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Abstract: Shifts in surface climate may have changed the dynamic of zoonotic cutaneous 
leishmaniasis (ZCL) in the pre-Saharan zones of North Africa. Caused by Leishmania major, 
this form multiplies in the body of rodents serving as reservoirs of the disease. The parasite 
is then transmitted to human hosts by the bite of a Phlebotomine sand fly (Diptera: 
Psychodidae) that was previously fed by biting an infected reservoir. We examine the 
seasonal and interannual dynamics of the incidence of this ZCL as a function of surface 
climate indicators in two regions covering a large area of the semi-arid Pre-Saharan North 
Africa. Results suggest that in this area, changes in climate may have initiated a trophic 
cascade that resulted in an increase in ZCL incidence. We find the correlation between the 
rainy season precipitation and the same year Normalized Difference Vegetation Index 
(NDVI) to be strong for both regions while the number of cases of ZCL incidence lags the 
precipitation and NDVI by 2 years. The zoonotic cutaneous leishmaniasis seasonal 
dynamic appears to be controlled by minimum temperatures and presents a 2-month lag 
between the reported infection date and the presumed date when the infection actually 
occurred. The decadal increase in the number of ZCL occurrence in the region suggests 
that changes in climate increased minimum temperatures sufficiently and created 
conditions suitable for endemicity that did not previously exist. We also find that 
temperatures above a critical range suppress ZCL incidence by limiting the vector’s 
reproductive activity.

Keywords: cutaneous leishmaniasis; surface climate indicators; incidence; climate; NDVI; 
North Africa 
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1. Introduction 

Leishmaniases are among the most important emerging and resurging vector-borne diseases, second 
only to malaria in terms of the number of affected people. Leishmaniases are endemic in 98 countries 
and three territories worldwide and threaten about 350 million people. It is estimated that 14 million 
people are infected worldwide with about two million new cases occurring each year. The disease 
contributes significantly to the spread of poverty, because of its expensive treatment, and imposes a 
heavy economic burden, including loss of income [1]. 

Among all leishmaniases, cutaneous leishmaniasis (CL) is the most common. There are about  
214,000 cases reported each year and the estimated annual CL incidence ranges from 691,000 to 1.2 
million cases (90% in Afghanistan, Algeria, Saudi Arabia, Brazil, Peru, Iran and Sudan) [1,2].  
The Middle East and North Africa region harbor around 15% of the global leishmaniasis burden 
exclusively attributable to CL [3], while the disease poses an increasingly serious public health 
problem in the Maghreb region [4]. 

The incidence of CL has increased across the globe and urbanization is indicated as a key factor in 
this increase [5]. Observations show that CL has expanded beyond its natural ecoregion, especially in 
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the arid regions of the Middle East and North Africa where significant environmental changes 
occurred. References [2], [6] and [7] highlight the spread of CL from the Algerian arid zones 
northward towards the semi-arid areas and suggest that climate change and desertification observed in 
the steppe of the northern Sahara could have played a role in this territorial expansion of the disease. 
Similarly, in Morocco, CL is spreading at a fast rate, from the Atlantic coast south of the Anti-Atlas to 
the Northeastern regions passing through the pre-Saharan zones south of the Atlas Mountain, in 
particular in the Souss-Massa-Draa valley and the province of Errachidia and spreading east into the 
Algerian territory [1,2,8]. 

