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High-resolution Coronal Imager (Hi-C)

Optical Layout with Tolerances

Secondary

— 1830 mm

Hi-C is a narrowband EUV
imager. The wavelength

band is centered on 193 A.

Multilayer coatings by
David Windt, RXO LLC.

Tilt: 36"

Primary to secondary requirements: Distance: +/- 0.05mm

De-center: 0.05mm

Focal Plane: Axial Position: +/- Imm

Hi-C Telescope Optical Design

Telescope Properties:

Focal Length

Plate Scale

Focal Ratio

Field of View

RMS Spot Diameter
(averaged over f.0.v.)

CCD Camera:

Size
| Scale

239m

114 um/arcsec
f/109

6.8x6.8 arcmin
0.08 arcsec

49.1 mm?
0.1 arcsec/pixel

Primary Mirror:

Radius of Curvature
Diameter
RMS slope error

Secondary Mirror:

Radius of Curvature
Conic

Diameter

RMS slope error

4000£4.0 mm
240 mm
0.4 prad

370+£0.5 mm
-1.14+0.10

30 mm
0.1 prad




Hi-C Passband

The Hi-C 193 A passband is similar to the 193 A passband on
the Solar Dynamics Observatory (SDO) Atmospheric Imaging
Assembly (AIA).

Hi-C has roughly 5 times the effective area of AlA.
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Hi-C 193 A
AlA 183 A
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Hi-C Discovery Space

10000 F
_ - Hi-C
* The spatial : AIA
resolution of Hi-C 1000 _
is five times better = K
than AlA . 3
— 100 -
o ] ]
S
. &
e The cadence of Hi- -

) ] 10 =
Cis2.5—-6 times - ]
better than AlA.

0,1 1,0 10.0 100.0 1000,0
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Hi-C Target

AlA 193—A 11-Jul—2012 18:55:07 Hi—C Field of View

The Hi-C target was Active Region 11520




Hi-C Data

Hi-C collected data for 345 s.
Small shift in pointing during flight

Full frame (4kx4k) data

— 30 full resolution images
— 2 s exposures / 5 s cadence

Partial frame (1kx1k) data
— 86 full resolution image
— 0.5 s exposures / 1.4 s cadence



Hi-C First Results

AlA 193 A 11—=Jul—12 1B:55:31.840




Component Reconnection

a AlA 304-A: He Il (0.1 MK) 18:55:20 b AIA 171-A: Fe IX/X (1 MK) 18:55:24 C Hi-C Unsharp Masked Image 18:56:04

Magnetic field braiding
has been suggested as a
energy storage
mechanism in the solar
corona.

Hi-C observed braided
magnetic field.

d AlA 193-A: Fe XII (1.5 MK) 18:55:19 f AIA 94-A: Fe XVIll (6.3 MK) 18:55:26 b HMI Magnetic Field Region 1

o H

Cirtain et al, 2013, Nature




Component Reconnection

a AlA 304—A 18:52:08 b AlA 171-A 18:52:12 ) ¢ Hi—C Unsharp Masked Image

N

10,000 km

d Ala 1793—2\ 18:52:07 e Hi—C 193—A 18:52:08 fAlA 94—A 18:52:14

Shortly after the Hi-C flight, a small flare was observed at
the field line crossing. Cirtain et al, 2013, Nature



Component Reconnection

Hi—C 193 A : Running Difference

AlA 193 A ¢ 11=Jul—12 18:52:07.840 Hi—C 193 A : 11—dul—-12 18:52:07.840

Velocities along structure estimated to be 150 km/s.

Cirtain et al, 2013, Nature



Component Reconnection

[/

e Cuts across the braided loop show that the loop is
composed of at least 6 strands.

Winebarger et al, in prep.



Component Reconnection

«— time

Fe XI'195.119 HI—C 193 AIA 171 AIA 304 'HMI Blas - 'n 1’
* EIS rastered over the loop with density-sensitive spectral lines in Fe
XIl and Fe Xl in addition to several high temperatures lines.

Winebarger et al, in prep.




