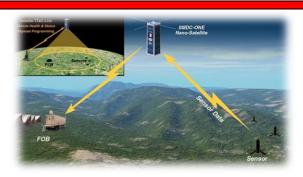

SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (iSAT) Project.



Presented to Lunar Exploration Analysis Group (LEAG)
October 23, 2014

SmallSat Applications – USASMDC / ARSTRAT

Low Cost

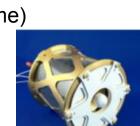
- Per-Unit Cost Very Low
- Enables Affordable Satellite Constellations
- Minimal Personnel and Logistics Tail
- Frequent Technology Refresh

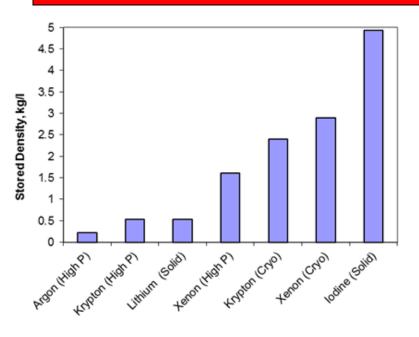
Survivability

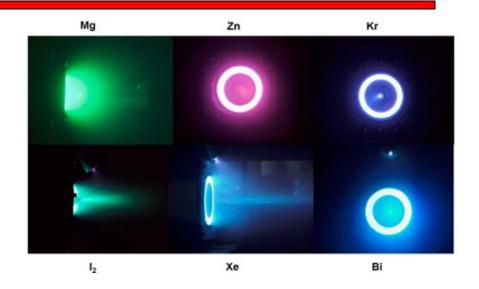
- Fly Above Threats and Crowded Airspace
- Rapid Augmentation and Reconstitution
- Very Small Target

Responsiveness

- Short-Notice Deployment
- Tasked from Theater
- Persistent and Globally Available
- Can Adapt to the Threat

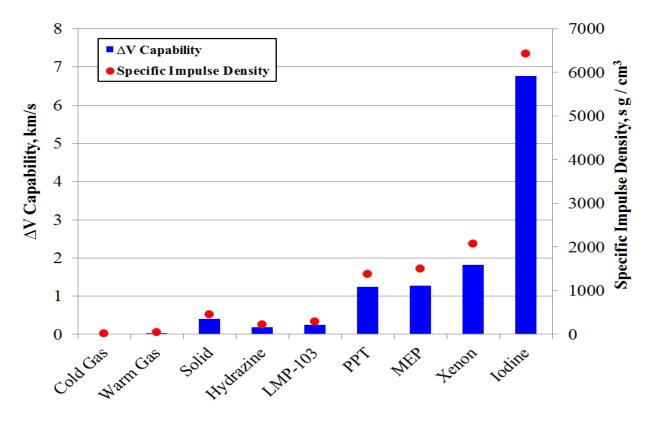



Why Iodine?


- Today's SmallSats have limited propulsion capability and most spacecraft have none
 - The State of the Art is cold gas propulsion providing 10s of m/s ΔV
 - No solutions exist for significant altitude or plane change, or de-orbit from high altitude
 - SmallSat secondary payloads have significant constraints
 - · No hazardous propellants allowed
 - Limited stored energy allowed
 - Limited volume available
 - · Indefinite quiescent waiting for launch integration
- Iodine is uniquely suited for SmallSat applications
 - Iodine electric propulsion provides the high ISP * Density (i.e. ΔV per unit volume)
 - 1U of iodine on a 12U vehicle can provide more than 5 km/s ΔV
 - Enables transfer to high value operations orbits
 - Enables constellation deployment from a single launch
 - Enables de-orbit from high altitude deployment (ODAR Compliance)
 - Iodine enables > 10km/s for ESPA Class Spacecraft
 - GTO deployment to GEO, Lunar Orbits, Near Earth Asteroids, Mars and Venus
 - Reduces launch access by 90%
 - Reduces mission life cycle cost by 30 80%
 - lodine is a solid at ambient conditions, can launch unpressurized and sit quiescent indefinitely
- The technology leverages high heritage xenon Hall systems
 - All systems currently at TRL 5 with maturation funded to achieve TRL 6 in FY16
 - The iSAT System is planned for launch readiness in early 2017