Cutaneous leishmaniasis (CL) is caused by a protozoan parasite of the genus Leishmania, which 
multiplies in the body of rodents serving as reservoirs of the disease. The parasite is transmitted to 
human hosts by the bite of a vector that was previously fed by biting an infected reservoir. There are at 
least three Leishmania species that can cause CL [1]; L. infantum, L. tropica and L. major. For each of 
these forms, the reservoir and the vector vary from place to place. In Algeria, a country with the 
highest number of reported CL cases per year in the Mediterranean region between 2004 and 2008 [2], 
zoonotic cutaneous leishmaniasis (ZCL) caused by L. major is dominant and distributed over a wide 
band across the southern arid zones with about 10,000 cases recorded annually [2,7,9]. Cases of CL 
caused by L. tropica and L. infantum have also been isolated, but are less frequent [1] and are confined 
to the north of the country, geographically separated from L. major CL by the Tell Mountains which 
constitute a natural barrier [6]. Recently, however, foci of CL have emerged north of the Tell 
Mountains with identification of the parasites showing that all strains belonged to L. major MON-25 
and investigations into the reservoirs pointed to the (fat) sand rat (Psammomys obesus) and Shaw’s jird 
(Meriones shawi) as proven hosts [6]. The first isoenzymatic characterization of the Leishmania strains 
responsible for cutaneous leishmaniasis in Algeria was recently presented [7]. The study performed in 
the northeastern part of Algeria analyzed 16 samples taken from a large pool of 259 infected persons 
using isoenzyme analysis. Out of the 16 strains, the isoenzymatic identification showed the presence of 
three Leishmania species: eight were L. major (50%), seven were L. infantum (44%), one was 
L. killicki (6%) and none of the strains were L. tropica. Like in Algeria, in Morocco, CL is caused by 
the same Leishmania species [1]. Its geographical distribution covers large parts of the country with  
L. infantum in the northern regions and L. tropica in the central to western semi-arid regions. However, 
the ZCL caused by L. major is exclusively found in the Saharan regions in the south and the south-east 
with outbreaks moving in waves from west to east and no evidence of overlap in the region of 
Errachidia [10,11]. The reservoir in populated areas is Meriones shawi, but it is suggested that, as in 
Algeria, there is a ‘sylvatic’ reservoir system that ‘feeds’ this urban system, with Psammomys obesus 
as reservoir and the sandfly Phlebotomus papatasi as the main vector [9]. 

No or limited isoenzymatic or DNA strain characterization has been carried out to identify the CL 
causative agent in these regions. However, the data selected for this study was based on lesions having 
a form and seasonality consistent with L. major CL, although other species may have been present. In 
this study we are specifically interested in the ZCL, caused by Leishmania major, and variation in its 
seasonal and interannual pattern as influenced by surface climate variables. This clinical form is 
transmitted by the sandfly (Phlebotomus papatasi Scopoli) vector with Psammomys obesus and
Meriones shawi serving as reservoirs. As for other vector-borne diseases, important determinants of 
this ZCL include the vector activity and reproductive periods. These factors control the vector density 
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and biting rate and thus the number of cases of the disease. Pathogens, reservoirs and vectors each 
survive and reproduce within a range of climatic conditions [1]: temperature and moisture have  
the most influence, while wind speed is also important [6,8]. The leishmaniasis complex,  
parasite-reservoir-vector, evolves in specific geographic regions and is sensitive to environmental 
changes that can affect the parasite, the reservoir and the vector as well as their dynamic interaction 
and territorial extension. 

There is evidence that changes in climate contribute significantly to the increase in the number of 
cases and expansion of the range of ZCL [12–15]. As with other vector-borne diseases, seasonal 
patterns in the number of cases and vector abundance suggest that ZCL transmission is sensitive to the 
physical environment [16]. Seasonal patterns have been widely documented in [17–20] while the 
correlation between vector density and the number of case is described in [19,20]. More specifically, 
seasonal variations of climate indicators such as minimum and maximum temperatures as well as 
rainfall amount and length of the rainy season affect the physiological behavior of the leishmaniasis 
complex producing thus seasonal patterns in the incidence of ZCL [21]. Weather and climate variables 
play an important role in ZCL incidence as they can constrain or exacerbate favorable conditions for 
the disease such as an acceleration of the development of the parasite or synergistic changes in 
reservoir and vector populations that cause an explosion in the vector population. For example, 
increase in precipitation may increase the vegetation density and thus the number and quality of 
breeding sites for both the rodents and the sandflies [22]. 

