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Mismatch Stress vs. Substrate Thickness
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Discussion

Comparison of the same film on different thickness substrates should result in
similar stress values.

We see reasonably good agreement between 100 and 280 micron substrate
thickness when considering the stress due to thermal mismatch in nickel films.
The agreement when comparing the intrinsic stress is unacceptably worse.

Utilization of the 1 in. cathode is not ideal for these experiments due to the strong non
uniformity of film thickness on the 1 in. substrate. Apart from deviating from the
assumptions of uniform film thickness needed for accurate use of the Stoney formalism,
the large thickness gradient is problematic since it requires highly repeatable positioning
of the cathode after target changes, for example.

The target was changed between the sets of experiments utilizing different substrate
thickness.

Differences in the thickness distribution on the substrate surface can result in differences
in the measured stress values between the two ensembles of measurements.

Future work entails repeating this work with a 3 in. cathode which will result in nearly
uniform film thickness on the 1 in. substrate.



Conclusions

This methodology seems to hold promise for the in-situ measurement of film stress.

The methodology holds particular promise when the goal is to tune the stress to zero

by using gas pressure or cathode power. Near zero stress is critical consideration in the
differential deposition process since the stress in the filler layer would affect the convergence
of the process. The film distribution need not be uniform for this application since zero stress
results in zero wafer displacement.

Since this method is contact free, very thin substrates can be used to increase the sensitivity.

This method provides a more robust alternative to other methods such as micro-

cantilever with potentially comparable sensitivity—particularly when utilizing thin substrates
(<100 microns). This allows in-situ measurement to be performed on larger substrates which
facilitate other post deposition measurements that might be correlated to film stress such as
surface roughness, or X-ray reflectivity.

Backside measurement of a double side polished wafer is utilized which avoids reflected
interference effects which would otherwise results in loss of signal when other technigues
such as mutli-beam or micro-cantilever techniques utilizing coherent light are used.