Iodine vs. Alternatives

Propellant	Storage Density	Boiling Point, °C	Melting Point, °C	Vapor Pressure @ 20°C
Xe (SOA)	1.6 g/cm ³	-108.1 °C	-111.8 °C	Supercritical (>15MPa)
Iodine	4.9 g/cm ³	184.3 °C	113.7 °C	40 Pa (0.0004 atm)
Bismuth	9.8 g/cm ³	1,564 °C	271.4 °C	Solid
Magnesium	1.74 g/cm ³	1,091 °C	650 °C	Solid

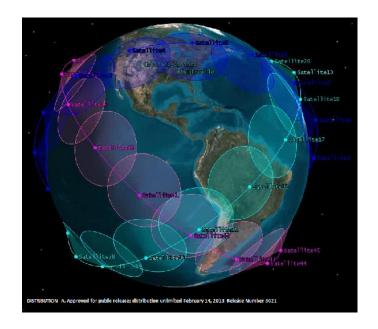

lodine has unique characteristics well suited for mission application

Microsatellite Advantages

Primary mission advantages are due to 1) Increased I_{SP} * Density

2) Low storage pressure

Microsatellites are extremely volume constrained



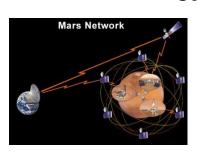
Geocentric MicroSat Application

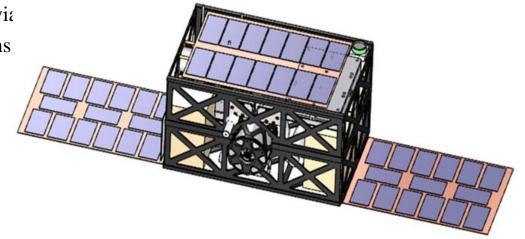
Large increase in demand for MicroSat constellations and responsive space capabilities.

- The 12U with 5kg of iodine can perform 4km/s ΔV
 - 20,000km altitude change
 - 30° inclination change from LEO
 - 80° inclination change from GEO
- Larger spacecraft can perform even greater ΔV

iSAT	Mass Estimation List - 12U LEO	Basic Mass (kg)	MGA (%)	MGA (kg)	Predicted Mass (kg)
1.0	Structures	1.601	30%	0.480	2.081
2.0	M echanisms	0.100	30%	0.030	0.130
3.0	T hermal	0.334	30%	0.100	0.434
4.0	Power	2.052	30%	0.616	2.668
5.0	Guidance Navigation & Control	1.518	10%	0.152	1.670
6.0	Communications	0.090	6.00%	0.005	0.095
7.0	Command and Data Handling	0.324	16%	0.053	0.377
8.0	Propulsion	3.846	25%	0.965	4.811
Dry:	Mass	9.864	24%	2.401	12.265
9.0	Payload	2.000	30%	0.600	2.600
10.0	Non-Propellant Fluids	0.000	0%	0.000	0.000
Iner	Mass	11.864	25%	3.001	14.865
11.0	Propellant (Solid Iodine)	5.135		0.000	5.135
iSAT	12U LEO Total Mass	16.999		3.001	20.000

lodine in enabling for rapidly growing spacecraft market.

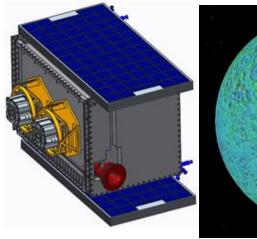

Interplanetary MicroSat

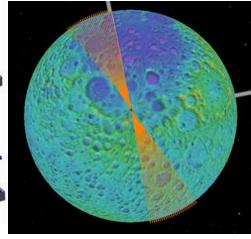

NASA is pursing interplanetary MicroSat missions

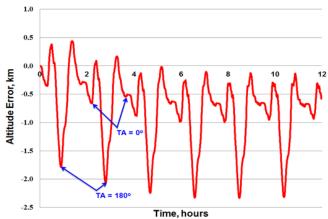
- INSPIRE selected as first interplanetary CubeSat no propulsion
- NASA HEOMD AES funding NEA Scout solar sail propulsion
- NASA HEOMD AES funding Lunar Flashlight solar sail propulsion
- High pressure and hazardous propellants are not allowed

Iodine on an interplanetary CubeSat can provide ~ 2.5 km/s of ΔV

- Challenges with communications and attitude control over geocentric spacecraft
- Enables Lunar orbiter, asteroid flyby and rendezvous missions for <\$20M life cycle cost
- Enables secondary missions via
 - Outer planet moons
 - Constellations

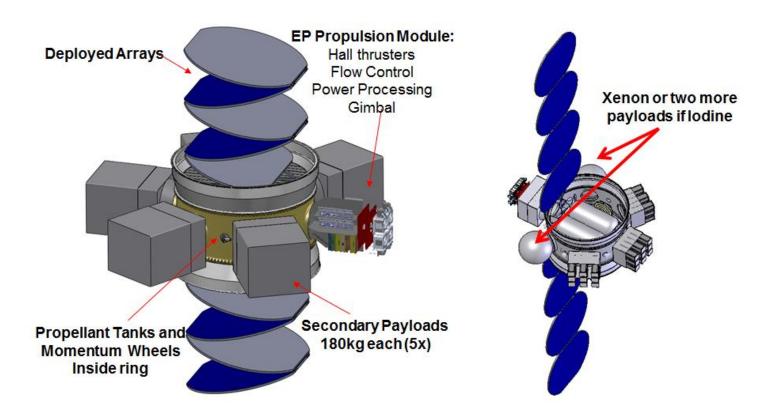



ESPA Class Mission Concept – Lunar Orbiter


Detailed ACO Study for Lunar Orbiter with "Discovery" science payload

- Deployment from GTO
- Iodine enabled 100x5km orbit station-keeping
- Total life cycle cost ~\$150M
- Leveraged 2x BHT-600-I Thrusters

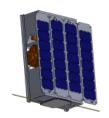
Mass Estimation List (MEL)		Basic Mass (kg)	ave MGA	Predicte d Mass (kg)			
1.0	Structures	21.2	30%	2756%			
2.0	2.0 Mechanisms - In Subsystems						
3.0	Thermal	4.8	0.3	6.0			
4.0	Power	90.6	0.2	107.2			
5.0	Guidance Navigation & Control (GN&C)	8.4	0.1	9.8			
6.0	Communications	6.8	0.3	8.5			
7.0	Command and Data Handling (C&DH)	7.9	0.3	10.1			
8.0	Propulsion	17.3	0.1	17.3			
Dry Mas	S	157.0	16%	186.6			
9.0	Insturments	10.1	0.2	12.2			
10.0	Non-Propellant Fluids	0.0	0%	0.0			
Inert Mass 167.2 16				198.7			
11.0	Propellant						
	11.1 Nitrogen (Cold Gas)	9.4	5%	9.9			
	11.2 lodine	87.0	3%	89.6			
Total Ma	iss	263.6		298.2			

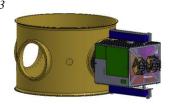


Iodine / Electric Propulsion enables high value lunar orbiter science despite multiple previous lunar missions.

Orbit Transfer Vehicles

The direct replacement of xenon for iodine will significantly increase ΔV capability or enable additional payloads on the carrier vehicle.


Iodine OTV can deliver large number of SmallSats / CubeSats from GTO to a range of Lunar orbits.



Mid-Term Iodine Objectives

Multiple Studies Completed on Enabling Applications:

- 1) 200 W Iodine is enabling for NanoSats (1-10kg) and MicroSats (10-100kg)
 - Iodine properties are ideal for secondary payloads
 - Benign propellant, quiescent until heated
 - Launches and stores unpressurized
 - High density $\sim 6g/cm^3$ and high Density $-I_{SP} \sim 8,000 \text{ g-s/cm}^3$
 - Xe ~3,000 g-s/cm³, Solid Motor ~500 g-s/cm³, Cold Gas ~150 g-s/cm³
 - Enables orbit maneuverability (plane change and altitude change)
 - Enables spacecraft deorbit
- 2) 200W 600W Iodine enables very high ΔV for ESPA class (180kg) spacecraft
 - Can provide \sim 10km/s ΔV
 - More than 2x the Xenon ΔV capability (Volume limited)
 - Enables GTO to Asteroids, Mars and Venus (Iodine and Xenon can both go to the moon)
- 3) 600W Iodine Enables "Discovery Class" Science Instruments for ESPA Grande class (300kg) spacecraft
 - Volume limitations require high density propellant
 - 3x 5x reduction in total mission cost
 - New class of HEOMD and SMD missions
- 4) 600W 1.5KW Class Iodine Enables Orbit Maneuvering Systems
 - Iodine based ESPA OMS can enable high ΔV using the volume within the ESPA ring
 - Can enable additional payloads over Xenon from GTO to GEO
 - Can enable independent payload delivery to various Mars orbits