Changes in climate, although small, may also have an impact on the geographical distribution of 
ZCL reservoirs and vectors and on their density, their activity and their reproductive periods (e.g., [15]). 
For example, increases in minimum temperature and humidity will shorten the incubation period (time 
required for development of the infectious agent in the body of the vector) and shorten the maturation 
period of the vector, which could increase its vectorial capacity [23]. On the other hand, persistent 
warming and drought would diminish this capacity. The strongest effects of climate on the ZCL cycle 
may happen at the extremities of the optimal activity temperature range, which for the sandfly are in 
the vicinity of 15–18 °C for the low and 32–40 °C for the high end [23,24]. If ambient temperature 
reaches the upper values of this range, the transmission could cease completely, seriously reducing the 
cases of ZCL. Around 30–32 °C, the vectorial capacity is observed to increase significantly due to the 
shortening of the incubation period, despite a decrease in the vector’s survival [25]. This suggests that 
the vector’s physiology responds to subtle changes in weather and climate, that changes in the 
environment could affect the dynamic between the components of the leishmaniasis complex in such 
ways as to either suppress the disease if the environmental conditions extend outside of the optimum 
range or create conditions for endemicity if environmental conditions are within the optimum range.  

While there have been several studies of ZCL (e.g., [1,4,5,23,24]) only few (e.g., [6,15]) have 
described it in pre-Saharan North Africa and analyzed variations in the climate and vegetation 
variables contributing to its seasonal and interannual pattern. More studies are needed to improve the 
understanding of the ZCL cycle and the prediction of its evolution. In this study, we describe a 
functional empirical relationship between indicators of surface climate, including satellite observed 
vegetation density, and the incidence of ZCL during the 1990–2009 period in two regions, north of the 
Saharan desert, where ZCL is confirmed, widespread and is expanding northward [6], and a warming 
of up to 2 °C is expected during the next few decades [26].  
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2. Data and Method 

The study area is represented by two provinces (Figure 1(a)), located in northwest Algeria 
(Province of Saida) and in northeast Morocco (Province of Errachidia) for which concurrent monthly 
climate and ZCL-cases data were recorded for the period 1990 to 2009. As in the case of Sidi Bouzid 
(central Tunisia) [15], these two sites are considered as pilot centers for the study of ZCL and have 
accumulated a fair level of experience in diagnosing it. Most importantly they have a long and reliable 
data record for this rather data-sparse region [27,28]. This region has experienced a significant increase 
in the incidence of ZCL [6,10,11] and has also experienced warming and a slight increase in 
precipitation [29] observable as a trend over the study time period (Figure 1(b,c)). 

Figure 1. (a) Study area, showing the two provinces of Saida and Errachidia; (b) Annual 
mean temperature and precipitation anomalies for Errachidia; (c) Annual mean temperature 
and precipitation anomalies for Saida. 
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Figure 1. Cont. 
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Figure 2. Normalized time series of ZCL-cases for the two provinces. The maximum 
number of cases for Saida is 267 (population 7,500 inhabitants) and for Errachidia is 1596 
(population 600,000 inhabitants). 

 

In order to compare the ZCL-seasonal and annual variations in the two provinces, we normalize the 
time series by their respective maxima. The time stamp of these data sets may be off by one month as 
cases reported at the beginning and end of the month are not distinguished. 

For the two provinces, monthly mean minimum, maximum and mean temperatures as well as mean 
relative humidity, monthly total rainfall and monthly Normalized Difference Vegetation Index (NDVI) 
from the Advanced Very High Resolution Radiometer (AVHRR) were obtained and analyzed in terms 
of their relation to the number of cases of ZCL. The NDVI is an aggregate measure of the vegetation 
density and health. 

Laboratory studies of the sandfly at constant temperature are used to establish annual temporal 
ranges of the vector’s active period (AP) and reproductive period (RP). To remain as close as possible 
to laboratory results, we use monthly composite data over the period of analysis. 

3. Results and Discussion 

ZCL and Climate Variation 

Both Saida and Errachidia provinces reported a significant increase in ZCL incidence during the 
latest decade. Since the first reported case of ZCL in 1991, 1,275 cases were recorded in Saida by the 
end of 2009, with the vast majority of the cases (99%) reported between 2000 and 2009. Several 
epidemic peaks were observed, with the highest peak of 267 cases reached in 2003 followed by a 
significant reduction in 2004 as shown in Figure 2. Similar interannual variation in ZCL-incidence is 
observed in Errachidia. However, only about 907 cases were reported between 1994 and 2003 and the 
large majority of the cases (85.5%) occurred between 2004–2009, with large epidemic peaks in 2008 
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and 2009. Latest reports for Errachidia, not shown, indicate a further increase in 2010 and a relative 
decrease in ZCL-incidence to 538 cases in 2011.  

Because of the abrupt change in ZCL infection rate occurring around year 2000 for Saida and 2004 
for Errachidia, and because the objective of this study was to analyze the relationships between climate 
variables and disease incidence, the twenty years of climate data were separated into two sub-periods: 
P1 representing the decade with low incidence rates and P2 representing the period with high 
incidence rates. For the province of Saida, these periods correspond to 1990–1999 and 2000–2009, 
respectively whereas for the province of Errachidia they correspond to 1994–2003 and 2004–2009, 
respectively. Because of data availability for Errachidia, the composite analysis of P2 was performed 
over 6 years. This separation allows us to compare climate indicators during low rates of incidence 
with those prevailing during the high incidence period, while the decadal scale analysis provides 
statistical robustness to the results. Both provinces experienced a warming trend over the period of 
analysis as shown in Table 1 with the Saida province experiencing a stronger warming and Errachidia 
a larger moistening. 

Table 1. Comparison of Decadal Climate and Leishmaniasis Data by Study Site. 

Study Site Saida Errachidia 

Decade 
P1

(1990–1999) 
P2

(2000–2009) 
P1

(1994–2003) 
P2

(2004–2009) 
Annual Minimum Temperature (°C) 12.82 13.55 14.03 14.35 
Rainy Season Precipitation (mm) 281.04 308.49 85.20 128.90 
ZCL occurrence (percent of the total for 
1990–2009) 

0.94% 99.06% 14.5% 85.5% 

Normalized Difference Vegetation Index 0.39 0.42 0.14 0.16 

4. Trophic Cascade 

For the study area, the maximum vegetation density in a typical year occurs from February through 
April as indicated by monthly composite NDVI values over the 20 year study period. Because the 
majority of the study area precipitation occurs during the winter, summer vegetative growth is water 
limited. During winter, however, when water is available, low temperatures limit vegetative  
growth [32,36]. 

Figure 3 shows that for Saida P2 received a greater rainfall amount than P1 during the local rainy 
season defined here as September through April. Accordingly, the vegetation density for the growing 
season, expressed as the average NDVI value from February to May, was greater in P2 than P1. The 
same trends in precipitation and NDVI were observed in Errachidia, except with greater strength.  
In Saida, the precipitation increased by about 5% in P2 and was accompanied by a 3% increase in 
NDVI. In Errachidia, the positive rainfall anomaly during P2 was about 19% and led to an increase in 
vegetation density of about 6%.  

Our analysis shows a pattern that confirms the trophic cascade suggested by [22] over the semi-arid 
area of New Mexico (USA) for Hantavirus, where they found the Fall-Spring precipitations to be 
correlated to the same year NDVI and to rodents’ density 1 year later. We find a comparable 
correlation between the precipitation, received during the rainy season, preceding and coincident with 
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the growing season of a particular year, and the trend in NDVI for both Saida (r = 0.68) and Errachidia 
(r = 0.59). This result is also in line with those of [37] who showed that plant cover responded to 
precipitation during the same growing season but rodent population lagged at least one year behind in 
two sites in the desert of North America. In our study region, the typical vegetation is composed 
essentially of Atriplex halimus L. (Chenopodiaceae), a widespread perennial drought-resistant C4 
shrub [38]. Rodents locate their burrows directly beneath the Chenopod bushes which also constitute 
their preferred food source [39]. Increasing amounts of vegetation and rodents also promote sandfly 
activity. Sandflies feed on the juices of plants [3,40] and use rodent’s burrows to survive adverse 
daytime conditions [24]. 

Figure 3. Changes in rainy season precipitation and growing season NDVI from P1 to P2 
(see text for details). Changes in NDVI values were scaled by 1,000 for plotting purposes. 
Prefix ER is for Errachidia and S for Saida. 

 

Similar to the trophic cascade proposed by Yates et al. [22] and Ernest et al. [37], we postulate that 
an increase in precipitation and vegetation density as evidenced in P2 for Saida and Errachidia would 
support a larger number of local rodents. These two conditions produce a synergy that promotes 
sandfly density and activity and will ultimately increase the rate of biting and ZCL-infections. 

