mttps://ntrs.nasa.gov/search.jsp?R=20140017065 2019-08-31T16:19:24+00:00Z

Near-Earth Asteroids: Destinations for Human

Exploration

Presented to the AIAA Mid-Atlantic Section Awards Dinner

Brent W. Barbee

NASA/GSFC

June 10th, 2014

What are near-Earth objects?

- Near-Earth objects (NEOs) consist of asteroids and comets whose orbits are in close proximity to Earth's orbit
 - Perihelia < 1.3 AU
 - Usually rocky, sometimes metallic, small celestial bodies
 - Several meters to several kilometers in size
 - Near-Earth asteroids (NEAs) are numerous; near-Earth comets (NECs) are relatively rare
 - Comets are characterized by long orbit periods, highly eccentric orbits, and active jets of volatiles that create the familiar "tail" when close enough to the Sun
- NEOs are distinct from Main Belt Asteroids (MBAs) that inhabit the famous "asteroid belt" between the orbits of Mars and Jupiter

Asteroid 951 Gaspra imaged by Galileo in 1991

Comet Giacobini-Zinner

Solar System Science

- NEAs are largely unchanged in composition since the early days of the solar system
- Asteroids and comets may have delivered water and even the seeds of life to the young Earth

Planetary Defense

- NEA characterization
- NEA proximity operations

In Situ Resource Utilization

- Could manufacture radiation shielding, propellant, and more
- Construction of rotating space stations

Human Exploration

- The most ambitious journey of human discovery since Apollo
- Learn to operate successfully in deep space

- NEAs are classified according to:
 - Orbit
 - Earth-crossing, Earth-approaching
 - Exterior or interior to Earth's orbit
 - Composition
 - The (surface) composition of some NEAs has been inferred from the spectra of the sunlight they reflect
 - Most asteroids (75%) are thought to be carbonaceous
 - Some asteroids (17%) are thought to be stony (silicates)
 - Relatively few asteroids (8%) are thought to be metallic (nickel-iron)

Potential to pose a hazard to Earth

- To be classified as a Potentially Hazardous Asteroid (PHA), a NEA must have a Minimum Orbit Intersection Distance (MOID) with Earth's orbit ≤ 0.05 AU (20 LD, 7.5M km) and an estimated diameter ≥ 150 m
- Without radar observations or *in situ* measurements made by spacecraft, a NEA's diameter can only be estimated by combining its absolute magnitude (a measure of brightness) with an *assumed* albedo (indicative of surface reflectivity)

http://wise.ssl.berkeley.edu/gallery_asteroid_sizes.html

NEA Groups According to Orbit Type

Amors

Earth-approaching NEAs with orbits exterior to Earth's but interior to Mars' (named after asteroid (1221) Amor)

Apollos

Earth-crossing NEAs with semi-major axes larger than Earth's (named after asteroid (1862) Apollo)

Atens

Earth-crossing NEAs with semi-major axes smaller than Earth's (named after asteroid (2062) Aten)

Atiras

NEAs whose orbits are contained entirely within the orbit of the Earth (named after asteroid (163693) Atira)

 $\begin{array}{c} a < 1.0 \ \mathrm{AU} \\ Q < 0.983 \ \mathrm{AU} \end{array}$

a > 1.0 AU

1.017 AU < q < 1.3 AU

a > 1.0 AU

 $q < 1.017 \; {\rm AU}$

 $a < 1.0 \, {\rm AU}$

Q > 0.983 AU

(q = perihelion distance, Q = aphelion distance, a = semi-major axis)

http://neo.jpl.nasa.gov/stats/

Estimated Diameter (m)

300

1000

Near-Earth Asteroids Total Discovered per Size Bin

Totals as of 2014-05-27:

A 1 1	14	31
Atiras	14	
Atens	843	
Apollo	5973	
Amor	4163	
Total NEAs	10993	
Total NECs	94	
Total NEOs	11087	
Potentially Hazardous NEAs	1478 (153 w/ est. diameter \geq 1 km))

Estimates for undiscovered NEAs:

30

- \sim \sim 70 NEAs > 1 km in diameter
- \sim \sim 16,000 NEAs 100 to 1000 m in diameter