The technology can be enabling for a wide range of future commercial, academic, DoD and NASA HEOMD and SMD missions.

iSAT Mission Concept Overview

The iSAT Project is the maturation of iodine Hall technology to enable high ΔV primary propulsion for NanoSats (1-10kg), MicroSats (10-100kg) and MiniSats (100-500kg) with the culmination of a technology flight demonstration.

- NASA Glenn is leading the technology development and is the flight propulsion system lead
 - Busek delivering the qualification and flight system hardware
- NASA MSFC is leading the flight system development and operations

The iSAT Project launches a small spacecraft into low-Earth orbit to:

- Validate system performance in space
- Demonstrate high ΔV primary propulsion
- Reduce risk for future higher class iodine missions
- Demonstrate new power system technology for SmallSats
- Demonstrate new class of thermal control for SmallSats
- Perform secondary science phase with contributed payload
 - Increase expectation of follow-on SMD and AF missions
- Demonstrate SmallSat Deorbit
- Validate iodine spacecraft interactions / efficacy

High value mission for SmallSats and for future higher-class mission leveraging iodine propulsion advantages.

Mission Justification

There is an emerging and rapidly growing market for SmallSats

- SmallSats are significantly limited by primary propulsion
 - Desire to transfer to higher value science / operations orbit and responsive space
 - Desire to extend mission life / perform drag make-up
 - Requirement to deorbit within 25 years of end-of-mission

Limitations on SmallSats limit primary propulsion options

- Requirements imposed by nature of secondary payloads
 - Limitations for volume, mass and power
 - Limitations on hazardous and stored energy from propellants
 - Limitations for high pressure systems
 - Systems must sit quiescent for unknown periods before integration with primary

Why perform flight validation?

- Reduce risk of implementation of iodine for future higher class missions
- Gain experience with condensable propellant spacecraft interactions
- Reduce risk of custom support systems
 - Power generation, storage and distribution
 - Thermal control
- Cost effective risk reduction before maturing higher power systems

Mission Justification

- > 200W NanoSat infusion near-term with low entry cost and lower risk
 - > Short mission durations, low throughput requirement, simple propellant management
 - Engineering / material changes and validation, valve wetting surfaces and seals
 - Demonstrates enabling technology, demonstrates high spacecraft power density

- Additional high payoff for higher power / high payoff mission infusion
 - Critical Technology Gaps and Risks Remain
 - Propellant flow rate and metering is critical to achieve required performance
 - Large propellant management, potentially conformal tanks
 - Uniform / efficient heating and propellant management critical
 - ➤ Wear testing >1000hrs for both thrusters and cathodes
 - Additional material compatibility testing
 - Spacecraft / plume interactions testing and analyses
 - > Sputter erosion data, erosion modeling and lifetime analyses

Critical gaps remain for efficient propellant heating, transport and metering in a relevant environment in addition to long duration test data and analyses required for mid-term mission infusion.

