

Fluid Dynamics and Propulsion at Marshall Space Flight Center

Marshall Technology Exposition U.S. Space and Rocket Center Davidson Center for Space Exploration October 27, 2014 CORE

PROPULSION SYSTEMS DEPARTMENT

Fluid Dynamics Branch

Branch Chief – Lisa Griffin Assistant Branch Chief – Tom Nesman Technical Assistant – Denise Chaffee Technical Assistant - Kevin Tucker Computer System Administrator – Dennis Goode

Computational Fluid Dynamics Team Leader: Jeff West Unsteady Flow Environments Team Leader: Tom Zoladz Acoustics and Stability Team Leader: Jeremy Kenny

ER42 is comprised of three teams with a total of approximately 50 employees

The Fluid Dynamics Branch (ER42) is a discipline centric branch responsible for all aspects of the discipline of fluid dynamics applied to propulsion and propulsion-induced loads and environments.

- ER42 work begins with design trades and parametric studies and continues through hardware development and flight.
- Project support also includes risk assessment, anomaly investigation and resolution, and failure investigation.

Main Propulsion System	Turbopumps	Liquid Combustion Devices	Solid Rocket Motors
 Tank Dynamics Cryofluid Management Feedline Flow Dynamics Valve Flow and Dynamics 	Pump DynamicsTurbine Dynamics	 Injection Dynamics Chamber Acoustics Combustion Stability Nozzle Dynamics 	 Motor Dynamics Nozzle Dynamics Combustion Stability
	Coupled Systems	Launch, Separation, and Plume-Induced Environments and Debris	
	 Feed System Dynamics Coupled Pump/MPS Dynamics, e,g,, Pogo Thrust Oscillations and its Impact on the Vehicle Tank Slosh and its Impact on Vehicle Stability and GN&C 	 Liftoff Acoustics Separation Acoustics Overpressure Inflight Plume Generated Nois Noise Mitigation Hydrogen Entrapment Liftoff Debris Transport 	e Page 4

FLUID DYNAMICS ANALYSIS

Scaling Methods

ER42 conducts all levels of fluid dynamics analysis from scaling methods through 3D Unsteady CFD

System Stability Modeling

Finite Element Modeling

Computational Fluid Dynamics

FLUID DYNAMICS TESTING

Page 6

The Fluid Dynamics Branch is continually improving the state-of-the-practice for fluid dynamics support for propulsion system design & development

- Why?
 - To enable development of robust propulsion hardware that fully meets design requirements
 - To facilitate reductions in the cost of access to space by—
 - Lowering design and development costs
 - Lowering production costs (via evaluation of fluid dynamic impacts of advanced manufacturing techniques)
- How?
 - Increasing tool/test fidelity via appropriate technology pull from the state-of-the-art
 - Across the entire spectrum of fluid dynamics analysis
 - Tests-cold flow/hot fire, subscale/full scale
 - Test and flight data acquisition capabilities
 - Validation of new capabilities
 - Integration of validated, high-fidelity capabilities into fluid dynamic support for programs
- By what means?
 - Strategic partnerships with small business and universities
 - Active participation in the NASA SBIR/STTR program
 - Internal funding from projects and technology opportunities (e.g. CIF, TIP, Tech Excellence, etc.)

MAIN PROPULSION SYSTEM

Main Propulsion System (MPS) design & development support encompasses:

- Tanks (including internal components)
 - Propellant Tank Slosh
 - Pressurization
 - Drain

Valves

- Flow Patterns & Mean Pressure Drop
- ✓ Unsteady & Transient Fluid Environments
- Feedlines (including internal components)
 - Pressure Drop and Flow Uniformity
 - Unsteady Pressure Environments

TURBOPUMPS Turbines

Turbine **Unsteady CFD** Analysis

CFD Solution

onto Stress Grid

Turbine design & development support includes:

High-fidelity, unsteady, 3D, full 360° turbine CFD simulations

- ✓ Quick turnaround design parametrics
- ✓ All flow features impacting fluid forcing functions are modeled
- ✓ Unsteady pressure histories delivered in temporal or frequency domains

Airflow testing of highly instrumented turbine models in scaled air conditions

- ✓ Steady & unsteady pressure loadings
- ✓ Interstage cavity pressures
- ✓ Wide range performance mapping
- ✓ CFD validation

Highly Instrumented Turbine Test Article

TURBOPUMPS Pumps

Pump Unsteady CFD Analysis

Pump design & development support includes:

Comprehensive steady & unsteady pump evaluations

- ✓ Done at scaled engine conditions via dense instrumentation suites
- ✓ Cavitation trend identification
- ✓ High speed flow visualization
- High-fidelity CFD simulations
 - ✓ Time accurate CFD simulations provide insight into cavitation
 - Used to identify critical unsteady flow interactions between inducer blades and cavitation suppression grooves

Pump with upstream MPS element

2-blade inducer with on-rotor dynamic force measurement system

COMBUSTION DEVICES Injectors and Combustion Chambers

Branch responsibility in support of liquid rocket engine injector/chamber design & development

- Large and small engines
- Design, analysis & test support
 - ✓ Performance
 - Pressure, acoustic & thermal environments
 - ✓ Combustion stability—current emphasis

Reacting flowfield from a 7-element CFD injector simulation

Injector Design & Combustion Stability Assessment Process

COMBUSTION DEVICES Nozzles

Upper stage engine transients (with stub nozzle)

Nozzle design & development support includes:

High-fidelity, unsteady, 3D, full 360° CFD simulations

- ✓ Performance
- ✓ Transient side loads
- ✓ Film Cooling

Airflow testing of highly instrumented nozzles in scaled air conditions

- ✓ Pressure loads & performance
- ✓ Heat transfer
- Evaluation of advanced nozzle concepts—dual bell, aerospike, expansion-deflection, etc.
- ✓ Data for CFD validation

SOLID ROCKET MOTORS

CFD simulation of Solid rocket motor Temperature booster start transient design & development contours during support includes: ignition Large booster-class motors Small motors-ullage settling, booster separation Steady & launch abort Pressure Performance \checkmark contours **Environments-** \checkmark pressure, acoustic & thermal V Stability Aft dome heat transfer 2L 3L 1L coefficients Acoustic Acoustic Acoustic Mode Mode Mode Mode shapes from finite element analysis Hot Fire Test Oscillatory **Pressure Characteristics**

LAUNCH ENVIRONMENTS

LAUNCH ENVIRONMENTS Overpressure

Overpressure Predictions

- Made by use of a combination of analytical models, CFD simulations and test/flight data
- CFD has recently shown to represent overpressure very accurately without the inclusion of water
 - Demonstrated ability to capture IOP and DOP waves at several locations for dry tests
 - ✓ Addresses limitations of analytical models
 - ✓ Accounts for complex flow scenarios and threedimensional launch pad geometry
 - ✓ Provides understanding where unknowns exist

LAUNCH ENVIRONMENTS Liftoff Acoustics

Liftoff Acoustics

- Liftoff noise is generated by rocket exhaust mixing with surrounding atmosphere & its interactions with surrounding launch structures
- ER42 Liftoff Environment Definition Process
 - Initial liftoff acoustic environment derived from previous/historical flight test data
 - ✓ Acoustic scale model designed and tested to validate liftoff acoustic environments and water sound suppression system design.

- Analysis window (a)
- Analysis window overlaid on chamber pressure measurement and RMS OASPL time history (b)
- A one third octave plot for the test data compared to the scaled data (c).

- The Fluid Dynamics Branch at MSFC has the mission to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals
- The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events
- ER42 supports projects from design through development, and into anomaly and failure investigations
- ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline