
NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 1 16 July 2014

Ruby on Rails Issue Tracker

J. Jared Rodriguez-Rivera
NASA Kennedy Space Center
Major: Software Development

KSC-FO Summer Session
16 July 2014

Author Note

J. Jared Rodriguez-Rivera
A.A, A.S Computer Programming and Analysis, Valencia College
B.A.S Software Development, University of Central Florida (In Progress)
Contact: jaredrodr2@gmail.com

https://ntrs.nasa.gov/search.jsp?R=20140016789 2019-08-31T15:53:34+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42722865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 2 16 July 2014

Table of Contents

Ruby on Rails Issue Tracker .. 1

Table of Contents... 2

Nomenclature .. 3

Abstract ... 4

Introduction ... 4

Planning and Design .. 5

Development .. 7

Conclusion ... 12

Acknowledgements ... 12

Works Cited ... 13

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 3 16 July 2014

Nomenclature

AccuRev - software configuration management application; a centralized version control system which

uses a client/server model
Bootstrap (CSS) - a free collection of tools for creating websites and web applications. It contains HTML and

CSS-based design templates for typography, forms, buttons, navigation and other interface
components, as well as optional JavaScript extensions.

CSCI - Computer Software Configuration Item
CSS - Cascading Style Sheets is a style sheet language used for describing the look and formatting of

a document written in a markup language.
DA - development activity is a high level task that get approved by a panel and worked by

developers
Gem - Ruby on Rails software package/library
HTML - HyperText Markup Language is the main markup language for creating web pages and other

information that can be displayed in a web browser.
JavaScript - a dynamic computer programming language. It is most commonly used as part of web

browsers, whose implementations allow client-side scripts to interact with the user, control the
browser, communicate asynchronously, and alter the document content that is displayed

jQuery - a cross-platform JavaScript library designed to simplify the client-side scripting of HTML
LCS - Launch Control System
NC - Non-conformances are software issues that require immediate assessment
PostgreSQL - often simply "Postgres", is an object-relational database management system (ORDBMS) with

an emphasis on extensibility and standards-compliance. As a database server, its primary function
is to store data, securely and supporting best practices, and retrieve it later, as requested by other
software applications

Ruby - a dynamic, reflective, object-oriented, general-purpose programming language; designed and
developed in the mid-1990s by Yukihiro Matsumoto in Japan.

Ruby on Rails - often simply referred to as Rails, is an open source web application framework which runs via
the Ruby programming language.

SCCS - Spaceport Command and Control System
WAF - more commonly referred to as web application framework or web framework; is a software

framework that is designed to support the development of dynamic websites, web applications,
web services and web resources. The framework aims to alleviate the overhead associated with
common activities performed in web development.

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 4 16 July 2014

Abstract

 The purpose of this report is to detail the tasks accomplished as a NASA NIFS intern for the summer 2014
session. This internship opportunity is to develop an issue tracker Ruby on Rails web application to improve the
communication of developmental anomalies between the Support Software Computer Software Configuration Item
(CSCI) teams, System Build and Information Architecture. As many may know software development is an arduous,
time consuming, collaborative effort. It involves nearly as much work designing, planning, collaborating, discussing,
and resolving issues as effort expended in actual development. This internship opportunity was put in place to help
alleviate the amount of time spent discussing issues such as bugs, missing tests, new requirements, and usability
concerns that arise during development and throughout the life cycle of software applications once in production.

Introduction

he task assigned to me during my internship at NASA’s Kennedy Space Center was to develop a Ruby on Rails
web application to track development issues for web applications produced by Information Architecture and

System Build. Up to this point in my education, my focal point has revolved around mobile applications for a variety
of mobile platforms/operating systems, website development and web application frameworks (WAF). For the
development of this application I began by using an existing Excel spreadsheet, LCS IAS Issue Tracker, which
details the content of an issue, as a starting point. With the guidance of my mentor, I was able to apply the
knowledge acquired throughout my education and create a dynamic, database driven, multi-layered web application
to replace the LCS IAS Issue Tracker spreadsheet. Having little experience developing web applications using Rails1,
the first two weeks were dedicated to becoming familiar with the framework, making the publication Rails 4 in
Action (Bigg, Katz, & Klabnik, 2014) and the website www.railscasts.com (Bates) tools imperative to my success.