While the correlation between precipitations and growing season NDVI can be observed within the 
same annual cycle, there are time-lags in the correlation between precipitations and ZCL-incidence 
(Figure 4). In both provinces, we find that the rate of ZCL-incidence lags the change in precipitation 
by two years, with stronger correlations for Errachidia than for Saida. For example, in Errachidia the 
NDVI explains about 50% of the variance of ZCL-incidence two years later and the rainy season 
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precipitation explains about 27%. The NDVI appeared to be a better predictand in Errachidia and rainy 
season precipitation was a better indicator in Saida. In this analysis we focus more on the pattern of 
changes rather than the statistical significance of a particular correlation. Although precipitation 
amount and vegetation density are indicators that better explain the physical relationships in the 
proposed trophic cascade, we find that they are strongly modulated by extreme temperatures. Indeed 
ZCL-incidence in a given year is best described by vegetation density two years prior and the previous 
year maximum and minimum temperatures, indicating that while precipitation and vegetation abundance 
are necessary conditions for a ZCL-outbreak they could be strongly mitigated or exacerbated by 
extreme temperatures. This multiple relationship explains more than 70% of the total variance of  
ZCL-incidence over the region, with a p-value of 0.08. 

Figure 4. Relationship between precipitation, NDVI, and ZCL-incidence in the province of 
Saida. Rainy season (September through April) precipitation, growing season (February 
through May) vegetation density and annual total ZCL-cases. Note the correspondence of 
pattern dynamics between temporal changes of precipitation and NDVI values. The  
ZCL-cases lag precipitation and vegetation by two years. 

 

Ernest et al. [37] and Yates et al. [22] found that rodent population density displayed a 1-year lag 
with precipitation. This 1-year lag allowed the rodents to undergo several reproductive cycles. 
Abundant fall-spring precipitation and spring vegetation enable rodents to continue to increase in 
population beyond one growing cycle (by winter breeding) and result in maximum rodent population 
lagging the increases in precipitation and vegetation density. Although no data on rodent’s density was 
collected during this study and our results and those of Ernest et al. [37] and Yates et al. [22] are 
obtained over different regions and for different pathogens, they reached similar conclusions concerning 
the lags between precipitation, vegetation density and ZCL-incidences. Our analysis suggests an 
additional 1-year lag between the rodent population density and ZCL-incidence and supports a 
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mechanistic 1-year lag in the cascade between the different trophic levels in the leishmaniasis complex 
(Figure 5). 

Figure 5. Proposed Trophic Cascade in Leishmaniasis complex. 

 

4.1. Pathogen Cycle and Climate 

The annual ZCL cycle was modulated by climate, with extreme temperatures and moisture and their 
interactions playing important roles, especially during the period of transmission [41,42]. We explored 
the seasonal variation of ZCL-incidence and its relation to sandfly activity as influenced by surface 
climate indicators. We consider a rodent population in P2 that was amply supported by the abundance 
of vegetation and was capable of pathogen transmission year-round. We do not consider the 
fluctuations of prevalence or incidence peaks based on intrinsic factors such as climate conditions and 
rodent’s age as described in [43] which suggest other causes of ZCL peaks in central Tunisia
associated with the interaction of reservoir and parasite populations. We also do not consider human 
factors such as immunity development or migration of non-immunes populations to the study regions. 
We focus on the analysis of the seasonal ZCL cycle based on the impact of climate on the sandfly 
physiological activity.  

The vector, P. papatasi, has been widely studied (e.g., [10,44,45]) and modeling studies have been 
used to predict its range expansion associated with global warming [46]. The sandfly is known to be 
nocturnal, with most biting activity occurring at night [24,47]. The life cycle of the vector at constant 
temperature was observed to require five to eight weeks from conception to death, if conditions did not 
initiate diapause [23]. During diapause, larval development is suspended once a minimum temperature 
threshold is reached (similar to hibernation), to ensure that the adult emerges under suitable conditions. 

Table 2 defines the vector’s physiologic periods in terms of extreme temperature thresholds. The 
distribution of the sandfly is not well understood but is known to be highly dependent on 
environmental conditions [24]. Increases in temperature are likely to be conducive to the development 
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of Leishmania organisms and sandfly vectors [47]. It was determined that the vector could not survive 
outside the temperature range of 10 to 40 °C [24] while reproduction was not possible below  
15 °C [23]. These temperature thresholds are used to establish annual ranges of P. papatasi Active 
Period (AP) and Reproductive Period (RP) based on observed monthly composite minimum and 
maximum temperature data over the study region. 

Table 2. Threshold temperatures (°C) of P. papatasi Physiologic Activity. 

Period Minimum Temperature Maximum Temperature 
Active Period (AP) 10 40 
Reproductive Period (RP) 15 40 

Our climate record shows that during the second decade P2, the average maximum temperature for 
the province of Saida during the hottest months (July and August) was approximately 36 °C with a 
standard deviation (SD) of 1.6 °C; while in Errachidia it reached 39.08 °C with SD = 0.86 °C. 
Although temperature in Errachidia reached high values during July in P2, it may not have directly 
impacted the sandflies as these nocturnal insects seek refuge during the hottest parts of the day. 
Minimum temperatures, however, which drop well below the vector’s physiologic thresholds in winters, 
appear to be more critical in modulating the sandflies’ seasonal cycle over the study area and period. 

Using monthly composite relative humidity, minimum and maximum temperatures rounded to the 
nearest degree and the thresholds values defined in Table 2, the vector’s physiological periods were 
identified for both provinces and over decadal time-scales. For example, in Saida during P2 (Figure 6), 
the AP extends over 8 months from April until November with a hibernation period ranging from 
December through March when minimum temperatures are observed to drop below the 10 °C 
threshold. Within the AP, the RP persists for five months from June through October. Although 
temperature appears to have large effects on the dynamics of P. papatasi, other environmental factors 
such as relative humidity, rainfall and photoperiod are also relevant to the life cycle of this  
species [23]. Except for the month of July and August, the relative humidity was above 60% during the 
AP with a photoperiod (L:D) varying from 13:11 in April to 10:14 in November. In general, climate 
data for the region are within the range of livability described by [48] of 27 ± 1 °C, 65 to 75% relative 
humidity and a 14:10 (L:D) photoperiod. 

Transmission of vector-borne diseases such as ZCL is dependent on the duration of the vector’s 
active period (AP). Where favorable temperatures and other conditions allow for multiple life cycles, a 
larger sandfly population is created and there is greater probability of contact with infected and non- 
infected hosts [24]. For the study region and particularly in Saida during P2, the annual peak in sand 
fly abundance occurred in October (Figure 6), at the end of the reproductive period (RP) where the 
maximum number of successive generations has contributed to population increase and where weather 
conditions were optimum: temperatures ranged between 16.04 °C and 27.54 °C, ambient relative 
humidity was slightly above 70% and the day length was about 11 h. The rationale is that the sandfly 
population would grow gradually as overwintering larvae emerge and then increase sharply beginning 
about two months (the time required to go from conception to adult for the female vector was found to 
be 56–62 days at temperature between 25 °C–28 °C, with the duration increasing as temperature 
decreases from this range and decreasing for temperatures above this range) into the RP as the 
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population multiplies. It reaches a peak at the end of the RP and then declines sharply at the onset of 
cold weather when the minimum temperature gets closer to 10 °C in November. Considering that the 
month with the highest ZCL cases coincides with the month of highest vector abundance [24], our data 
suggest a 2-month lag between the reported infection date and the presumed date when the infection 
actually occurred as shown in Figure 6. Although reported monthly ZCL-incidence data carry an 
uncertainty of about 30 days, this result is still within the range of incubation periods in humans 
estimated between 8 and 12 weeks in central Afghanistan [21] and in Algeria [34].  

Figure 6. Monthly composite relative humidity (bar, right axis). Maximum (red) and 
minimum (blue) temperatures (left axis) for P2 at Saida. Dark shading represents the 
vector’s period of hibernation. Active and Reproductive periods are indicated by horizontal 
bars at the top of the graph. The dark solid line represents the monthly average reported 
ZCL-cases during P2 and the dashed line shows the presumed ZCL-occurrence with a  
2-month lag (right axis). 

