ observations. For instance, satellite-based soil mois-

ture products are typically evaluated based on comparisons

with a small number of point-scale in situ measurements

within a coarse-scale retrieval pixel (e.g.,Draper et al. 2009;

Brocca et al. 2011). These kind of direct comparisons be-

tween satellite-based and in situ (point) observations are

necessarily limited in spatial extent (Crow et al. 2012a) and

have issues such as differences in spatial resolution and

vertical support (Owe et al. 2001). While using the cor-

relation with NDVI is somewhat indirect, the benefit of

this evaluation approach is that it can be applied over

wide spatial areas and is not limited to the relatively small

number of sparse sites where high-quality soil moisture

information can readily be upscaled to match a satellite

remote sensing footprint (Crow et al. 2012a).
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Here, remotely sensed surface soil moisture and veg-

etation optical depth retrievals are obtained from the

Land Parameter RetrievalModel (LPRM) developed at

VU University Amsterdam and the National Aero-

nautics and Space Administration (NASA; Owe et al.

2008). Likewise, the two-layer Palmer water balance

model (Bolten et al. 2010) is used as a representative

LSM. While more modern (and complex) LSMs are

available, it is worth noting that the two-layer Palmer

model remains the operational water balance tool ap-

plied by the USDA Foreign Agricultural Service (FAS)

for global agricultural drought forecasting. In addition,

past research suggests that when evaluated by our pro-

posed NDVI rank correlation metric, increased LSM

complexity does not necessarily lead to improved root-

zone soil moisture predictions (Crow et al. 2012b). Fi-

nally, an ensemble Kalman filter (EnKF) approach is

applied to assimilate LPRM surface soil moisture re-

trievals into the Palmer two-layer model.

The main objectives of this study are 1) to identify

where strengths or deficiencies exist among each com-

ponent of an integrated soil moisture data assimilation

system, 2) to test whether nonlinearity in the model (or

algorithm) is adding information in the context of

drought monitoring, and 3) to explore opportunities for

model improvement by assessing various linear combi-

nations of available input data.

2. Data and model

Our general methodological approach is based on

reproducing (and then benchmarking) the remote sensing,

modeling, and data assimilation components of an existing

operational drought monitoring system. Details on indi-

vidual components of the system are described below.

a. LPRM

In this study, surface soil moisture observations are

derived from AMSR-E through LPRM. AMSR-E is

a microwave sensor that operated on board the Aqua

satellite from 2002 to 2011. Since it was the first satellite

mission to produce soil moisture as a standard product

and with a prescribed accuracy goal (Njoku et al. 2003;

Brocca et al. 2011), its soil moisture products have been

widely validated against in situ observations over vari-

ous regions (Wagner et al. 2007; Draper et al. 2009;

R€udiger et al. 2009; Jackson et al. 2010). Among dif-

ferent retrieval algorithms, LPRM has been proven to

perform well, producing relatively high correlations

with in situ measurements (Wagner et al. 2007; Draper

et al. 2009; R€udiger et al. 2009).

The LPRM uses H- and V-polarized brightness tem-

perature (Tb,H and Tb,V) from either C band (6.9GHz)

or X band (10.7GHz) to retrieve soil moisture (uLPRM)

and vegetation optical depth (t) simultaneously. The

retrieval methodology consists of an iterative optimi-

zation of the nonlinear forward radiative transfer model

to select the uLPRM and t that minimize the difference

between predicted and measured Tb,H. The radiative

transfer model is constrained by parameterizing t as a

function of the soil dielectric constant, and the micro-

wave polarization difference indexMPDI5 (Tb,H2Tb,V)/

(Tb,H1 Tb,V) (Owe et al. 2001; Meesters et al. 2005). The

nonlinear relationship between soil moisture and soil

dielectric constant is parameterized based on soil tex-

ture data according to Wang and Schmugge (1980).

Furthermore, the surface soil temperature (Ts), required

for the radiative transfer equation, is linearly related to

36.5-GHz V-polarized data.

C-band data are more sensitive to soil moisture than

X-band observations, but are more affected by radio

frequency interferences (RFIs). In this study, C-band

observations are used for soil moisture retrievals by

default, except for regions such as the United States

where C-band RFI is problematic. For a more detailed

description of the LPRM algorithm, see Owe et al. (2001),

De Jeu and Owe (2003), and Meesters et al. (2005).

In this paper, we focus on data from the descending

(nighttime) orbit that have generally demonstrated

higher correlation with in situ data (Wagner et al. 2007;

Draper et al. 2009; R€udiger et al. 2009; Gruhier et al.

2010). All the input and output data are in gridded 0.258
format. The output soil moisture product is expressed as

normalized volumetric water content (m3m23) ranging

from 0.00 to 1.00. However, LPRM output is known to

be biased high in many locations (e.g., Wagner et al.

2007), and its optimization loop is therefore purpose-

fully not capped at expected saturation soil moisture

values, as this would adversely affect correlation with

actual soil moisture values. Consequently, its soil mois-

ture output is more accurately interpreted as a relative

soil moisture index, rather than an absolute value. Since

t is a linear function of vegetation water content (De Jeu

and Owe 2003), it should also be useful for monitoring

vegetation conditions. Typical values of the t range

between 0 and 1.3 at C band, and values above 0.75 are

large enough to decrease the sensitivity of C band to soil

moisture variation for practical purposes (Owe et al. 2001).

b. Hydrologic models

The modified two-layer Palmer model developed

initially by Palmer (1965) is used to test the efficiency of

nonlinear hydrologic models. The two-layer Palmer

model is a relatively simple LSM compared to other

modern LSMs, but it captures key nonlinear LSM

characteristics due to finite water holding capacity of the
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soil layers, water movement between two layers, and

water loss due to evapotranspiration (ET). Therefore,

the Palmer model has been used operationally by

USDA-FAS for agricultural drought monitoring. In

addition, it is reasonable to take it as a baseline for soil

moisture assimilation studies considering the marginal

added skills of other advanced LSMs in predicting veg-

etation conditions (Crow et al. 2012b). For more ob-

jective evaluation, the performance of the Palmer

model is compared with a linear soil water accounting

model [the antecedent precipitation index (API) model]

as well as a statistical benchmark model explained in

section 3b.