Component Reconnection

1030: T T T T T T T T T T T T T

1029_

)

-5

1028 .

1077 k

1
nnnnn

Emission Measure (cm

........

1026_% g

- | l L ' ' l 1 ‘ L ; ' l | A 4 : A | l E’l :
6.6 6.8 7.0 7.2
Log Temperature (K)

head
1025 SR

DEM is a mess.
Winebarger et al, in prep.



Component Reconnection

Ee Xl 195.119 A BFe Xl 186.830 A Fe Xl 186.880 A/ Fe Xl 195.119 A
1 1 ’

[

EIS rastered over the loop with density-sensitive spectral lines in
Fe XlIl and Fe Xlll in addition to several high temperatures lines.




Component Reconnection

12T T T T T T T T 1 T T T T T T

L1 4

]IIO
[r——
|
J
llll

|1 I |

|

l

Illl

L_ 1
(0 ) S T T TR TR SR SO S S lxlll ' l ....... .Jﬂ:_...L.;

Den5|ty increases dramatlcally after Hi-C ﬂlght then
decreases. Winebarger et al, in prep.




Component Reconnection

From EIS, we determine:
* Temperature = 1.8 MK
* Densities =0.5-7 x 101%9cm3

From Hi-C, we determine:
e radius of structure = 435 km.

To obtain observed Hi-C intensity, we need:
* Density =1.15x101%cm?3

Fe XII 195.119

2000

Additional analysis is being completed by Brooks
and collaborators.

1500

Intensity

1000

500

1 1 1
¥
¢] 50 100 150 200
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Component Reconnection

1
150 >0

100

50 o0

0 50 100 150
X [Mm]

Thalmann et al (2014) have looked at the magnetic field in the vicinity of this region.

Thalmann et al, ApJ, 2014



Component Reconnection

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
% [Mm] X [Mm] % [Mm]

They use the HMI vector field map to extrapolate the NLFF field. They find evidence for
braiding of the field.

Thalmann et al, ApJ, 2014



Braided Loop

a Hi-C 193-A: 18:53:28 b Hi-C 193-A: 18:53:45 C Hi-C 193-A: 18:54:13

R

~.

10,000 km

d Hi-C 193-A: 18:54:41 e Hi-C 193-A: 18:55:08 f Hi-C 193-A: 18:55:36

» - 2 B & » .
L _ 4 b t".; ’

Multiple strands join into this structure. It appears to
unwind during Hi-C observations. Cirtain et al, 2013, Nature



Braided Loop

a Hi—C 193—A 18:52:49 Hi—C Unsharp Mask

o s

Cirtain et al, 2013, Nature



Braided Loop

Fe XIF195.119 A Fe XII 186.880 A Fe XIl 186.880 A/ Fe XII™195.119 A

Intensities + ratios suggests small filling factor.



Braided Loop

T
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Log Density

Unlike other loop, densities remain constant over time.



Braided Loop

a AlA 94—A 18:00:01 b AlA 335—A 18:00:02

¢ AIA 211-A 17:59:59

f AlA 304—A 18:00:07

Loop involved in heating event prior to Hi-C flight.

Cirtain et al, 2013, Nature



Braided Loop

1.2 S S S S N S A S S | T 1
- ] | -
. AlA 94-A
Hi-C observed the |00p : : AIA335-A ———— .
. . . AIA193-A ———
in decline after heating = Ll AA71A ~
|5 | | AIA304-A
event. £ |
B,~ 100G ;
=
vV ~ 10" km3

(B,)?V/8m = 10%° ergs

18:42 18:48 1854 19:.00 19:06 19:12 19:18
Start Time (11-Jul-12 18:40:00)

Note: From EIS and
AlA data an estimate
of the radiated power
loss is ~ 10%¢ ergs sec?!

Cirtain et al, 2013, Nature



Braided Loop

Physical Cirtain et al Wilmot-Smith et
Measurement 2013 al 2011

Event duration ~730 sec ~500 sec
Peak ~5 MK 2.5-4 MK
temperature

Flow velocity ~150 km sec? ~600 km sec
Axial Field ~100G ~10 G
strength

Plasma density ~101% cm3 ~101% cm3

Energy release 10%° ergs 102> ergs



Braided Loop

Hi-C Flight Time >

This is a long lived structure and is evident +- 24 hours from the Hi-
C flight.

