

Comparing On-Orbit and Ground for an S-Band Software-Defi

dchelmins@nasa.gov +1 (216) 433-3304

NASA Glenn Research Center (Cleveland, Ohio, United State

IAC 2014, Toronto, Ontario, Canad

v metadata, citation and similar papers at core.ac.uk

C)

brought to you by TCORE

- Introduction to Software Defined Radio (SDR)
 - Why SDR?
 - Space Communications and Navigation (SCaN) Testbed
- Pre-launch Characterization
- Design of a Received Power Estimator
 - Ground development
 - Space performance

Software-defined radio (SDR) – a modern communication platform

FLEXIBLE!

- Radio frequency module
- Signal processing module [waveform]
- General processing module
- SDR is...

ADAPTABLE!

HourTTac HourTT

General Processing Module (GPI

General Purpose Proces

Ground Test Interface

PREDICTABLE ...?

- Space Communications and Navigation (SCaN) Testbed
 - External payload on the International Space Station (ELC-3 location)

SCaN Testbed installed to the ExPRESS Logistics Carrier-3

SCaN Testbed hardware block diagram

STB Experiment Communication

- Jet Propulsion Laboratory (JPL) SDR part of STB
 - S-band transceiver (7 Watts) with L-band receive capability
 - 66 MHz SPARC (RTEMS) processor and 2 Virtex-II FPGAs

Int'l Space Station

- Three JPL SDRs!
 - Flight model (FM)
 - Radio Frequency Module, Global Positioning System Module, Baseband Processing Module, Power Amplifier / Power Supply Module

Ground

- Engineering model (EM)
 - Same as FM, except commercial grade parts.

- Breadboard
 - Baseband Processing Module only.

- Flight model SDR testing prior to launch
 - Establish a performance baseline in a controlled environment
 - Collect data useful for future waveform capabilities
- Lesson Learned test the hardware independent of the waveform
 - Test very close to hardware interfaces
 - Do not make testing dependent on software implementation

- Estimating received power is a useful diagnostic feature
- Uses existing waveform despreader digital filters
 - Performed at the intermediate frequency (IF) after downconversion
 - BPSK filter bandwidth = 2*(signal bandwidth) + (Doppler allowance)
 - Despreader PN generator is bypassed for non-spread modes.

• Performed testing on the engineering model

- Map the "Integrate & Dump" value to the corresponding input power
- Swept input power level across realistic space received power range
- Power Estimate = Signal Power + Noise Power
- Waveform "mode" → data rate, frequency, spreading, etc.

Mode	Spread	Symbol Rate (ksps)	Freq. MHz	Filter BW (kHZ)	
Α	Yes	18	2106	149	
В	Yes	36	2106	188	
С	Yes	18	2041	149	
D	Yes	36	2041	188	
E	No	155	2041	450	
F	No	310	2041	789	
G	No	769	2041	1793	
Н	No	1538	2041	3468	

- Limited power range and test time in space
 - Space link varies by ~2 dB due to distance over ~40 minutes
 - NASA satellites have 2 fixed transmit power levels
- Implemented spiral motion on the MGA
 - Swept elevation over a wide range of power (~20 dB) during 1 pass
 - Used 1-degree lap size based on in-situ antenna pattern

• Spread-spectrum results versus engineering model performance

- Overall the power estimator performance is acceptable.
 - Spread waveform modes show less than 1 dB average error
 - Non-spread modes show 1 to 2 dB average error (except mode H)
- The power estimator is sensitive to AGC fluctuation.
 - AGC level directly affects the IF power level
 - Mode H has a very low AGC set point \rightarrow 11 dB average error!

Future work

- Improve understanding of how wideband noise affects the AGC algorithm
- Incorporate AGC level into the power estimator
- Look into narrower filter bandwidths for lower received power levels