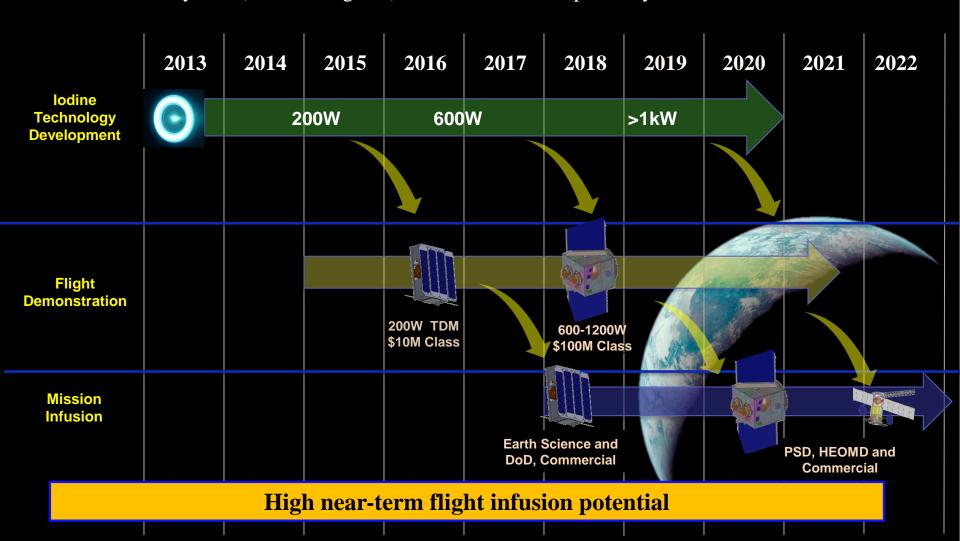
Stakeholder Expectations

The iSAT project is supported by a wide range of customers including:

- MSFC Technology Investment Program (TIP)
- MSFC Center Strategic Development Steering Group (CSDSG)
- Office of the Chief Technologist (OCT)
- Advanced Exploration Systems (AES) Program
- Game Changing Development (GCD) Program
- NASA Engineering and Safety Center (NESC)
- Air Force: AFRL, ORS and SMC
- Small Business Innovative Research (SBIR) Program

Additional stakeholders include:

- NASA Glenn to transition a new Electric Propulsion technology to flight
- NASA MSFC to provide flight system development experience to young engineers
- SmallSat Program to enable new capabilities for future SmallSat missions
- Future commercial contractors (ULA, Northrop Grumman, NanoRacks, etc.)
- Science Mission Directorate (SMD)
- Busek, the Small Business with the IP for the iodine Hall system
- Far-term users for high power iodine Hall systems


Primary Customer:

- STMD: SmallSat Technology Program

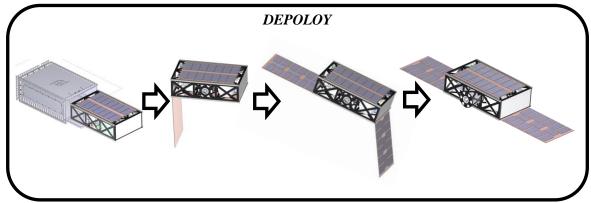
Mission Justification

- ➤ High applicability at a range of power levels
 - ➤ 200W System: (10-20kg S/C) LEO maneuverability, constellations and de-orbit Launch <\$1M
 - ► 600W+ System (100 300kg S/C) New class of interplanetary missions Launch < \$20M

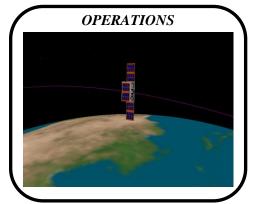
Mission Justification – Launch Vehicle Savings

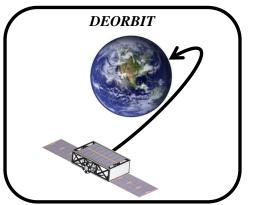
	Containerized Payloads				MicroSat Class			
Payload Class	1U	3U	6U	12U	50 kg	180 kg	300 kg	
Length (cm)	10.0	34.0	36.6	36.6	80	100	125	
Height (cm)	10.0	10.0	10.0	22.6	40	60	80	
Width (cm)	10.0	10.0	22.6	22.6	40	60	80	
Mass (kg)	1.0	5.0	10.0	20.0	50	180	300	
Low Earth Orbit (LEO)	\$125k	\$325k	\$595k	\$995k	\$1,750k	\$4,950k	\$6,950k	
Geosynchronous Transfer Orbit (GTO)	\$250k	\$650k	\$995k	\$1,950k	\$3,250k	\$7,950k	\$9,960k	
Geosynchronous / Low Lunar Orbit (GSO/LLO)	\$490k	\$995k	\$1,990k	\$3,250k	\$6,500k	\$15,900k	\$19,900k	

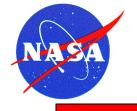
Secondary SmallSats can reduce launch costs by >90%.


Iodine enables interplanetary SmallSats from GTO.