We are now looking at the evolution of the structure in AIA and
HMI to understand better its evolution.



”Dots”

AlA 193 A : 11-Jul—12 18:52:07.840

k“ ‘Dots’”’ are small-

scale, short-lived
brightenings that
_occur at the

= periphery of the

" active region.

C 193 A : 11—Jul—12 18:52:08.758

Hi—

- They may be
: associated with
= open fields.

Enhanced Hi—C 193

11-Jul—12 18:52:08.758

Regnier, et al. (2014) ApJ



Hi—C 193A

— EBD1
EBDZ
EBD3
EBD4
EBDS
EBDGE

— EBD7

— EBDS8

“Dots”

AIA 193A A filtering technique
is used to determine
locations of dots.

8 dots are identified
in Hi-C data with this
method.

3 dots are found in
AlA 193 data.

Regnier, et al. (2014) ApJ



“Dots”

1600A 304A 171A 211A 335A
] ] ‘ ] ] ]
] : ] (] ] ]

[] L] [ 5l

Some of these dots are observed in other AIA
passbands.

Regnier, et al. (2014) ApJ



Arbitrary Unit

“Dots”

* Dots generally appear in only
- one AlA image, but several
- Hi-Cimages.

—n |
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e Characteristic duration of 25s

JHi-C '« Characteristic length of 680

18:52:30 18:53:00 18:53:30 18:54:00 8:54:30 18:55:00

00 18:
Time on 11 Julyr2012 L
—f ] km (< 1 )

I
SR O 1 ¢ Not fully spatially or
"o _reon /! i temporally resolved in SDO/
o | - AIA
C I =
g l ]
JAA T

18:52:30  18:53:00 18:53:30 18:54:00 18:54:30 18:55:00 Regnier, et a/' (2014) Ap_l

Time on 11 July 2012



Bi-directional Flows in Filaments

Hi—-C 193 A : 11-Jul—12 18:52:08.758 Enhanced Hi—C 193 A : 11-Jul—12 18:52:08.758
AT T T

AlA 193 A 11—=Jul-12 18:52:07.840

Hi-C observed bi-directional
flows in a filament. This is
the first observations of
such flows in the EUV

channel. Alexander, et al. 2013, ApJ




Bi-directional Flows in Filaments

(a) Hi-C 193 A

(c) SDO/AIA 4500A : ApSDO/HMI

Alexandr, et al. 2013, ApJ



Bi-directional Flows in Filaments

* Hi-C resolves two
structures roughly 0.8
. AlA 183 Wide

* AlA sees only a single
structure.

7

Arbitrary Intensity units

AlA

0 425 850 1275 1700 2125 2550 2975 3400 A/exander, et al. 2013, ApJ
Length along slice (Km)



Bi-directional Flows in Filaments

Velocities of Flows 1 and 2
are roughly equal and in
opposite directions.

distance (pixels)

140

120 [
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100
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20

0
10 20 30 0O 10 20 30

Alexander, et al. 2013, ApJ



Bi-directional Flows in Filaments

Velocities of Flows 3 is > 150
km/s and Region 4 shows
period flows of ~100 km/s.

distance (pixels)

150

100

50

0

10 20 30 0O 1020 30
Alexander, et al. 2013, ApJ



Bi-directional Flows in Filaments

AlA/304

Light curves and EM Loci plots
indicate the plasma is at an

AAS171 .
isothermal, cool temperature.
10% \
AlA/183
,g
*;% 1077 =
I;i: 1028 —
& oL
L AlA 171
AA/131 ol f\:i ;?13 _
- AlA 131 ]
= T b e - AlA 335 1
i ) ol Temperature ~ 150,000 K |
= 4 5 6 7 8

Temperature (Log T)

e Alexander, et al. 2013, ApJ




Transition Region Loops
T B
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KRT 11 —JOE 5 3:4 7. 659 AlA 94 11-Jul=12 18:52:14.140 AlA 211 11—dul-12 18:52:12.620 AlA 183 11—Jul—12 18:52:07.840 ' AlA 171 11—dul—12 18:52:12.340
| ) % T A e - & - g

A %

" s

e

o

J
# -
L an & ;
L4 ’_i %

Small-scale, GVOIVIHQ‘; 3 106‘[53 e‘re‘.!:‘discove ed.