The Palmer model is based on a simple bookkeeping

method: precipitation replenishes soil water content

within its layers, and water loss from each layer is de-

rived by actual ET. The actual ET depends on potential

ET, the initial water content, and available water ca-

pacity of the soil layers. The first soil layer of the model

is assumed to contain 2.54 cm of available water content

at field capacity. The available water capacity of the

second layer is determined based on soil texture, depth

to bedrock, and soil type from the Food and Agriculture

Organization (FAO) Digital Soil Map of the World

(Bolten et al. 2010). The second layer is assumed to

have a ‘‘no flow’’ boundary. Themodified Palmer model

currently operated by the USDA-FAS has an additional

diffusion term for stronger vertical coupling and gradual

soil moisture gradients between two layers, which con-

tributes to better assimilation results (Bolten et al. 2010).

The potential ET is calculated from the modified

FAO Penman–Monteith equation using observed daily

minimum and maximum temperature (Bolten et al.

2010). Therefore, the major meteorological forcing in-

puts of the Palmer model are daily precipitation and air

temperature. Those daily meteorological inputs are de-

rived from the National Centers for Environmental

Prediction (NCEP) Global Data Assimilation System

(GDAS) at 0.258 resolution. The model is run from July

2002 to June 2011 when AMSR-E observations are

available. The initial condition is set up after spinning up

the model three times for the simulation period. Palmer

model output could possibility be enhanced by adding

additional processes to the model and/or improved cal-

ibration of its existing processes. However, at global

scales, such improvements are hard to implement and

validate. Instead, our focus here is on evaluating the

existing Palmer model version currently in use opera-

tionally at USDA-FAS.

While the Palmer model serves as a baseline for

nonlinear hydrologic models, a simpler linear API model

expressed in Eqs. (1) and (2) is also used for bench-

marking purposes:

APIi,j 5 gi,jAPIi21,j 1Pi,j (1)

gi,j 5a2b(Tmax,i,j 2 270), (2)

wherePi,j is accumulated precipitation on day i and grid j

and Tmax,i,j is the climatological air temperature (K).

The global constants a and b are assigned values of 0.99

(no unit) and 0.0002K21, respectively, based on manual

calibration to maximize the lagged correlation (21

month) of API versus NDVI (explained in section 3a).

The loss coefficient g of the API model is modified as

shown in Eq. (2) to reflect varying depletion rates of soil

water content with daily maximum temperature Tmax,i,j.

This modification allows the API model to run with the

same meteorological forcing (i.e., daily precipitation

and maximum air temperature) as the Palmer model.

Both the Palmer and the API model are prognostic

models reflecting previous soil moisture conditions

(memory), while the benchmark statistical model (ex-

plained in section 3b) is a fully diagnostic model. There-

fore, additional comparison with the API model enables

us to evaluate the efficiency of nonlinearmodel physics in

the Palmer model more objectively than comparing only

with the benchmark model.

c. EnKF

The EnKF is a well-known sequential data assimila-

tion technique and has been demonstrated as an ef-

fective technique for soil moisture assimilation by a

number of studies (Reichle et al. 2002; Crow and Wood

2003; Reichle and Koster 2005; Zhou et al. 2006). It is

based on a statistical Monte Carlo approach in which

forecast error covariance information is sampled from

an ensemble of model realizations. In this study, a

30-member ensemble is initially created by directly

adding perturbations to a state vector u (consisting of

both surface and root-zone soil moisture values). Each

ensemble member of the state vector uik21 is forecasted

through a nonlinear model operator fk21(�) at time

step k 2 1:

ui2k 5 fk21(u
i1
k21,w

i
k21) , (3)

where the plus and minus superscripts refer to the

updated and forecasted states, respectively, for each

ensemble member i. The error term w represents all

uncertainties in the forcing data, model formulation,

and/or parameterization. It conforms to a Gaussian

distribution with zero mean and has covariance Q:

Q5

�
Q aQr

aQr a2Q

�
, (4)
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where r indicates the vertical correlation between per-

turbations applied to each soil layer and is assumed to be

equal to one in this study. The scalar term a reflects the

ratio of standard deviations of the root-zone soil mois-

ture perturbations to the one for surface soil moisture

perturbations. Here, this ratio is assumed equal to the

ratio between the available water holding capacity of the

surface layer and the root-zone layer. We also assume

the uncertainty in the model forecast is dominated pri-

marily by the accuracy of the main forcing variable,

precipitation data. Therefore, Q in Eq. (4) is expressed

in Eq. (5) as a function of the average distance (D) to the

three closestWorldMeteorological Organization (WMO)

rain gauges used to correct satellite-based precipitation

data:

Q5

8>>>><
>>>>:

0:022

0:042

0:062

0:082

m6 m26

m6 m26

m6 m26

m6 m26

if

if

if

if

D, 100 km

100 km#D, 150 km

150 km#D, 200 km

D$ 200 km

.

(5)

The EnKF updates model-predicted soil moisture

based on relative uncertainties in observations and

model predictions. Since AMSR-E provides daily soil

moisture observations, the model predictions are up-

dated on a daily basis. Before assimilation, the LPRM

soil moisture retrievals are rescaled through a linear

transformation to match the temporal mean and stan-

dard deviation of model-predicted surface soil moisture

for the 9-yr simulation period in order to put them in the

same climatology with the model. The predicted state

variable (ui21
k ) is then updated by optimally integrating

observations (uLPRM,k) and model forecasts via

ui1k 5ui2k 1Kk[uLPRM,k 2Hui2k 1 vik] , (6)

where the observation operator H 5 [1 0] and the ob-

servation error term vik is a Gaussian noise with mean

zero and variance R. The Kalman gain (Kk) is deter-

mined by the cross correlation between the forecasted

observations and the forecasted state variables (P2
k H

T
k )

and covariance matrix of the forecasted observations

(HkP
2
k H

T
k ):

Kk5P2
k H

T
k [HkP

2
k H

T
k 1R]21 . (7)

In this study, the uncertainties of the surface soil

moisture retrievals from LPRM are specified based on

the land cover type because of the critical effect of veg-

etation density on above-canopy brightness temperature

measurements (Owe et al. 2001). Here, we follow typical

practice by assigning time constant values of R as a func-

tion of land cover type. Land cover information is ob-

tained from the 8-km Moderate Resolution Imaging

Spectroradiometer (MODIS) land cover classification

dataset produced by the University of Maryland (http://

glcf.umd.edu/). Standard deviations of observation er-

rors, R1/2, for each different land cover type are shown in

Table 1. It should be noted that more complex ap-

proaches have been proposed to define Q and R in data

assimilation systems (Crow and Van den Berg 2010;

Dorigo et al. 2010; Parinussa et al. 2011). However, the

impact of these new approaches on large-scale data as-

similation results has not yet been verified (Draper et al.

2013), nor have they been widely applied yet in opera-

tional systems. As a result, we choose to apply the simpler

approaches described above as a baseline for our bench-

marking procedure.

From a benchmarking point of view, the EnKF takes

inputs from the outputs of the hydrologic model (surface

and root-zone soilmoisture) and the observation algorithm

(surface soil moisture) and produces new (updated) root-

zone soil moisture estimates (Fig. 1). Because the weight-

ing underlying these new estimates (supposedly) reflects

our understanding of time/space variations in model and

observation errors, EnKF estimates should outperform

competing approaches based on arbitrary averaging.

Therefore, the efficiency of the EnKF can be evaluated by

quantifying the added skill of the updated soil moisture

compared to a benchmarking model consisting of a simple

(spatially fixed) linear combination of background model

predictions and surface soil moisture observations.

d. Evaluation data

The performance of each process is evaluated using

the lagged rank correlation with vegetation condition

reflected in NDVI. Monthly NDVI data are derived

from MODIS MOD13C2 products and are aggregated

to 0.258 resolution from its initial 0.058 resolution.

TABLE 1. Assumed observation errors (R1/2) for different land

cover.

Land cover classification

Std dev of

obs error (m3m23)

Forests or woodlands

(ENF, EBF, DNF, DBF)

0.06

Wooded grasslands/shrubs (WGS)

or closed bushlands or

shrublands (CBS)

0.05

Open shrublands (OS)

or grasses (GRS)

0.04

Croplands (CRP) 0.03

Bare (BAR) 0.02

Water 0.99
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MODIS products flagged as ‘‘fully reliable’’ are ex-

tracted, and pixels in which more than 50% of the area

consists of barren, tundra, forest cover, and open water

surface are masked out to focus our study on areas with

nonnegligible agricultural and grazing land uses.

3. Experiment setup

This experiment aims to benchmark individual com-

ponents of a soil moisture data assimilation system for

quasi-global (608S–608N) agricultural droughtmonitoring.

Analysis is based on monthly data from July 2002 to June

2011. All daily observed or modeled data are averaged to

monthly values before the analysis. However, months that

have less than five daily data points are masked.

Unlike meteorological inputs for hydrologic models

(precipitation and air temperature), remotely sensed

brightness temperature and its processed products from

LPRM have varying coverage with time because of

several limiting factors such as dense vegetation, frozen

surface condition, and active precipitation. For consis-

tency, only pixels that contain retrievals for all five re-

mote sensing products (Tb,V, Tb,H, Ts, uLPRM, and t) are

included in the analysis. Additionally, barren areas

where no temporal NDVI variability is observed and

(presumably energy limited) areas where the two-layer

Palmer model demonstrated a nonsignificant rank cor-

relation with NDVI anomalies (at 80% significance) are

masked out in the present analysis (Crow et al. 2012b).

Note that one potential reason for this loss in sensitivity

is the saturation of NDVI in densely-vegetated regions.

While the strict filtering of the data reduces the number

of available data for the analysis, especially in the North-

ern Hemisphere, it strengthens the evaluation technique

(rank cross correlation with NDVI) by focusing on areas

and seasons in which soil moisture and NDVI are viable

drought indicators.

a. Evaluation metric

As an agricultural drought indicator, root-zone soil

moisture estimates can be evaluated by measuring how

much their anomalies are correlated with subsequent

NDVI anomalies, an indicator of vegetation condition

(Peled et al. 2010; Bolten andCrow2012). Likewise, we use

this criteria (rank correlation with NDVI) to determine the

agricultural drought forecasting capability of a certain da-

taset (i.e., a soil moisture proxy predicted by a physical

model or benchmarks). It is natural to expect that some

rank correlation of a particular soil moisture dataset will be

enhanced as the primary observations or forcing variables

(e.g., precipitation) go through the nonlinear processes se-

quentially in the retrieval algorithm, model physics, and/or

data assimilation step (Fig. 1). Magnitudes of the correla-

tions allowus to compare the performance of each complex

process relative to their simpler linear benchmarks.

The correlation analysis of this study is based on ranks

because the rank time series are free from seasonality, only

showing relative wetness of a particular month relative to

the same month of the year in all other years. The analysis

starts from ranking monthly anomalies of a certain dataset

of soil moisture proxy grouped by month of year for the

analysis period (July 2002 to June 2011). The resulting

ranks—or Rank(uk) of the dataset for month k—are nor-

malized so that they are in the ranges between 0.0 and 1.0.

Therefore, a month that has a rank of zero (one) has the

driest (wettest) soil moisture condition compared to the

samemonth of the year in other years.MonthlyNDVIdata

are also ranked in the sameway. Figure 2 shows an example

FIG. 1. Schematic of benchmarking framework (uLPRM: surface soil moisture observation, t:

vegetation optical depth, us: model predicted surface soil moisture, urz: model predicted root-zone

soil moisture, uKF,s: updated surface soil moisture, uKF,rz: updated root-zone soil moisture).
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time series of Rank(uk) and Rank(NDVIk) from a grid in

North America.

The lag-L rank correlation coefficient R(L) is cal-

culated as the Pearson’s correlation between Rank

(NDVIk) and Rank(uk1L). In testing the skills of a soil

moisture dataset as a leading indicator to NDVI, rank

correlation atL521 (i.e., soil moisture precedes NDVI

by 1 month) R(21) is our primary focus. It should be

noted that optimal lags to reflect the best NDVI soil

moisture correlation may be different for different land

cover types (Musyimi 2011). However, a lag time of

1 month is consistent with the monthly operational cycle

of many agricultural drought monitoring activities. In

addition to the spatial masking described above, months

having maximum air temperature below 58C are ex-

cluded to minimize the impact of cold-season condi-

tions. That is, snow dominated regions or seasons are not

the focus of the present study. Finally, for each pixel, the

correlation is calculated only if there are at least 30 pairs

of Rank(NDVIk) and Rank(uk1L) to obtain statistically

significant results.

To test significance of the sample correlation co-

efficient, the sample variance (s2) of a rank correlation

R(L) for a single pixel is estimated through a Fisher

transformation (Von Storch and Zwiers 2002) as

follows:

F[R(L)]5
1

2
lnf[11R(L)]/[12R(L)]g . (8)

This transformation converts the sample correlation

into a normal distribution with variance s2
F 5 1/(Nt 2 3)

(Fieller et al. 1957). The number of the temporal degrees

of freedom (Nt) in the time series is computed by con-

sidering lag-1 temporal autocorrelation of soil moisture

estimates (rt,u) andNDVI (rt,NDVI) (Dawdy andMatalas

1964):

Nt 5 nt 3 [(12 rt,urt,NDVI)/(11 rt,urt,NDVI)] , (9)

where nt is number of monthly data in the time series.