Mission ConOps


- •Ride-share launch opportunity
- Most likely to sun-synch orbit

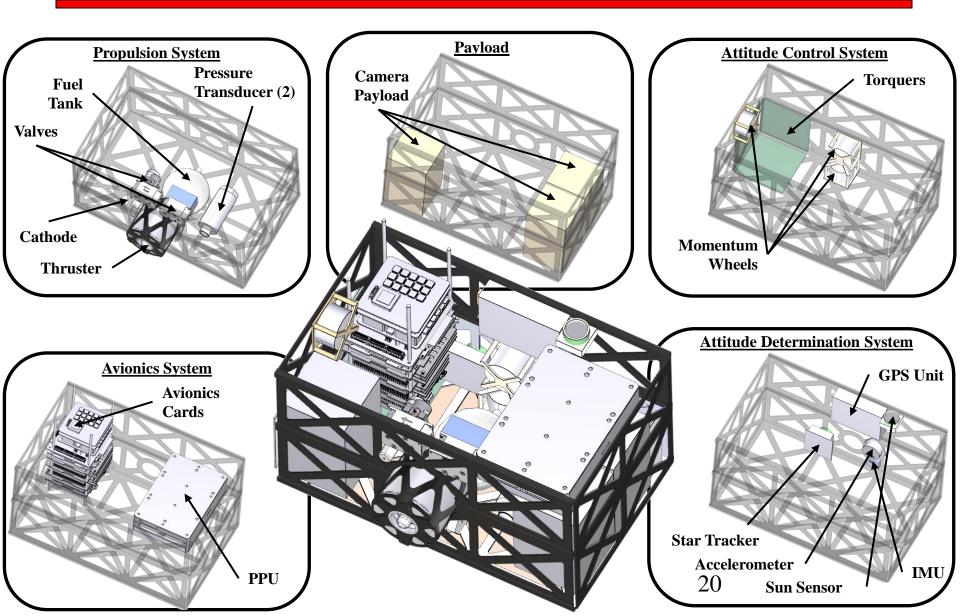

- •Deployable solar arrays for power production
- •Deployable thrust assembly to support management of internal thermal environment


- Evaluate tip-off moments
- •Arrest initial rotation with magnetic torquers

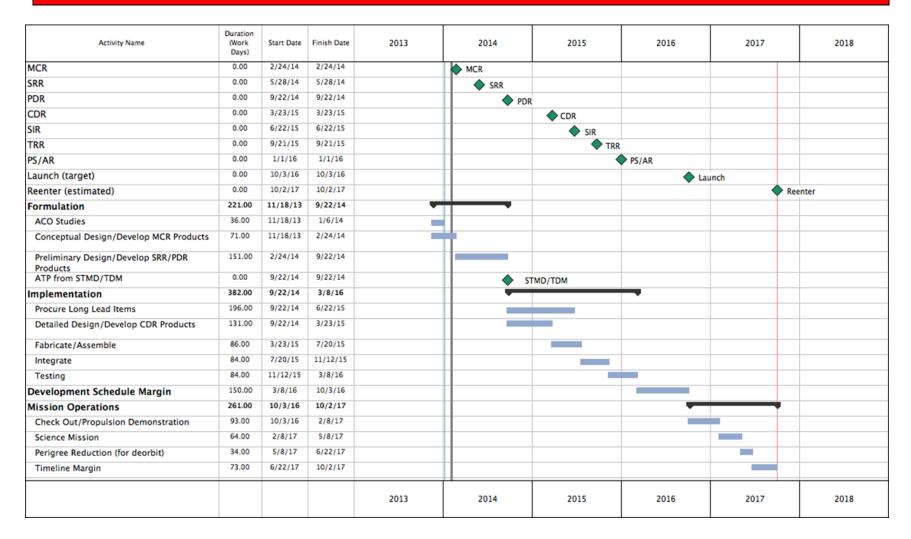
- •Support tech demo through inclination change and perigee lowering operations
- •See next chart for timeline details