AlA 304 11-Jul—12 18:52:08.130 AlA 160011 —Jul=12 18:52:‘05,120 Hi—C 193 11—Jul—12 18:52:08.758 Hi=C 193—Mi nﬁ'ué - Ml Bios 11—=Jul—12 18:52:26.700 !

B >

¥ "
y




Transition Region Loops

TRACE saw
“flashes” between
moss regions.
Due to low
cadence, these
would sometimes
show up 1n a
single frame.
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Transition Region Loops
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Loops appear simultaneously 1n all AIA channels, not sequentially like
cooling loops. Loop lifetimes are ~60s.

Winebarger, et al. 2013, ApJ



Transition Region Loops

Loop Log T Log EM Log ne Log Energy (ergs)
A 542+ 0.10 27.644 0.16  9.94+ 0.08 24.3
B 5.41+ 0.10  27.654 0.12 9.90+ 0.06 24.6
C 5.414+ 0.10 28.084 0.12 10.11% 0.06 24.7
D 541+ 0.10 27.784 0.11 9.94+ 0.06 24.7
E 5.39+ 0.12 28.014+ 0.19 10.06+ 0.10 24.8
F 5.39+ 0.11  28.284 0.19  10.21+£ 0.10 24.8

Because loops evolve identically in
multiple AlA filters, we conclude

the loops are isothermal.

EM Loci analysis indicate a cool
(300,000 K) temperature.

Density estimates are 7-10 x 10°
cm3,

Energy estimates are ~10%* ergs.

. -5
Emission Measure (cm™)

5.0 5.5 6.0 6.5 4.5 5.0

5.5

6.0 6.5

102 T T T
10%8L w
7L Hi—C 193 ]

AIA 211
AIA 193
AIA 171

. . . 10% F . . .

5.0 5.5 6.0 6.5 4.5 5.0 5.5 6.0 6.5

Log Temperature (K)

Winebarger, et al. 2013, ApJ



Transition Region Loops

0 5 10 15 20 : , \
X[Mm] OA'Q:...:‘.I‘III.IIW

Common 1n Bifrost simulations.

Occur because of low-lying braided field.

Winebarger, et al. 2013, ApJ




Transition Region Loops

If these are TR
phenomenon, we

should see them 1n
IRIS.

Winebarger, et al. in prep



Transition Region Loops
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|AAa211 A

AlA 193 A

Winebarger, et al., in prep



Dynamic Moss

AlA 193 A 11=Jul—12 18:52:07.840 Hi—C 193 A : 11—=dJul-12 18:52:07.840 Hi—C 193 A : Running Difference

* Hi-C observed a location of highly dynamic

MOSS.
Testa, et al., 2013, ApJ



Dynamic Moss

AIA 94 A

* Dynamic moss occurs at footpoint of high

temperature loops.
Testa, et al. 2013, ApJ



* Events as short as 15 s with increase in intensity
on the order of 20-30%.

* Suggestive of footpoint response to coronal
reconnection. Testa, et al. 2013, ApJ



Dynamic Moss

Transition region (moss) emission can be used as a diagnostic of
coronal heating. Specifically, it might be able to limit the
duration of the heating event.

R ] ID HD loop models for
208 60s impulsive heating with different
é . ‘ . ] durations Theat = 60s, 10s, 5s
= 04[]} 193A intensity integrated at loop
I footpoints (<3x108cm) shows
£ 02| g short duration brightenings at

0.0 A the ‘footpoint’ for short lived

80 100 heating events

Testa, et al., in prep




Substructure

One of the goals of Hi-C was to characterize the
substructure in the corona.