The sample variance of a rank correlation R(L) in

Fisher space (s2
F) can be converted into a regular space

as follows:

s25s2
F(sech

2fF[R(L)]g)2 . (10)

Likewise, the sample variance of spatially averaged

R(L) in space can be estimated by dividing the spatial

average of Eq. (10) for each pixel by the number of ef-

fective spatial degrees of freedom (Ns) that are averaged

across

Ns 5ns 3 [(12 rs)/(11 rs)]
2 , (11)

where ns is the total number of pixels averaged over and

rs is the lag-1 spatial autocorrelation of the field. These

sample variance values are used to construct error bars

(61 standard deviation) in Figs. 3, 4, and 5. The statis-

tical significance of anR(21) difference for a single pixel

between soil moisture outputs from each data assimila-

tion component and their benchmarks can be expressed

via the Z score:

Z5 fF[Ru(21)]2F[RBM(21)]g/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
F,u1s2

F,BM

q
. (12)

b. Benchmarking models

Our benchmarking approach is based on a linear mul-

tivariate regression models. For each component of the

data assimilation system (i.e., observation, modeling and

assimilation), an empirical relationship between inputs

and outputs is established. A general expression of the

benchmarking model with p independent variables is

FIG. 2. Example time series of monthly ranks of LPRM soil moisture estimates andNDVI from

a 0.258 grid centered at 30.1258N, 109.3758W.
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BM(X1,⋯ ,Xp)i,j5 a1X
0
1,i,j1 a2X

0
2,i,j 1⋯1apX

0
p,i,j1«i,j ,

(13)

where X 0
p,i,j is the anomaly of each input variable p for

month i and pixel j normalized by its temporal standard

deviation [(Xp,i,j 2Xp,j)/sp,j]. The parameters (a1,⋯ , ap)

are constant in time and space and imply the relative

contribution (weight) of each independent input

variable in predicting the integrated soil moisture

proxy BM(X1,⋯ ,Xp)i,j. The time series of the resulting

soil moisture proxies are ranked and used to compute

R(L) with NDVI.

In setting up the relationship, the objective function is

the spatial average of R(21) or correlation between the

statistical model predictions and NDVI at L521. That

is, our goal in training the parameters is to achieve the

highest spatial average of the lagged rank correlation

with next month’s NDVI. We reserve the extratropical

Northern Hemisphere (ETNH, 308–608N) to test the

empirical models and use the remaining area of the

globe (608S–308N) to train the parameters. This spatial

segregation allows us to have exclusively independent

datasets for training and testing purposes. Note that our

goal is only to obtain a single spatially and temporally

constant set of parameters (a1,⋯ , ap) for the entire globe.

We take this very conservative approach tofind aminimum

reference level (benchmark) even though much better

benchmark model performance is possible if tuned pa-

rameters in Eq. (13) are allowed to vary in time and space.

Unlike the nonlinear models such as LPRM or the

Palmer model, this regression model combines available

inputs (X 0
1,i ;X 0

p,i) in a linear way and produces a soil

moisture proxy for each month without any knowledge

of the physical relationships between the input and

output variables. In addition, this statistical model is a

fully diagnostic model and therefore ignorant of infor-

mation concerning the prior status of the variables (like

LPRM, but unlike the Palmer model).

For the individual components of the data assimila-

tion system, we define a series of benchmarking models

as follows.

Case 1: The purpose of Case 1 is to test the efficiency of

LPRM soil moisture retrievals versus a benchmark

model consisting of a linear combination of inputs into

LPRM (Fig. 1). For Case 1, our focus is on comparing

the 1-month lagged rank correlation of uLPRM versus

NDVI—denoted as R(21)—versus the analogous

rank correlation of a benchmarkingmodel based solely

on a simple linear combination of Tb,H, Tb,V, and Ts or

BM(Ts,Tb,V ,Tb,H)i 5 a1,1T
0
s,i1 a1,2T

0
b,H,i

1 a1,3T
0
b,V,i 1 «1,i . (14)

Case 2:Adefining feature of LPRM is that it produces

t as an intermediate product. Since t reflects the

presence of vegetation water content, it contains

drought-relevant information. Based on this hypoth-

esis, another way of testing the efficiency of the

LPRM is to compare the information of both LPRM

outputs (uLPRM and t, after combining them into

a single variable) against a benchmark model derived

from LPRM inputs. Therefore, to represent complete

skills from the two outputs, we use the same multiple

linear regression model in Eq. (15) and compare it

with the regression model from the inputs in Eq. (16):

LR(uLPRM, t)i 5 a2,1u
0
LPRM,i1 a2,2t

0
i1 «2,i (15)

FIG. 3. Spatial average of R(L) for the LPRM retrievals (uLPRM and t), model predictions (uPM and uAPI), and

updated model outputs (uPM-KF and uAPI-KF) within the training (608S–308N) and testing (308–608N) areas.
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BM(Ts,MPDI,Tb,V)i5a22,1T
0
s,i1a22,2MPDI0i

1 a22,3T
0
b,V,i 1 «22,i . (16)

By comparing (15) and (16), we can get a sense of

the value of uLPRM and t outputs—combined via

Eq. (15)—versus the simple combination of LPRM

inputs in Eq. (16). In this case, the benchmark

model in Eq. (16) uses MPDI as an input variable

because t is a function of the MPDI. The MPDI

removes the effect of soil temperature from the

microwave emission signal (Owe et al. 2001). In

addition, Tb,V is used rather than Tb,H because a

preliminary analysis (not shown) demonstrated that

Tb,V has a higher correlation with NDVI than Tb,H.

It is also interesting to examine the marginal value

of t retrievals, above and beyond uLPRM, for agri-

cultural drought monitoring. We can achieve this

objective by comparing R(21) of the predictions

from Eq. (15) with the R(21) for only uLPRM.

Case 3: The performance of a nonlinear hydrologic

model is evaluatedby comparing itwith a benchmark

model based on the linear combination of its inputs

[i.e., daily maximum air temperature (Tmax) and

daily accumulated precipitation (P)]:

BM(Tmax,P)i 5 a3,1T
0
max,i 1 a3,2P

0
i 1 «3,i . (17)

Therefore, the key comparison in Case 3 is between

R(21) for Palmer and/or API model predictions of

root-zone soil moisture versus R(21) for the soil

moisture proxy obtained via this benchmark model.