 

Two main differences are apparent in Errachidia. First, unlike Saida where the seasonal maximum 
temperature reached only around 36 °C, it was around 40 °C in Errachidia in July and August. This is 
believed to have significantly reduced the sandfly activity and limited the number of ZCL-cases. 
Indeed the seasonal variation of reported ZCL-incidence for Errachidia during P2 (Figure 7) indicates 
a peak in October that remains high and almost constant until January, at which time it starts to 
decline. Second, the reproductive period in Errachidia starts about 1 month earlier than Saida. As such 
the maximum reported ZCL-incidence happens in October. Applying the 2-month lag in accordance 
with climatic conditions, the maximum number of bites appeared to have occurred from August 
through November when the minimum temperature drops below the critical 10 °C threshold.  
At Errachidia, it appears that warmer temperatures reduced the time for female vectors to grow from 
conception to reproductive adults and extended the reproductive period, resulting in an earlier 
explosion of sand flies in July capped by extremely high, over 30 °C average monthly maximum 
temperatures from July to September.  
�  

�
Livable range (AP)

Range of reproductive activity (RP)
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Figure 7. Same as Figure 6, except for Errachidia and the monthly average ZCL-cases are 
divided by 10 for plotting purposes. 

 

4.2. Endemicity 

Observations over the study region indicate that both provinces experienced periods of high ZCL 
incidence following a period with low incidence. In Saida, during P1 (1990–1999) observations 
showed one to two cases per year except for 1998 during which three cases were reported. However 
starting in 2000 and through 2009 (P2), the incidence increased to an annual average value of 126.3 or 
99.06% of all cases compared to only 0.94% during P1 (Table 1). In Errachidia the annual average 
number of cases jumped from 91 in P1 to 891 or 85.5% of the total in P2. This raises the question: 
Why was there such an important and sustainable increase in ZCL-incidence between the two periods 
over the region? The analyzed data suggest this increase was associated with changes in precipitation 
and minimum temperature. 

First, the increase in precipitation led to denser vegetation that supported a larger rodent and sandfly 
population. Additionally, we argue that increase in the decadal mean minimum temperature over the 
region extended the reproductive period of the sandfly. These environmental conditions are suitable for 
both rodents and sandflies to reproduce in large numbers and survive in abundance throughout the 
winter diapause to the following cycle.  

The relationship between the decadal shift in the number of ZCL cases in the region and climate 
indicators suggest that changes in climate created conditions suitable for endemicity that did not 
previously exist and ultimately, increased and maintained high prevalence of the ZCL during the 
second period in both provinces. Indeed in both provinces the sandfly reproductive period extended by 
one month into the fall season during P2. This extension represents an increase of 25% (Saida) and 
20% (Errachidia) in the length of the sandfly reproductive period and is associated with the observed 
increase in the minimum temperature. A paired student T-test verified the statistical significance of the 
difference in minimum temperatures between P1 and P2 for the AP (April-November) at the 95% 
confidence level for both provinces. While these preliminary results may provide some guidance as to 
the functional relationship between surface climate indicators and ZCL-cases, further research is 

� �
Livable�range�(AP)

Range�of�reproductive�activity��(RP) 
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needed in this populated and data sparse region in order to have a comprehensive assessment of the 
impact of climate on vector-borne diseases (e.g., [46,49,50]). 

4.3. Suppression 

While an increase in temperature and precipitation, possibly associated with climate change, resulted 
in an increase in ZCL-incidence, our data also show that beyond critical temperatures, the incidence of 
ZCL in the region of Saida abruptly declines. Even though data did not show temperatures above the 
theoretical livable range for the vector, in laboratory experiments the number of offspring per female 
begins to decline precipitously above 28 °C [23]. Therefore, high temperatures during the reproductive 
period (RP) in one year would reduce the size of the emerging population and its overall growth 
potential the following year.  