The following five weeks were dedicated to planning, constantly communicating ideas and actively developing
the application until reaching the point when we were able to deploy a stable, pre-beta release to Launch Control
System (LCS) development servers. Deployment of the application allowed Information Architecture and System
Build to begin creating issues for their respective projects and to provide valuable user feedback for the Issue
Tracker application itself by posting issues against the application. This phase of development is where all of the
hands on learning took place and where I worked closest with my mentor. The Issue Tracker application was
designed to look like a corkboard with each issue displayed as pinned up index cards. The design involved using the
Bootstrap CSS library and a combination of images, CSS, jQuery and JavaScript functionality to not only style the
application but to also add some unique animations; making this application one of the most detailed, in depth
applications I have ever had the pleasure to design and develop.

The issues posted against my Issue Tracker application became the final task for me to complete during the last
few weeks of the internship. During this phase of development, users found bugs and usability issues and provided
feedback to me via issue cards allowing me to further enhance the application before the end of term.

1 A commonly used alias for Ruby on Rails

T

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 5 16 July 2014

Planning and Design

The main objective of
the project assigned to
me was to use the LCS
IAS Issue Tracker
spreadsheet, shown in
Figure A, as a point of
reference and develop
an interactive, dynamic
and modern Ruby on
Rails web application
that would allow users
to post, assign, view,
comment and search for
issues within the IA and
Build Architect
applications.

The LCS IAS Issue
Tracker spreadsheet was put in place so that there was a standardized method of reporting issues. The user reporting
the issue fills in the date the issue was found/reported, the Issue Type (bug, missing tests, new requirement or
usability), what repository the issue is located in, an issue and test description (in the format depicted in Figures B
and C), additional notes (if any), the name of the engineer who reported/requested the change, if the issue is
associated with a DA or an NC, who worked the issue, the AccuRev (AccuRev, 2002) stream it was found in, and
finally the Status Change Date.

 Figure B. Issue Description Format Figure C. Test Description Format

After several weeks of familiarizing myself with the Rails framework and a general knowledge of how to

initialize a Rails project, we began by defining the Issue Tracker’s database structure and what aspects of the
application would be constants. As you can see below in Figure D, we defined the tables/models necessary for the
application, these included tables for individual Projects, Users, Issues, and Comments with the corresponding
associations defined for each table. The associations help in defining each layer of the application and thus are
creating these associations was imperative to the design. Starting from bottom of the hierarchy, Comments belong to
an Issue and a User, and Issues belongs to a User and a Project.

 Also illustrated in Figure D are the definitions of the constants we deemed necessary for our application, those of
which included Issue Types, Status, Streams, and Repositories. These are the only elements of the application whose
definitions went unchanged throughout the course of development.

Figure A. LCS IAS Issue Tracker Spreadsheet

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 6 16 July 2014

Figure D. Database Structure

Further along the planning phase, we came up with the idea that in order to bring an element of nostalgia into our

application, our design should be modeled after Information Architecture/System Build’s previous method of
reporting issues: color coded index cards pinned to a corkboard with thumb tacks. Where each index card color
represents an issue type, Bugs are red, Missing Tests are yellow, New Requirements are green, and Usability issues
white. We decided at this point, all of our styling for this application was to follow a common theme: office
supplies, and include a variety of elements ranging from clipboards, to sticky notes, and ripped pieces of papers to
accompany the corkboard, index cards and thumb tacks that would give the application a unique user interface.

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 7 16 July 2014

Figure E. New Issue (Front)

Development

As the Issue Tracker application started to take shape and having already decided the theme, it was my

responsibility to style the interface and, consequently, I was allowed to let my creativity take control. I began by
designing the front and back of the New Issue form, as shown in Figures E and F. This form is actually what Rails

defines as a partial. A partial is an object in
Rails that the ActionController, for the
respective model (in this case the
issues_controller), handles a particular
request and produces the appropriate output.
In other words, the controller is designed to
render an issue form partial if a user elects
to create a new issue, but it will render the
same partial when a user initiates an edit
action as well.

On this form, the user enters all of the
data they would fill out on the LCS IAS
Issue Tracker. Entering the issue description
on the front, then flipping to the back of the
card input the test description and select
from the options to define the issue type,
status, stream, repository, and selecting
whether or not it is an NC.

Styling this action was a particularly entertaining task. In order to give the users a unique interface we
incorporated some CSS animation driven by jQuery. When the user clicks on the blue arrow on the bottom right
hand corner, the card flips to the back displaying the contents shown in Figure F. The user can flip back and forth,
entering and selecting all of the information necessary to post an issue and not until the Create Issue (or Update
Issue during an edit action) button is clicked will the information be saved to the database. There are other minor
details on the form that give the user interface a very natural feel, like the added effect of a shadow around the index
cards to give the application and element of depth, illustrating that the issue is on top of the corkboard as opposed to
giving the impression that the index card is a part of the corkboard. I also added some styling that allows the text to
stay within the lines of the index card when a user is inputting issue and test descriptions
and automatically changing index card
colors when the user changes the Issue
Type option.