100

 \sim \sim 10^{6} NEAs with diameter < 100 m

3000

2500

2000

1500

1000

500

15 April 2014

Alan B. Chamberlin (JPL)

http://www.nasa.gov/mission_pages/WISE/multimedia/gallery/neowise/pia14734.html

http://neo.jpl.nasa.gov/stats/

Robotic Exploration of Asteroids & Comets

Galileo (en route to Jupiter) (NASA)

- Flew by asteroid 951 Gaspra in 1991
- Flew by asteroid 243 Ida (and its moon, Dactyl!) in 1993

Near-Earth Asteroid Rendezvous (NEAR) - Shoemaker (NASA)

- Launched in 1996
- Flyby of asteroid Mathilde in 1997
- Orbit of asteroid Eros in 2000
- "Soft" landing on Eros in 2001

Deep Space 1 (NASA)

- Launched in 1998
- Performed flybys of asteroid Braille and comet Borrelly

Stardust (NASA)

- Launched in 1999
- Investigated asteroid 5535 Annefrank and comet Wild 2
- Wild 2 coma samples returned to Earth in 2006
- Flyby of comet Tempel 1 in February of 2011 (Stardust-NExT)

Hayabusa/MUSES-C (ISAS/JAXA)

- Launched in 2003
- Visited asteroid Itokawa
- Samples returned in 2010

Robotic Exploration of Asteroids & Comets

Rosetta (ESA)

- Launched in 2004; 2 asteroid flybys (Steins in 2008, Lutetia in 2010)
- Will rendezvous with and deploy a lander to comet Churymov-Gerasimenko in 2014

Deep Impact (NASA)

- Launched in 2005
- Delivered an impactor to the comet Tempel 1 in the same year, observed impact ejecta
- Flyby of comet Hartley 2 in November of 2010 (EPOXI)

Dawn (NASA)

- Launched in 2007
- Orbited Vesta (2nd most massive main belt asteroid (protoplanet)) 2011–2012
- Currently on its way to rendezvous with and study Ceres (main belt dwarf planet)

Chang'e 2 (lunar orbiter) (China)

Flew within 3.2 km of NEA 4179 Toutatis (1989 AC)

Hayabusa 2 (JAXA)

- Launch planned for early 2015
- Return samples of NEA 162173 (1999 JU₃) in 2020

OSIRIS-REx (NASA)

- Launch planned for September 2016
- ▶ Return samples of NEA 101955 Bennu (1999 RQ_{36}) in 2023

Asteroid 433 Eros (NEAR-Shoemaker)

Asteroid 9969 Braille (Deep Space 1)

Nucleus of comet 19P/Borrelly (Deep Space 1)

Nucleus of comet 81P/Wild (aka Wild 2) (Stardust)

Asteroid 25143 Itokawa (Hayabusa/MUSES-C)

Nucleus of comet 9P/Tempel (aka Tempel 1) during impact (Deep Impact)

Dwarf planet Ceres (as seen by the Hubble Space Telescope)

Asteroid 4 Vesta (Dawn)

Simulated image of Bennu - topography overlaid on radar imagery.

Profile of a Human Mission to an NEA

The purpose of NASA's Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (pron.: /næts/) is to identify known near-Earth objects (NEOs), particularly near-Earth asteroids (NEAs), that may be accessible for future human space flight missions. The NHATS also identifies low Δv robotic mission opportunities.

NHATS Online System Overview

Main NHATS Web-site:

- http://neo.jpl.nasa.gov/nhats/
- Link to NHATS data table, provides background, assumptions & caveats, and description of NEA observability calculations

NHATS Data Table:

- http://neo.jpl.nasa.gov/cgi-bin/nhats
- The data table is automatically updated each day as NHATS processes new NEAs and NEAs with updated orbit solutions
- Sortable/filterable according to total Δv , mission duration, minimum stay time at NEA, Earth departure date range, H, OCC, next optical or radar observing opportunity, etc
- Shows two optimal round-trip spacecraft trajectory solutions for each NEA: minimum Δv and minimum mission duration
- Clicking on a NEA designation opens a trajectory details page for that NEA that shows additional trajectory information and the NEA's Pork Chop Contour (PCC) plot

NHATS Daily Updates Mailing List:

- https://lists.nasa.gov/mailman/listinfo/nhats
- Subscribe to this mailing list to receive daily NHATS processing results via email
- Provides notification to observers to facilitate timely acquisition of follow-up NEA observations during the critical time period around NEA discovery
- Also provides a mechanism for public engagement