Is AIA resolving structures?

If not, what are typical structure sizes?
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The widths of moss elements were measured.

Average Gaussian width was 188 km.

Morton & McLaughlin, 2013, A&A, in press



Loop Substructure
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he widths 0 91 loop segments were measured.
The most typical width with 270 km. Brooks et al., 2013, ApJ, 772, 18



Substructure Consequences

Current Resolution
Instrument (e.g., AlA)

Normolized Histogrom
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Substructure Consequences

High Resolution
Instrument (e.g., Hi-C),
no substructure

Current Resolution
Instrument (e.g., AlA)

Improve Resolution by 16x

We can always predict the no substructure
distribution from the low resolution distribution.

Normalized Histogrom

Normalized Histogrom
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Substructure Consequences

High Resolution

o
oo

1.07 “
Current Resolution Instrument (e.g., Hi-C), :_ High Res

linear substructure

Instrument (e.g., AlA) No substructure

o
o)
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200 400 600 800 1000
Intensity (photons)

1.0[
£ o8 ngh Res ]
& Linear Substructure |
Z 06 '
Improve Resolution by 16x 8 os
:
. ) g 0.2r
For linear substructure, we expect brights to be ; )
brighter, darks to be darker. 0.9 ' ' ‘
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Observed by Hi=C

Original Intensities ]
q 3 Hi—C E

AlA H E B EEEEESEEENEER

-

Log,p, Normalized Histogram

0 1000 2000 3000
Intensity {photons/Hi—C pixel)

Hi-C initially did not appear to demonstrate the ~3-4 increase in intensity expected for linear
substructure.

Winebarger et al., 2013, in prep



Transient Events -
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Transient Events

Found locations of transient events in the Hi-C and AIA data.

Winebarger et al., 2013, in prep



Transient Events

400 F — | E 1F ‘ - ‘ E
= 300" 0 e
< C 1
2 !

[ 1

T 200 —1e
'f L L
~
0] [
§ 100 —2
2 g
_C
= F F
- 0 —3F

—100 L - ] 40 R

10 100 1000 10000

Background—Subtracted Intensity (photons/Hi—C pixel)

We found that transient events in Hi-C were 2.5 times brighter than
transient events 1n AIA. We conclude this is due to linear substructure,

unresolved by AIA.

Winebarger et al., 2013, in prep



Log;, Normalized Histogram

Background

: Original Intensities
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Hi-C reveals that the background varies smoothly, 1.€., has
little substructure.

Winebarger et al., 2013, in prep



Summary

* Hi-C obtained the highest spatial and temporal
resolution observations ever taken in the solar
corona.

* Hi-C reveals dynamics and structure at the
limit of its temporal and spatial resolution.

* Hi-C observed ubiquitous fine-scale flows
consistent with the local sound speed.



Summary

* For the first time in the corona, Hi-C revealed
magnetic braiding and component reconnection
consistent with coronal heating.

* Hi-C shows evidence of reconnection and heating
in several different regions and magnetic
configurations with plasma being heated to
0.3 -8 x 10° K temperatures.

e Surprisingly, many of the first results highlight
plasma at temperatures that are not at the peak
of the response functions.



Spicules in Moss

Enhanced Hi—C 193 A : 11—-Jul—12 18:52:08.758

Hi—C 193 A : 11-Jul-12 18:52:08.758

AlA 193 A : 11—Jul—12 18:52:07.840

Hi-C reveals many short-lived absorption features in the moss.
These features are likely spicules — dense plasma at chromospheric

temperatures.
Currently studying the lifetime and evolutions of these features.
Winebarger, in prep.



Transition Region Loops

T T T T T T
A: Loop Diameter = 575 km B: Loop Diameter = 705 km

1.2C T ™ T ]
yof —— Hi—C 193 B Westj
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| 0oL
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Average Background
Subtracted Image

* Six loops were identified.
 Diameter of loops 575-800 km

e Lifetime of loops < 60 s.

Winebarger, Walsh, in prep.