Furthermore, take note of the drop
down options on the back of the card in
Figure F. These selections are all
populated using the constants we
defined in our application, allowing the
user to select from these predefined
collections.

The Issue Form worked like a
template for the Issue Tracker
application, having devoted so much
time ironing out all of the minor details,
translating this into the Issue partial
allowed me to reuse a lot of the styling
methods, simply adjusting some of the
sizes in order to adapt to the smaller
sized issue index cards for this show action.

The Issue partial, like the form, is a partial designed to display individual issues on the Project show action.
However, unlike the form, this partial is static, used solely for display purposes. Though most of the styling

Figure F. New Issue (Back)

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 8 16 July 2014

Figure H. Issue Partial (Back)

techniques are reused for this partial from the form, there is one significant effect that makes the Issue partial stand
out.

When a new issue is created, the application routes you to the Project show action and a thumb tack is placed on
the top of the card as it is illustrated in Figure G. Note that on the top right of the header, the user’s name and date

the issue was created. Figure H. represents the back of
the Issue partial. When a user clicks on the arrow to flip
to the back of the card, the thumbtack moves, once again
driven by CSS and jQuery, off the card and the card
proceeds to turn to the back. When the arrow to turn back
to the front is clicked, the card flips back over and the
thumbtack moves back into place. This bit of animation
was one of the most unique elements of this project,
though simple, it added a distinctive natural effect: You
cannot flip a card without first unpinning it. This
component seems simple, yet, likely one of my favorites
of the application.

In addition to animating the thumbtack, I also decided
to use it as a link to the Issue show action. This action

includes logic to verify whether or not the current user created the issue, if this condition is true this action displays
the Issue form partial, granting the user access to edit

the issue, otherwise this action displays a static Issue
partial allowing the user to only view the contents of
the issue.

Directly below the issue on the Issue show action,
we implemented the Comment action via yet another
partial. Allowing users to further engage in
conversation about the current issue, functioning in a
sense like the Notes section of the LCS IAS Issue
Tracker. The Comment action allows for users to post,
edit, and delete their comments providing valuable
feedback and a different perspective for issues, while
the user who posted the issue can further clarify their
concerns, thus speeding up communication.

Figure I. clarifies how the Issue show action looks
to users. It includes a trashcan glyph to link the user to the Comment destroy action and a pen glyph to link the user
to the Comment edit action if the current user owns the comment, otherwise it just displays the content of the
comment without allowing the user to make any changes or destroy the comment.

Slowly but steadily, the
application began to take
life. All of these individual
components started to give
the application its shape.
Thus, the daunting task of
developing the Project
show action was upon us.
This action incorporated
some new elements and
functionality. Figure J.
displays the contents of the
Project show action,
beginning with the
navigation bar; this was
styled to look like the
wooden border of a corkboard, again incorporating the shadow effect to give the user interface a sense of depth. On
the navigation bar, I also incorporated a variety of links, the first being the application title, Issue Tracker, this link
took the user to the Project show action from any other action. Next to the title link, I added a dropdown menu,

Figure G. Issue Partial (Front)

Figure I. Comment Show Action

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 9 16 July 2014

containing the link to the New Issue action and the sign out link. Following the dropdown menu, we incorporated a
Postgres full-text search box, using the Ruby gem pg-search, allowing the user to enter content and the Project
show action refreshes to show all of the issues that contain any part of that text,
finding both the singular and pluralized instances of the words entered into the
search field.

The next component of the Project show action is the page header. The header for this show action is exclusive
to this action alone and it includes six filters displayed on sticky notes, and the title of the current project in between
the six sticky notes on a ripped piece of paper all of which are seemingly taped to the corkboard. From left to right,
the filters are Sort, Status, Type, Repository, Requested by, and Stream. Each of these selections filter the issues
displayed on the Project show action and each filter can be used in tandem with one another. By default, the Project
show action displays the issues with the newest first. The Sort sticky note filter allows the user to toggle the order in
which the issues are displayed, allowing the user to view the issues in either ascending or descending order. The
Status, Type, Repository, Requested by, and Stream filters, when clicked display the filter options in a modal2. The
Status, Type, Repository, and Stream filter options are populated by the application constants we defined early on in
the development while the Requested by filter is populated by the users that have created issues for the
corresponding project.

In order to reduce the duplication of code for the filter modals, we created a helper class3 to dynamically
populate the content of each modal based on the parameters passed into the helper class functions. These parameters
include the modal title, the filter object (which by default is ‘All’), the color of the sticky note, and the lean
direction. Furthermore, inside the modal we have another function that populates the content of the modal using the
constants or the collection of users. Figures K. and L. are examples of how the Project show page looks when the
filter modals are initiated.

2 In user interface design, a modal window is a graphical control element subordinate to an application's main
window which creates a mode where the main window can't be used.
3 is a programming technique in object-oriented programming. Helper classes are a term given to classes that are
used to assist in providing some functionality, though that functionality isn't the main goal of the application.

Figure J. Project Show Action

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 10 16 July 2014

Figure K. Status Modal

Figure L. Type Modal

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 11 16 July 2014

Figure M. User Sign in Action

 The remaining actions of the Issue Tracker application were almost an afterthought, having focused so much
time and energy into the partials and even more time on the Project show action, yet absolutely vital to the
functionality of the application. Primarily, the User sign in and the Project select action pages.

First and foremost, for the User sign-in page, we decided we would let users utilize existing LCS Development
logins to sign-in to the application. In order to accomplish this, we used a Ruby gem called devise which allows us to
configure the details of the server we are going to use for verification and consequently refrain from forcing the user
to create and remember another username and password for yet another service. Maintaining the office supplies
theme, Figure M. illustrates what the Issue Tracker sign-in action looks like to the end user.

Last, but certainly not least, was the Project select action. This was quite a simple action to create, using the

same ripped paper image as the Project title on the Project show action page to display the names of the projects
available for a user to pick from and submit issues against. Figure N. is the Project select action. Note: each of the
images work as links to the respective Project show action page

Figure N. Project Select Action

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 12 16 July 2014

Once the application was functional and in near-beta status, we officially deployed the application to the LCS
Development servers and allowed users to begin by posting issues against the Issue Tracker itself. Allowing my
mentor and me to focus on some of the more specific details of the application provided to us by the feedback from
the users. Some of the issues posted against the Issue Tracker found small bugs we weren’t aware of, or put on the
backburner and forgot about them. For example, the search field searches through all issues not just the issues for
that particular project. Concerns about the font, font colors and font sizes were also brought up. While other issues
were details we never considered, for example, how the application would respond to a vertical monitor set up.

Nevertheless, I’ve always been of the mindset that no piece of software or application is ever perfect. Software
can always be improved and can always become more efficient and thus, the feedback we receive from the user
simply allows me to further enhance the application, with the end goal of it being a beneficial application and my
small contribution to the larger picture at NASA.

Conclusion

 To sum up, this internship opportunity was an incredible experience. I was faced with a wide variety of tasks and
encountered computer programming aspects I had virtually no skill with, while also working with website
development tools that expanded my knowledge base. My assignment was to create a Ruby on Rails web application
to improve the communication of developmental anomalies between the Support Software Computer Software
Configuration Item (CSCI) teams, System Build and Information Architecture. As many may know software
development is a laborious, time consuming, concerted effort, involving nearly as much work designing, planning,
collaborating, discussing, and resolving issues as effort expended in actual development. This internship opportunity
allowed me to help alleviate the amount of time spent discussing issues such as bugs, missing tests, new
requirements, and usability concerns that arise during development and during the life cycle of software applications
once in production.

Acknowledgements

 I would like to thank those who made this opportunity possible for me, starting with KSC-FO and the education
department at Kennedy Space Center headlined by Rose Austin. Working under the supervision of Laurie Griffin
and Julie Peacock I was given the opportunity to gain invaluable experiences. They provided me with direction and
a knowledgeable mentor, Andrew Davis, who worked diligently with me when I was in need of assistance or ran
into roadblocks. This opportunity placed me next to other interns whose perspective, suggestions and most of all
friendships were unforeseen but are the fine points of this internship I will value for years to come.

NASA KSC – Internship Final Report

NASA Kennedy Space Center Page 13 16 July 2014

Works Cited

AccuRev. (2002). AccuRev. Rockville, MD, United States of America. Retrieved from http://www.accurev.com/

Bates, R. (n.d.). Rails Casts. Retrieved from www.railscasts.com

Bigg, R., Katz, Y., & Klabnik, S. (2014). Rails 4 in Action. Manning Publications.

Hansson, D. H. (2005). Ruby on Rails . Retrieved from rubyonrails.org

Matsumoto, Y. (1995). Ruby (Programming Language). Japan. Retrieved from www.ruby-lang.org