Supported by NASA's Near-Earth Objects Observations (NEOO) program

NHATS Analysis Constraints

- In order to be classified as NHATS-compliant, a NEA must offer at least one round-trip trajectory solution that meets the following constraints:
 - 1. Earth departure date between 2015-01-01 and 2040-12-31.
 - 2. Earth departure $C_3 \leq 60 \text{ km}^2/\text{s}^2$.
 - 3. Total mission $\Delta v \leq 12$ km/s. The total mission Δv includes the Earth departure maneuver from a 400 km altitude circular parking orbit, the maneuver to match the NEA's velocity at arrival, the maneuver to depart the NEA, and, when necessary, a maneuver to meet the following Earth atmospheric entry speed constraint (item 6).
 - 4. Total round-trip mission duration \leq 450 days.
 - 5. Stay time at the NEA \geq 8 days.
 - 6. Earth atmospheric entry speed \leq 12 km/s at an altitude of 125 km.
- The trajectory calculations are performed using patched conics with Lambert solutions for the spacecraft and with full precision high-fidelity ephemerides for the Earth and NEAs obtained from JPL's Horizons system.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION + View the NASA Portal										
Near Earth Object Program										
NEO BASICS SEARCH PROGRAMS DISCOVERY STATISTICS ACCESSIBLE NEAS NEWS FAQ										
ОН	BIT DIA	AGHAMS		ELEM		SE APPROACHES		CTRISK IMAGE		s
Near-Earth Obje	ect H	luma	n Space	Flig	ght Access	ible Target	s Study (I	NHATS)		
This list of potential mission targets should <i>not</i> be interpreted as a complete list of viable NEAs for an actual human exploration mission. As the NEA orbits are updated, the viable mission targets and their mission parameters will change. To select an actual target and mission scenario, additional constraints must be applied including astronaut health and safety considerations, human space flight architecture elements, their performances and readiness, the physical nature of the target NEA and mission schedule constraints.										
[show instructions]										
	to	tal dV <	= 6 km/s \		total dur. <= 36	0 days 🗸 💽	tav >= 8 davs	launch: 20	15-2040	
		ai uv <				o uays v	stay >= 0 uays	I adricit: 20.	13-2040	
	Н	<= 26		C <= 7	Sort by	number of viab	le trajectories	Des	cending sort	
		isplay T	able							
	Co	nstraint	s described	below	r		reset	all constraints and s	sorting to defaults	
Column headings de	scribe	d below	/						[Selected 2	4 out of 1052 records]
	Orbit		Estimated		Min. delta-V	Min. Duration	∆ Viable	Next Optical	Next Arecibo	Next Goldstone
Object Designation	ID	н	Diameter	occ	[delta-V, dur.]	[delta-V, dur.]	Trajectories	Opportunity	Radar Opportunity	Radar Opportunity
		(mag)	(m)		(km/s), (d)	(km/s),(d)		(yyyy-mm [Vp])	(yyyy-mm [SNR])	(yyyy-mm [SNR])
(2000 SG344)	13	24.8	19 - 86	2	3.556, 354	5.973, 114	3302718	2028-04 [19.2]	2028-05 [2800]	2028-05 [55]
(2012 UV136)	13	25.6	13 - 60	5	5.051, 354	5.975, 282	2119115	2013-08 [20.4]	2013-10 [20]	none
(2006 BZ147)	9	25.4	14-64	3	4.184, 354	5.972, 250	1672928	2034-12 [19.5]	2035-02 [1400]	2035-02 [37]
(2001 FR85)	9	24.5	22 - 98	3	4.557, 354	5.987, 162	1618605	2038-02 [23.9]	2039-03 [120]	2039-09 [11]
(2012 MD7)	1	24.1	27 - 120	7	5.071, 354	5.989, 314	867652	2013-04 [23.1]	none	none
(2007 YF)	6	24.8	19 - 86	5	5.426, 346	5.965, 250	791463	2021-12 [23.6]	none	none
(2010 JK1)	21	24.4	23 - 101	1	5.514, 306	5.971, 282	775615	2033-03 [22.9]	none	none
(2001 QJ142)	19	23.5	35 - 159	0	5.593, 354	5.940, 338	638369	2013-03 [23.9]	2024-04 [88]	none
(2012 HK31)	12	25.4	15 - 65	6	5.746, 322	5.924, 306	627317	? 2022-03 [22.0] ?	none	none
(2012 BB14)	7	25.0	18-79	4	5.181, 354	5.998, 306	590985	2022-12 [21.7]	none	none
(2009 HC)	29	24.8	19 - 86	4	4.504, 354	5.997, 298	554669	2025-08 [23.1]	2027-04 [5600]	2025-10 [42]
(1999 CG9)	9	25.2	16 - 70	6	5.328, 354	5.990, 330	541164	2033-08 [22.9]	2034-02 [61]	none
(2007 UY1)	29	22.9	46 - 207	2	5.543, 354	5.947, 338	537652	2019-09 [23.4]	2020-10 [32]	2022-02 [19]
		i		0	E 000 054	E 0.02 2E4	E01E11	2 2020 12 122 212	8080	