•Natural drag interaction will result in deorbit after perigee is lowered

12U LEO Design Reference Mission

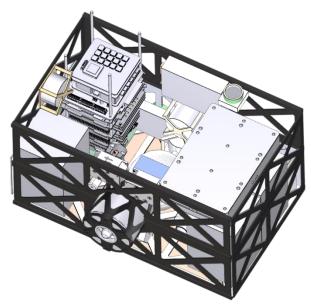

iSAT Mass Estimation List (MEL)	Basic Mass (kg)	MGA (%)	MGA (kg)	Predicted Mass (kg)
1.0 Structures	1.601	30%	0.480	2.081
2.0 Mechanisms	0.100	30%	0.030	0.130
3.0 Thermal	0.334	30%	0.100	0.434
4.0 Power	2.052	30%	0.616	2.668
5.0 Guidance Navigation & Control (GN&C)	1.518	10%	0.152	1.670
6.0 Communications	0.090	6.00%	0.005	0.095
7.0 Command and Data Handling (C&DH)	0.324	16%	0.053	0.377
8.0 Propulsion	3.846	25%	0.965	4.811
Dry Mass	9.864	24%	2.401	12.265
9.0 Payload	6.000	0%	0.000	6.000
10.0 Non-Propellant Fluids	0.000	0%	0.000	0.000
Inert Mass	15.864	15%	2.401	18.265
11.0 Propellant (Solid Iodine)	0.720		0.000	0.720
iSAT Total Mass	16.584		2.401	18.985

12U LEO option is the only preliminary concept with margin; lowest risk and selected as the Baseline.



System Architecture

Development Schedule


The iSAT Project is on an aggressive schedule for FY17 launch.

Interplanetary ConOps

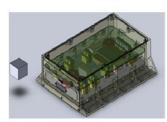
- Interplanetary mission will require entirely different con-ops than the LEO missions
- Assume EM-1 Launch, Deployment will occur at +C3
- Rotation damping and initial orientation will be achieved through the use of reaction wheels and cold-gas thrusters
- Flight orientation and thruster duty cycle will be dependent on destination
 - Will most likely require periods of thrust followed by periods of charging
 - Destination (and resulting trajectory) will determine whether charging can occur without spacecraft rotation
- Science operations will be dependent on destination

Though not the iSAT Baseline Mission: lodine Hall for EM-1 to lunar orbit under development.

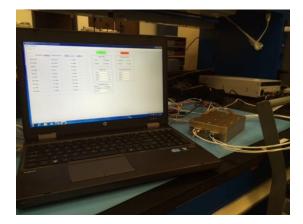
Propulsion

BHT-200-I Thruster:

- Heritage to TacSat-2
 - Most studied thruster since SPT-100
- Material changes for iodine compatibility


Cathode:

LaB6 and Electric Cathodes under consideration


- Minimize power requirements
- Both successfully operated on iodine

Compact PPU:

- 3rd PPU iteration ongoing
- Based on BPU-600
 - 80% Mass reduction
 - 90% Volume reduction

Feed System & DCIU

Education and Public Outreach

Large number of outreach events

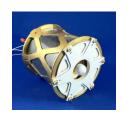
NASA Mission Needs → SmallSats → Technology Gaps → iSAT

NASA Mission Needs → Propulsion → Electric Propulsion → Iodine

E&PO is a large part of the iSAT project.

Progress to Date

Successfully Completed MCR – February 28th Table Top SRR – July 8, 2014

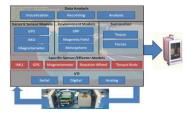

PDR and System Demonstration

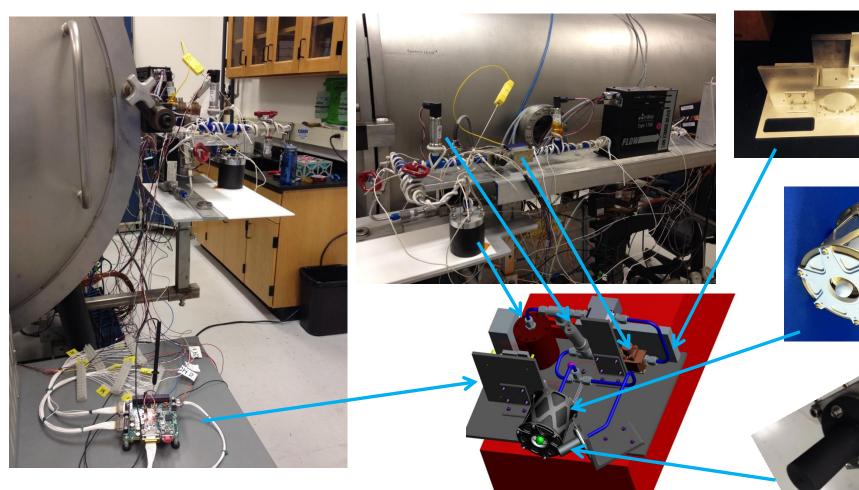
- November 13, 2014

Hardware Status:

- BB Battery delivered February 20, 2014
- BB EPS delivered March 7, 2014
- BB DCIU delivered March 27, 2014
- EM PPU Delivered April 1, 2014
- EM Battery delivered April 4, 2014
- EM Cathodes delivered April 9, 2014 (two to GRC)
- EM Flight computer delivered April 14, 2014
- EM Thruster Delivered June 6, 2014
- Initial DCIU / Feed System Test June 12, 2014
- Material testing initiated Ongoing
- Integrated propulsion system check-out Ongoing



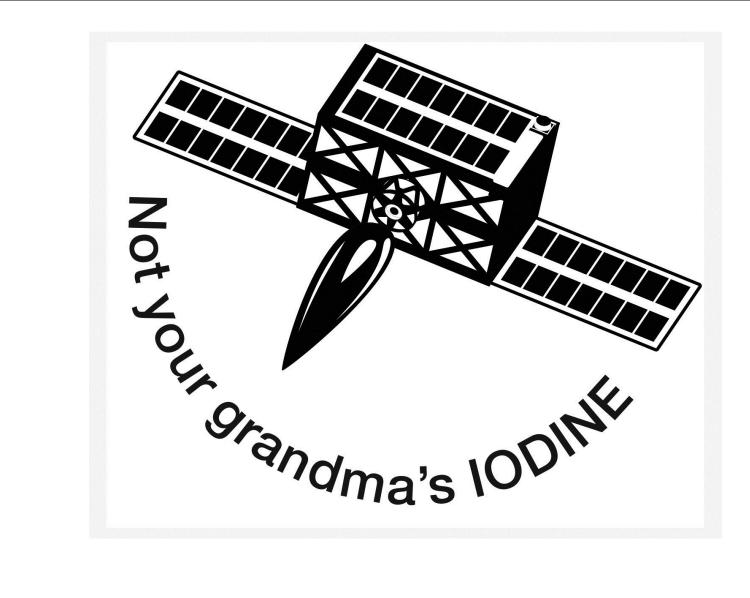





Significant hardware rich investments to reduce risk and simply integrate and fly as a technology demonstration mission.

Near-term Events

Near-term system performance characterization at NASA.



Closing Remarks

- > SmallSats hold significant potential for future low cost high value missions
- > Propulsion remains a key limiting capability for SmallSats that Iodine can address
 - High ISP * Density for volume constrained spacecraft
 - Indefinite quiescence, unpressurized and non-hazardous as a secondary payload
- ➤ Iodine enables MicroSat and SmallSat maneuverability
 - Enables transfer into high value orbits, constellation deployment and deorbit
- ➤ Iodine may enable a new class of planetary and exploration class missions
 - Enables GTO launched secondary spacecraft to transit to the moon, asteroids, and other interplanetary destinations for ~\$150M full life cycle cost including the launch
- \triangleright ESPA based OTVs are also volume constrained and a shift from xenon to iodine can significantly increase the transfer vehicle ΔV capability including transfers from GTO to a range of Lunar Orbits
- The iSAT project is a fast pace high value iodine Hall technology demonstration mission
 - Partnership with NASA GRC and NASA MSFC with industry partner Busek
- ➤ The iSAT mission is an approved project with PDR in November of 2014 and is targeting a flight opportunity in FY17.

Questions?

Acknowledgments

Resources were provided for this work in part by the MSFC Center Innovation Fund from the Office of the Chief Technologist as part of MSFC Technology Investment Program, the MSFC Center Strategic Development Steering Group, MSFC Technical Excellence funding under the Office of the Chief Engineer, the Air Force Operationally Responsive Space Office, the Advanced In-Space Propulsion project under the Space Technology Mission Directorate, the NASA Engineering and Safety Center, with support from NASA's Science Mission Directorate under Directed Research and Technology, Busek Co., the NASA Office of Education and the NASA Small Business and Innovative Research Program. The authors wish to thank the entire iSAT team for their input and progress to date.