Note that the prognostic structure of the API and

Palmer model should provide a natural advantage

over the purely diagnostic form of Eq. (17).
Case 4: The EnKF is designed to optimally combine

model predictions (uPM or uAPI) and observations

(uLPRM) using information about their relative

FIG. 4. Spatial average of R(L) for the training (608S–308N) and testing (308–608N) areas for Cases 1–3. Subplots

show relative R(L) difference (%) of retrieval (or model) outputs to benchmarks indicated by the superscript (*) in

the legend fe.g., 100*[R(L)uLPRM2R(L)uBM]/R(L)uBMg. Note forLR(uLPRM, t) in (a) relativeR(L) differences are

computed using the BM(Ts, MPDI, Tb,V) defined in Eq. (16).
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uncertainties. As an alternative to the standard

EnKF, one can construct a benchmarking model

that does not have any prior knowledge of those

uncertainties and instead applies (globally constant)

weights to merge model-predicted soil moisture (uPM
or uAPI) with remotely sensed soil moisture retrievals

(uLPRM):

BM(uPM, uLPRM)i 5 a4,1u
0
PM,i1 a4,2u

0
LPRM,i 1 «4,i

(18)

BM(uAPI, uLPRM)i 5 a42,1u
0
API,i1a42,2u

0
LPRM,i1«42,i.

(19)

Note that the EnKF uses different uncertainties for

each pixel (i.e., each pixel has its own model and

observation error depending on land cover and

distance from WMO rain gauges). In contrast, the

benchmarking model applies spatially and tempo-

rally constant weights for the Palmer model pre-

dictions (uPM) and observations from LPRM (uLPRM)

obtained from a training dataset. Comparing

R(21) for soil moisture proxy obtained via Eqs. (18)

or (19) with R(21) for a soil moisture analysis

(acquired using a Palmer or API model-based

EnKF) will evaluate how efficiently the EnKF is

implemented.

4. Results

Figure 3 shows spatially averaged lagged R(L) results

for each component of an offline agricultural drought

monitoring system (LPRM soil moisture and vegetation

optical depth retrievals, open loop model predictions,

and an EnKF analysis) for the training and testing da-

taset separately during the 9-yr period from July 2002 to

June 2011. Although LPRM soil moisture retrievals

(uLPRM in Fig. 3) reflect only surface soil moisture con-

dition, it demonstrates nearly as large a R(21) as root-

zone soil moisture estimates obtained from the EnKF

analysis (uPM-KF or uAPI-KF). In contrast, the Palmer

model–predicted root-zone soil moisture (uPM) has rel-

atively low R(21) compared to the other soil moisture

estimates.Most notably, it fails tomatch values obtained

with the simpler API model. Error bars constructed

using Eqs. (8)–(11) are added to each point in Fig. 3 to

reflect 1s sampling uncertainty. Relatively larger error

bars for API results are due mainly to its higher tem-

poral autocorrelation (and thus reduce temporal degrees

of freedom) relative to other products.

For each case introduced above, Figs. 4 and 5 compare

the R(L) of each soil moisture product versus its

appropriate benchmark in both the training and testing

datasets. As shown in Crow et al. (2012b), semiarid areas

have very strong correlation [R(21). 0.5] between soil

moisture and NDVI due to water-limited plant growth.

Therefore, the large fraction of semiarid areas found in

the Southern Hemisphere training dataset ensures that

the averageR(21) is higher in the training set than in the

NorthernHemisphere testing set.An in-depth explanation

of results in Figs. 3, 4, and 5, focusing mainly on the

testing set, is given below.

Spatially different coupling strengths between soil

moisture and NDVI due to different climate conditions

can be found on the maps of R(21) for the testing area

(ETNH, 308N – 608N) in Fig. 6. In relation to climatic

region, there are distinct differences in the magnitude of

R(21) for different land cover types, as shown in Fig. 7.

Land cover classification and their areal fractions are

provided in Table 2 for both the training and testing

areas. Error bars in Fig. 7 were computed using Eqs. (8)–

(11). Note that two land cover types [evergreen broad-

leaf forests (EBF) and deciduous needleleaf forests

(DNF)] are not displayed in Fig. 7 because of their small

portions (Table 2) and large sample variance. Most

forested areas show weak relationships between soil

moisture and NDVI [R(21) , 0.2], which makes sense

because trees take water from deeper soil and are more

resilient to surface soil moisture shortage than shrub or

grass. Shrub and grasslands that correspond to the

semiarid climate have strong correlations with NDVI

[R(21) . 0.4]. Croplands have relatively lower R(21)

(;0.3) than the shrub or grasslands, likely because ar-

tificial human interference for agricultural practices

such as irrigation and the installation of tile drainage

systems may disturb the direct coupling between soil

moisture andNDVI inmanaged agricultural landscapes.

Below, we define the efficiency of a given model

monitor component (e.g., the soil moisture retrievals

algorithm, the LSM, and the data assimilation system) as

the difference between the R(21) of soil moisture out-

put provided by each component and that is obtainable

using its corresponding linear benchmark. This effi-

ciency provides a means to evaluate the added value of

nonlinear and/or complex processes embedded in each

component relative to a baseline established by the

simple benchmarks in Eqs. (14)–(19). Note that while

each benchmark model is based on fitted parameters,

these parameters are static in time and space and are

fitted to a spatially distinct training dataset.

a. Case 1: Efficiency of the LPRM retrieval algorithm

For Case 1, comparisons between the benchmark

model in Eq. (14), based on a linear combination of

primary AMSR-E observations (Tb,V, Tb,H, and Ts), and
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the full LPRM soil moisture product (uLPRM) are de-

cidedly mixed. Averaged over the testing domain,

the benchmarkmodel produces roughly the sameR(21)

as the full LPRM soil moisture product (Table 3). For

all lags other than L 5 21, the benchmark model

slightly outperforms the LPRM soil moisture product in

predicting vegetation conditions (Fig. 4a-2). How-

ever, when focusing just on R(21) results for individual

land cover types within the testing area, LPRM out-

performs the benchmark model for most land cover

types other than open shrublands (OS), closed bushland

or shrublands (CBS), deciduous forests (DBF) and bare

soil in Fig. 7, and the Z-score map in Fig. 8a illustrates

that LPRM is marginally superior to the benchmark

model over broad areas of Europe and the eastern

United States.

The evaluation approach in the present study adopted

a benchmark model as a minimum reference level to

evaluate the performance of the LPRM retrieval algo-

rithm. Even though LPRM soil moisture has been

shown to correlate well with in situ observations of soil

moisture (Draper et al. 2009; Brocca et al. 2011), results

FIG. 5. Spatial average ofR(L) for the training (608S–308N) and testing (308–608N) areas for Case 4. Subplots show

relativeR(L) difference (%) of updated outputs to benchmarks indicated by the superscript (‘‘*’’) in the legend (e.g.,

100*[R(L)uPM-KF 2 R(L)uBM]/R(L)uBM).

FIG. 6. Map of R(21) for LPRM soil moisture estimates within the testing area.
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here imply that LPRM benefits marginally from its

nonlinear parameterization when judged against our

NDVI validation metric. As a result, it may be possible

to simplify (and/or linearize) the LPRM algorithm

without adversely affecting its value for drought fore-

casting. Nevertheless, it should be stressed that in this

study we benchmark the ‘‘quality’’ of soil moisture infor-

mation only for a very specific application—forecasting

the impact of agricultural drought on vegetation health—

and these results might be application specific.

b. Case 2: Efficiency of the LPRM retrieval algorithm
and added skill of t

Case 2 is designed to investigate if LPRM t estimates

can add robust skill to agricultural drought monitoring.

First, it should be noted the difference in measurements

of NDVI and t. In principle, NDVI observation is

strongly influenced by the chlorophyll concentration in

vegetation and is thus related to green leaf biomass

(Owe et al. 2001; Jones et al. 2011). However, t is ob-

tained based on the vegetation dielectric properties that

are strongly related to vegetation water content in both

foliage and woody biomass (Liu et al. 2011; Andela et al.

2013). Therefore, the NDVI/t relationship is not known

explicitly, even though both of them reflect some aspects

of vegetation condition and NDVI was used to validate

the t in Owe et al. (2001).

From Fig. 3, the t rank anomaly is significantly less

successful (compared to surface soilmoisture observations)

as a leading indicator for future NDVI anomalies, es-

pecially in testing areas. Interestingly, however, the t

has strongest correlation with NDVI at L 5 1 [i.e.,

Rank(tk) temporally lags behind Rank(NDVIk) by 1

month]. Therefore, t information is more suitable for

a retrospective analysis of NDVI rather than fore-

casting. Nonetheless, the t shows relatively high R(21)

with NDVI for several land cover types. For example,

FIG. 7. Spatial average of R(21) of various soil moisture products within different land cover

types in the ETNH (308–608N). See Table 2 for definitions of land cover acronyms.

TABLE 2. Land cover classification in the training and testing datasets. Pixels where all five remote sensing retrievals (Tb,V, Tb,H, Ts,

uLPRM, and t) are available and monthly maximum air temperature is above 58C are included in the present analysis. Thus, many forested

or frozen areas are excluded.

Land cover type

Training area (608S–308N) Testing area (308–608N)

No. of pixels No. of pixels

Evergreen needleleaf forests (ENF) 6155 0.75% 70 485 10.88%

Evergreen broadleaf forests (EBF) 51 983 6.31% 112 0.02%

Deciduous needleleaf forests (DNF) 1 0.00% 2433 0.38%

Deciduous broadleaf forests (DBF) 17 695 2.15% 27 926 4.31%

Mixed forests (MF) 2640 0.32% 42 916 6.63%

Woodlands (WL) 154 142 18.72% 13 933 2.15%

Wooded grasslands/shrubs (WGS) 161 786 19.65% 14 795 2.28%

Closed bushlands or shrublands (CBS) 88 576 10.76% 8328 1.29%

Open shrublands (OS) 136 474 16.58% 76 824 11.86%

Grasses (GRS) 51 441 6.25% 192 866 29.77%

Croplands (CRP) 77 330 9.39% 160 329 24.75%

Bare (BAR) 74 993 9.11% 36 834 5.69%
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land cover types such as CBS, OS, and grasses (GRS)

have R(21) greater than 0.25, but for forested areas and

even crop land, t shows little relationship with next

month’s NDVI (Fig. 7).

Because of lowR(L) for negativeL, it is expected that

the t does not add significant value to the prediction of

future vegetation conditions. Therefore, when uLPRM

and t are linearly combined into LR(uLPRM, t) through

Eq. (15), it produces only marginally higher R(21) than

the soil moisture retrievals only [0.307 for LR(uLPRM, t)

and 0.301 for uLPRM only] for testing dataset as shown in

Fig. 4a-2. However, because of the lagged nature of the t

response versus NDVI, the addition of t does seem to

increase R(L) for L $ 0.

In the context of evaluating the efficiency of nonlinear

LPRM retrieval algorithm, the linear combination of the

two LPRM outputs (uLPRM and t) expressed in Eq. (15)

is compared to the linear regression model of the three

LPRM inputs (Ts, MPDI, and Tb,V) in Eq. (16). The

combination of uLPRM and t barely outperforms the

benchmark model in Eq. (16) for the testing dataset

(0.307 versus 0.298 in Table 3). Since t is a function of

MPDI, MPDI rather than Tb,H is used in Case 2 for

creating the benchmarking model. However, R(L) of

the MPDI does not correspond well to the R(L) of the

t (not shown), and the use of MPDI as a predictor of the

benchmarking model does not make much difference

compared to the performance of the benchmark model

TABLE 3. Optimized benchmark models and their performance. Key comparisons for each case are in bold.

Case Model/algorithms/regression equation

Optimized parameters R(21)

a
*,1

a
*,2

a
*,3

Training Testing

1 uLPRM — — — 0.388 0.301

a1,1T
0
s,i 1 a1,2T

0
b,H,i 1 a1,3T

0
b,V,i 0.5 0.8 21.7 0.420 0.299

2 t — — — 0.330 0.166

a2,1u
0
LPRM,i 1 a2,2t

0
i 0.25 0.12 — 0.412 0.307

a22,1T
0
s,i 1 a22,2MPDI0i 1 a22,3T

0
b,V,i 0.5 20.6 21.3 0.417 0.298

3 uPM — — — 0.277 0.266

uAPI — — — 0.329 0.304
a3,1T

0
max,i 1 a3,2P

0
i 20.19 0.52 — 0.241 0.223

4 uPM-KF — — — 0.380 0.305

uAPI-KF — — — 0.390 0.320

a4,1u
0
PM,i 1 a4,2u

0
LPRM,i 0.28 0.89 — 0.395 0.319

a42,1u
0
API,i 1 a42,2u

0
LPRM,i 0.32 0.57 — 0.411 0.339

FIG. 8. Maps ofZ score for (a) Case 1 [R(21)uLPRM
2R(21)uBM1

], (b) Case 2 [R(21)LR(uLPRM,t) 2
R(21)uBM2

], (c) Case 3 [R(21)uPM 2 R(21)uAPI
], and (d) Case 4 [R(21)uPM2KF

2 R(21)uBM4
].
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in Case 1 [Eq. (14)]. A plot of spatially averaged R(L)

for the benchmark in Eq. (16) is very similar to that of

the Case 1 benchmark in Eq. (14). Therefore,R(L) of the

benchmark of Case 2 are not shown in Fig. 4a, but the

relative difference of LR(uLPRM, t) was computed based

on its benchmark in Eq. (16).

When spatially averaged, t does not seem to add sig-

nificant skill to NDVI prediction. However, for certain

land cover types such as CBS and OS, the combination

of uLPRM and t contributes to an increase inR(21) from

the soil moisture–only case because of the highR(21) of

t (Fig. 7). This result might be explained by the differ-

ence in what t and NDVI actually measure; NDVI is

sensitive to the chlorophyll concentration in the canopy

while t is sensitive to the water content both in foliage

and woody biomass. Even though total above-ground

biomass represented in t decreases with a lack of pre-

cipitation, the NDVImay show lagged response because

green canopy cover is maintained in grassland or

shrubland land covers during drought (Liu et al. 2011).

Therefore, the t information may be more useful for

open and closed shrubland vegetation types. This is also

confirmed by the Z-score map in Fig. 8b. When uLPRM

and t are combined into LR(uLPRM, t) via Eq. (15),

certain relatively arid regions (e.g., the western United

States and northernAfrica) are converted from negative

to positive Z scores, indicating an improvement in per-

formance relative to the benchmark (cf. Figs. 8a,b).

c. Case 3: Efficiency of hydrologic models

Case 3 examines the efficiency of a nonlinear hydro-

logic model by benchmarking Palmer model output

against a linear regression model—given in Eq. (17)—

with independent variablesmatching themeteorological

inputs of the Palmer model (precipitation and daily

maximum air temperature). If more complicated LSMs

are evaluated, additional model inputs can be added to

Eq. (17). Since soil moisture retains memory from the

previous model time step, any kind of prognostic model

should possess a natural advantage over a fully di-

agnostic model like the benchmark model in Eq. (17).

Therefore, for more objective evaluation, performance

of the Palmer model is also compared with a purely

linear prognostic model (API model) as well as the

benchmark in Eq. (17). The Palmer model produces soil

moisture condition for each of the two layers. To mimic

an integrated root-zone estimate, we use averages of the

two soil moisture outputs weighted by the water holding

capacity of each layer.

The Palmer model performs relatively poorly in pre-

dicting future vegetation dynamics as shown in Fig. 3.

The values of R(21) of the Palmer model are 0.277

and 0.266 for training and testing dataset, respectively

(Table 3), and are significantly worse than the perfor-

mance of theAPImodel (0.329 and 0.304 for the training

and testing dataset, respectively). However, the bench-

mark model in Eq. (17) is even worse than the Palmer

model [R(21), 0.25]. As noted above, this is likely due

to its diagnostic model and lack of memory regarding

past soil moisture conditions. In Fig. 4b, the gap between

the benchmark in Eq. (17) and the other prognostic mod-

eling approaches reiterates the importance of representing

month-to-month memory when deriving soil moisture

proxies for agricultural drought monitoring.

The Z-score map in Fig. 8c also shows the relatively

poor performance of the Palmer model compared to the

API model serving as a benchmark. Looking at R(21)

for each land cover type in Fig. 7, soil moisture varia-

tions in forested areas again demonstrate a weak cor-

relation with NDVI, which is attributed to resilience of

forest biomass to variations in soil moisture rather than

weakness of a specific observations or model products.

The root-zone soil moisture outputs from the Palmer

model do not even catch up with the performance of

LPRM surface soil moisture retrievals for most land

cover types [wooded grasslands/shrubs (WGS), CBS,

OS, GRS, and croplands (CRP)] in which agricultural

drought monitoring is crucial (Fig. 7). This supports the

earlier finding of Bolten and Crow (2012) that existing

satellite-based soil moisture products provide at least as

much global agricultural drought information as a sim-

ple, offline water balance model driven by available

global precipitation datasets.

Based on comparisons with linear API results, the

Palmer model does not appear to be fully utilizing the

precipitation and air temperature information it requires

FIG. 9. Relationship between correlation with NDVI and runoff

generation using the API model with different settings of water

holding capacity. The original water holding capacity (whc) used

for the Palmer model is indicated as whc*1. Global average runoff

estimate is based on Trenberth et al. (2007).

1130 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



as input. This implies that the nonlinear physics of the

Palmer model are somehow squandering information

present in its input. To pinpoint the nonlinearity re-

sponsible for this effective loss of information, we con-

strained the API model using different water holding

capacity values as shown in Fig. 9. The original fully linear

APImodel predicts no runoff but has a globally averaged

R(21) of 0.294. Constraining the water holding capacity

of the model to produce a realistic amount of global

runoff [based on Trenberth et al. (2007)] leads to a sharp

degradation in R(21) results. This suggests that the

addition of a simple saturation threshold to the API

model, required to generate surface runoff and any type

of reasonable streamflow prediction, tends to decrease

the utility of API predictions as a predictor of coarse-

scale agricultural drought. As such, it provides a direct

example of the so-called land surface model multi-

objective parameterization problem (Yapo et al. 1998;

Vrugt et al. 2003), whereby LSM parameterizations re-

quired to minimize error in one type of model output

(e.g., runoff predictions) are often at odds with the op-

timal parameterization required for a second type of

output (e.g., root-zone soil moisture monitoring for ag-

ricultural drought). Consequently, for coarse-scale agri-

cultural droughtmonitoring, it appears there is no utility in

enforcing a nonlinear saturation limit on soil moisture

dynamics. Since such a threshold is required to generate

surface runoff, these results also call into question the

practice of monitoring agricultural drought using pre-

dictions from a land surface model calibrated using

streamflow data.

d. Case 4: Efficiency of the EnKF

The two benchmarks in Eqs. (18) and (19) linearly

combine anomalies of the model-predicted root-zone

soil moisture (from a prognostic model) and observed

surface soil moisture. Because of the relatively poor

performance of the Palmer model in Case 3 and rela-

tively strong correlation of LPRM soil moisture re-

trievals with NDVI, the optimized regression coefficient

for LPRM retrievals is 3 times higher than the coefficient

for Palmer model predictions (0.89 versus 0.28 in Table

3). The better performance of the API approach relative

to the Palmer model in Fig. 3 causes relatively more

weight to be placed on the model, but LPRM soil mois-

ture retrievals are still given almost 2 times more weight

than API model predictions (Table 3).