Figure 8 shows the ZCL-incidence and the annual anomaly of the maximum temperature averaged 
over the two hottest months (July and August) during the period of high incidence (P2) in Saida. Our 
analysis indicates that years with high maximum temperature anomalies are associated with a decrease 
in the prevalence of the disease in the following year. In Saida, ZCL-incidence displays a strong  
one-year lagged inverse correlation with the yearly maximum temperature anomaly explaining about 
66% (r = �0.81) of the variance in ZCL-cases. This variation is marked between 2000 and 2002, where 
reduction of the maximum temperature by 1.10 °C between 2000 and 2001 was associated with an 
increase of 224 cases in 2002. Furthermore a subsequent cooling of 3.0 °C between 2001 and 2002 
was associated with an increase of 91 cases in 2003 (Figure 8). On the other hand, the reduction in the 
number of cases is especially visible in 2004, where a significant drop in cases followed an above 
normal warmer year in 2003. The year 2003 experienced a positive temperature anomaly of 3.0 °C 
above normal, a 4.6 °C warming from the previous year, which brought the average July-August 
maximum temperature to about 38 °C, a value close to the upper limit of the sandfly livable range [24] 
and well above the 28 °C critical value limiting the number of offspring per adult female [23] which 
has significantly reduced the ZCL-incidence by 269 cases the following year 2004. Unlike Saida, the 
annual data for Errachidia does not show any significant outliers in terms of decreases in ZCL 
incidence. The average July-August maximum temperature over the same period in Errachidia was 
approximately 37.8 °C with anomalies confined between 0.25 and 2.2 °C indicating a consistently 
higher temperature regime during P2.  

5. Conclusions 

Phlebotomus papatasi is an important vector of epidemiological consequence. In Semi-arid North 
Africa, cold winter temperatures have limited its range and prevented its establishment in much of the 
temperate regions along the Mediterranean coast. Consistent warming and moistening over the last 
decade appears to have changed the spatio-temporal distribution of the range of this insect. 
Understanding how climate affects the abundance and the seasonal dynamics of this vector is 
paramount to understanding and predicting the spread of the potential infectious disease it may 
transmit, cutaneous leishmaniasis. In the pre-Saharan North Africa, ZCL is a serious public health 
problem with significant social consequences, especially in women, due to the indelible scars that skin 
lesions leave on the faces of vulnerable patients. Furthermore, this region is home to growing 
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indigenous populations that thrive to sustain livelihood. However, not much research has been 
conducted to describe the potential associations between climate and the incidence of the ZCL.  

Figure 8. Average July-August maximum temperature anomalies from the mean value 
over P2 (34.76 °C) and 1-year lag ZCL-cases for Saida. 

 

Climate conditions affect the leishmaniasis complex components (parasite-reservoir-vector) and 
their ability to interact, persist and establish in new ecosystems. This study describes empirical 
relationships between L. major ZCL incidence and surface climate indicators. It presents observational 
evidence from data in two sites that changes in climate in semi-arid pre-Saharan North Africa may be 
the initial catalyst of a trophic cascade that results in a 1-year delayed response in rodent and sand flies 
population density and an additional 1-year lag in ZCL-incidence. These relationships could prove 
useful in predicting elevated risks of human contraction of ZCL, especially in the study region where 
vegetation density is highly sensitive to changes in seasonal precipitation. These relationships also 
support the importance of environmental surveillance of rodent’s population expansion following rainy 
seasons and its use as first indicator of ZCL epidemic risk level. Our study suggests the ZCL annual 
cycle is modulated by climate parameters with extreme temperatures and moisture playing important 
roles, especially during the period of transmission. In the study region, we propose a 2-month lag 
between the reported infection date and the presumed date when the infection actually occurred based 
on climate indicators and sandfly optimum physiological temperatures and humidity levels. While this 
result may be culturally dependent and thus regional in scope and significance, it does point to the 
urgent need of public awareness and education about the disease and its symptoms. ZCL appears to 
thrive in areas with environmental conditions that allow the vector to have multiple life cycles creating 
thus larger sandfly populations and a greater probability of contact with both infected and non-infected 
hosts. The decadal increase in the number of ZCL occurrence in the region suggests that changes in 
climate resulted in a sufficient increase in minimum temperatures that allowed the establishment of 
new endemic foci in regions that were not previously endemic. Our data also indicated that 
temperatures above a critical range seem to suppress ZCL-incidence, apparently by limiting the 
vector’s reproductive activity.  
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In summary, our study adds to the evidence linking ZCL incidence to changes in surface climate 
and suggests simple associations between them that could help establish an early warning system to 
local populations of these remote regions. Further work must be done with more comprehensive clinical 
and climate data to gain a complete picture of possible dynamic relationships between ZCL incidence 
and changes in surface climate. However, the results presented here suggest that regional changes in 
surface climate and the state of vegetation may already be playing a role in establishing favorable 
environmental conditions for the ZCL to expand to northern territories in the pre-Saharan regions. 
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