NHATS Web-site Trajectory Details

NHATS Object/Trajectory Details

This page provides some details about the selected target NEA (near-Earth asteroid) and related mission/trajectory parameters. The table below shows parameters specific to the selected NEA. The **Mission Trajectories Table** (second table below) provides information for two mission scenarios to the target NEA: one for the minimum delta-V mission and one for the minimum duration mission (in some cases the two missions are be identical). Next to the **Mission Trajectories Table** is the plot of total mission dV as a function of departure date and roundtrip flight time (mission duration), which summarizes the many potential mission trajectories. Note that these mission trajectories span a range of possible stay times at the NEA, though this cannot be shown in a two-dimensional plot. Please consider the **ASSUMPTIONS and Caveats** related to these data.

Column headings described below

Object Designation	Orbit ID	H (mag)	Estimated Diameter (m)	occ	Min. delta-V [delta-V, dur.] (km/s), (d)	Min. Duration [delta-V, dur.] (km/s), (d)	Viable Trajectories	Next Optical Opportunity (yyyy-mm [Vp])	Next Arecibo Radar Opportunity (yyyy-mm [SNR])	Next Goldstone Radar Opportunity (yyyy-mm [SNR])
(2000 SG344)	13	24.8	19 - 86	2	3.556, 354	5.973, 114	3302718	2028-04 [19.2]	2028-05 [2800]	2028-05 [55]

Mission Trajectories Table

Column headings described below

(2000 SG344)	Min. delta-V Parameters	Min. Duration Parameters		
Total Mission delta-V (km/s)	3.556	5.973		
Total Mission Duration (d)	354	114		
Outbound Flight Time (d)	145	49		
Stay Time (d)	8	8		
Inbound Flight Time (d)	201	57		
Launch date (YYYY-MM-DD)	2028-04-22	2029-07-22		
C ₃ (km ² /s ²)	1.737	3.009		
Departure Vinfinity (km/s)	1.318	1.735		
Earth Departure dV (km/s)	3.256	3.314		
dV to Arrive at NEA (km/s)	0.113	1.067		
dV to Depart NEA (km/s)	0.187	1.592		
Earth return dV (km/s)	0.000	0.000		
Entry Speed (km/s)	11.133	11.214		
Depature Declination (deg)	-8.950	-22.493		
Return Declination (deg)	-5.933	22.663		
NHATS Trajectory Solution ID	890465	2046652		

Total Mission delta-V as a Function of Departure Date and Mission Duration

The plot above shows total mission delta-V as a function of Earth departure date and total round-trip flight time (mission duration). It summarizes the many potential mission scenarios by plotting, for each case, the total round-trip delta-V values (color-coded) required for each launch date and round trip flight time considered. Note that these trajectories span a range of possible stay times at the NEA.

These data were computed on 2012-01-06 using the latest available orbital parameters.

NHATS PCC plot for 2000 SG_{344} .

NHATS PCC plot for 2012 PB_{20} .

Absolute Magnitudes (*H*) of NHATS NEAs

NHATS-compliant NEAs Tend to Have Larger H (smaller diameter) Than Other NEAs

Absolute Magnitudes (*H*) of NHATS NEAs

Low Δv NHATS-compliant NEAs Tend to Have the Largest H (smallest diameters)

NHATS-compliant NEA Synodic Periods

Minimum Round-Trip Δv versus Synodic Period for all NHATS-compliant NEAs

WWW NHATS-compliant NEA Synodic Periods

Example Round-Trip Trajectory Solutions

Round-trip mission opportunities departing Earth between 2024 and 2029 for selected NHATS-compliant NEAs.

	2000SG_{344}		341843 (2008 EV_5)	2001	QJ_{142}	2011 DV	$2012 \ PB_{20}$	99942 Apophis
Estimated Diameter (m)	19–86		450	35–	35–159		18–81	325
OCC		2	0	(0		4	0
Total Δv (km/s)	3.601	4.989	6.654	6.440	6.915	6.875	5.443	6.155
Total Mission Duration (days)	346	154	354	354	178	354	354	354
Outbound Flight Time (days)	137	65	121	73	73	193	41	49
Stay Time (days)	32	16	64	16	16	32	32	16
Inbound Flight Time (days)	177	73	169	265	89	129	281	289
Earth Departure Date	2028-04-22	2029-07-14	2024-06-30	2024-03-18	2024-04-19	2024-10-28	2025-02-09	2029-04-09
Earth Departure $\mathit{C}_3~(km^2/s^2)$	1.737	1.990	25.051	2.897	5.818	28.035	17.053	26.201
Earth Departure Δv (km/s)	3.256	3.268	4.276	3.309	3.441	4.400	3.936	4.324
Earth Departure Declination	-8.723°	-22.498°	-20.430°	74.941°	27.574°	65.776°	-37.266°	16.894°
NEA Arrival Δv (km/s)	0.128	0.754	1.227	1.912	1.287	0.779	0.437	0.522
NEA Departure $\Delta v~({ m km/s})$	0.217	0.968	1.152	1.219	2.186	1.696	1.069	1.310
Earth Return Δv (km/s)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Atmospheric Entry Speed (km/s)	11.141	11.157	11.692	11.244	11.396	11.996	11.592	11.734

Osculating orbital elements at epoch 2013-04-18.0 TDB and orbit group classifications.

	$2000 \ \text{SG}_{344}$	341843 (2008 EV_5)	2001 QJ_{142}	2011 DV	$2012 \ PB_{20}$	99942 Apophis
Semi-major Axis (AU)	0.9775	0.9582	1.0618	0.9567	1.0541	0.9223
Eccentricity	0.0669	0.0835	0.0861	0.0496	0.0948	0.1910
Inclination	0.1112°	7.4370°	3.1031°	10.594°	5.8384°	3.3319°
Classification	Aten	Aten, PHA	Apollo	Aten, PHA	Apollo	Aten, PHA

154 day round-trip trajectory to 2000 SG $_{344}$.

354 day round-trip trajectory to 2012 PB_{20} .

Distances from Sun and Earth for selected round-trip NEA mission trajectories.

	2000 SG_{344} (154 day)	2008 EV ₅	2012 PB ₂₀	99942 Apophis
Minimum Distance to Sun (AU)	0.976	0.912	0.951	0.893
Maximum Distance from Sun (AU)	1.027	1.074	1.052	1.109
Maximum Distance from Earth (AU)	0.055	0.343	0.224	0.499
Maximum Distance from Earth (LD)	21.226	133.325	86.987	194.211

154 day round-trip trajectory to 2000 SG $_{344}$.

354 day round-trip trajectory to 2012 PB_{20} .

(Available Online at: http://www.lpi.usra.edu/sbag/science/)

Accessible Near-Earth Asteroids (NEAs)

NHATS data shown here

current as of: 2014-03-20

Goals of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS):

- Monitor the accessibility of the NEA population for exploration missions.
- Characterize the population of accessible NEAs.
- Rapidly notify observers so that crucial follow-up observations can be obtained.

7 day stay Mars data: Folta, D., Barbee, B. W., Englander, J., Vaughn, F., Lin, T. Y., "Optimal Round-Trip Trajectories for Short Duration Mars Missions," AASAIAA Paper AAS 13-808, August 2013 45 day stay Mars data

Folia, D., Beiter, B. W., Suganez, J., Hogini, Y., Lui, T. Opanin, H., Opanin, K., Karan, K., Ka 500 day stay Mars data*:

Mars flyby data:

"It might be time for a] round-trip to Asteroid 4660. The rocket technology to get there already exists. It's a real exploration of a truly new world ... And it might not be too soon to start practicing getting to these worldlets and diverting their orbits, should the hour of need ever arrive."

– Carl Sagan

Proceedings of the Near-Earth Object Interception Workshop Los Alamos National Laboratory Los Alamos, New Mexico January 14–16, 1992