The results of Case 4 in Table 3 and Figs. 5 and 8d

show that the benchmarks outperform the outputs from

the EnKF for both the Palmer and the API model. In

other words, this benchmarking evaluation indicates an

inefficient implementation of the EnKF systems for both

the Palmer and API model. In addition, when the EnKF

results of the Palmer model are compared with the

performance of the LPRM soil moisture only (Fig. 3),

we can see that most of the predictive skill of the EnKF

analysis is already present in the assimilated observa-

tions; R(21)5 0.301 for uLPRM while R(21)5 0.305 for

uPM-KF in Table 3. This suggests that the background

model is contributing relatively little information to the

analysis. For several land cover types such as WGS,

CBS, GRS, and CRP, where soil moisture observations

have relatively stronger correlations with NDVI, the

benchmarks outperform the EnKF in Fig. 7.

In theory, the EnKF should assign optimal weights to

background model predictions and observations and

therefore outperform simple weighting based on spa-

tially fixed parameters [Eqs. (18), (19)]. However, in

practice, it is very difficult to specify those weights op-

timally for each grid because of the complicated nature

of error sources in model and observed soil moisture

products (Crow and Van den Berg 2010). Here,R andQ

are assigned in a relatively simple way based on land

cover and distance fromWMOrain gauges, respectively,

following Bolten et al. (2010) and Bolten and Crow

(2012). However, comparisons between the Kalman

gain map (based on specified R and Q) and optimized

weights determined by the benchmark models suggests

that R and Q have not been optimally specified. In

particular, a spatially distributed Kalman gain map for

the surface soil moisture in Fig. 10 suggests that the

EnKF places excessive weight on the model background

in the United States and Europe.

An additional assumption applied in this study is

that of perfect vertical error correlation [i.e., r 5 1 in

Eq. (4)]. However, this assumption may not be always

true for certain soil conditions. In that case, the Kalman

gain in Eqs. (6) and (7) may link forecasted surface

FIG. 10. An example spatial distribution of monthly averaged Kalman gain (Kk) from the

Palmer–EnKF system (July 2003).
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observations with the root-zone soil moisture prediction

inappropriately, which may also contribute to the appar-

ently suboptimal performance of the Bolten and Crow

(2012) EnKF system.

5. Discussion and summary

Over the past decade, soil moisture data assimilation

has been actively investigated in the land surface mod-

eling community as a tool for improving operational

drought monitoring. However, the various soil moisture

retrieval algorithms, land surface models, and data as-

similation approaches comprising such a system have

generally been evaluated separately. Therefore, their

relative benefits within a comprehensive data assimila-

tion system have never been fully assessed. In addition,

traditional validation approaches based on direct com-

parison against ground-based observations have limited

the evaluation of these systems to isolated, data-rich

areas where sufficient ground-based observational re-

sources are available.

Here, all three major components of a soil moisture

data assimilation system (retrieval algorithm, hydro-

logic model, and an assimilation technique) for agri-

cultural drought monitoring are evaluated against a

series of benchmarks derived from linear statistical

models. This benchmarking approach is designed to

assess the value of complex and/or nonlinear processes

directly by comparing them with the performance of

simple linear models utilizing the same set of input

variables. In addition, this study uses a novel evaluation

metric, rank correlation with NDVI from Crow et al.

(2012b), to quantify the predictive skill of various soil

moisture proxies over broad continental-scale regions.

First, the efficiency of LPRM, a soil moisture retrieval

algorithm, was evaluated in Case 1. The LPRM soil

moisture product marginally outperformed a benchmark

model constructed directly from AMSR-E radiance

measurements. It should be stressed that the evaluation

result of this study does not directly evaluate the in-

trinsic accuracy of the LPRM soil moisture products, but

rather how much skill they posses for a single, specific

application (the forecasting of future vegetation condi-

tions). Nevertheless, in this specific context, the non-

linear LPRM retrieval algorithm does not appear to add

much additional predictive information compared to a

corresponding linear benchmark constructed using LPRM

inputs.

In Case 2, vegetation optical depth (t), the additional

AMSR-E retrieval product of LPRM, shows a potential

for the retrospective analysis (as opposed to forecasting)

of vegetation condition since it demonstrates the high-

est correlation coefficient with NDVI at L 5 1 [i.e.,

Rank(tk) temporally lags behind Rank(NDVIk) by 1

month]. The lagged response of t to NDVI is consistent

with the observations of Jones et al. (2011) made with

regards to plant phenology. However, the relationship

between t and NDVI is not fixed across different land

cover types (Liu et al. 2011). For L 5 21, however,

neither t norMPDI add any information over and above

the benchmarks defined in Eqs. (14) or (16).

In Case 3, the modified two-layer Palmer model is

evaluated by comparing its performance to the linear,

prognostic API modeling approach illustrated in Eqs.

(1) and (2) as well as a diagnostic benchmarking model

in Eq. (17) based on the same meteorological forcing

input utilized in the Palmer and API models. The

Palmer model outperforms the diagnostic benchmark

model in Eq. (17), but only because of its prognostic

nature. More importantly, the poor performance of the

Palmer model compared to the API implies the in-

efficiency of the nonlinear physical characteristics in the

Palmer model. Crow et al. (2012b) also used a similar

API model as a baseline to evaluate modern LSMs

based on the same evaluation criteria for agricultural

drought monitoring and showed that those complex

LSMs do not produce significantly higher R(L) than

the API model. Based on the superior performance of

the API model, we hypothesize that the finite satu-

ration threshold of soil layers in the Palmer model

may actually hinder its utilization of meteorological

input information for agricultural drought monitor-

ing. However, considering the relative simplicity of

the models considered here, further research using

more complex LSMs is required to better understand

this issue.

Although Bolten and Crow (2012) showed the added

benefit of assimilating surface soil moisture observations

into the Palmer model, the evaluation results of the

present study suggest that the benefit of soilmoisture data

assimilation comes mainly from the strength of the ob-

servations, not from the efficiency of a sophisticated as-

similation technique such as theEnKF.That is, it is shown

that the EnKF outputs from the Palmer model produce

lower R(21) with NDVI than the benchmark model in

Eq. (18) that simply combines model forecasts and ob-

servations using globally fixed weighting parameters. The

relatively inefficient performance of the EnKF is likely

linked to inappropriate model and observation error as-

sumptions underlying the estimation of the Kalman gain.

This suggests that additional work is still required to

optimally parameterize large-scale land data assimilation

systems for agricultural drought monitoring.

In spite of significant advances in developing soil

moisture data assimilation systems, there are still

limitations in evaluating them objectively for further
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improvements. This study suggests a simple but ef-

fective evaluation approach using statistical bench-

mark models and successfully pinpoints weaknesses

in each component of a soil moisture data assimila-

tion system.
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