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Abstract  

In the terminal airspace, integrated departures 

and arrivals have the potential to increase operations 

efficiency. Recent research has developed genetic-

algorithm-based schedulers for integrated arrival and 

departure operations under uncertainty. This paper 

presents an alternate method using a machine job-

shop scheduling formulation to model the integrated 

airspace operations. A multistage stochastic 

programming approach is chosen to formulate the 

problem and candidate solutions are obtained by 

solving sample average approximation problems with 

finite sample size. Because approximate solutions are 

computed, the proposed algorithm incorporates the 

computation of statistical bounds to estimate the 

optimality of the candidate solutions. A proof-of-

concept study is conducted on a baseline 

implementation of a simple problem considering a 

fleet mix of 14 aircraft evolving in a model of the Los 

Angeles terminal airspace. A more thorough 

statistical analysis is also performed to evaluate the 

impact of the number of scenarios considered in the 

sampled problem. To handle extensive sampling 

computations, a multithreading technique is 

introduced.  

Introduction 

In the National Airspace System, terminal 

airspaces are characterized by high traffic volumes in 

narrow portions of airspace, where flights are 

scheduled to depart and arrive in short periods of 

time. In these constrained environments, most aircraft 

are climbing or descending at various speeds. In 

current operations, route segments and fixes are 

spatially segregated in order to reduce interactions 

between traffic flows and controllers enforce spatial 

separations between aircraft in the same flow to 

guarantee flight separation. To manage shared 

resources in current procedures, controllers assign 

different routes and independent fixes to arrival and 

departure flows. Such separation strategies introduce 

inefficiencies in the airspace usage with longer 

departure and arrival routes and altitude constraints. 

To remedy these inefficiencies and support improved 

operations efficiency, a time-based separation 

strategy is a potential approach to manage integrated 

arrivals and departures using shared resources. 

Over the past decades, many scheduling research 

efforts have aimed to improve the operations 

efficiency in the terminal airspace by solving 

separately arrival scheduling problems [1-6], 

departure scheduling problems [7-9] and airport 

surface management problems [10,11]. In more 

recent work, researchers have been focusing on 

integrated scheduling problems in which resources 

such as waypoints, fixes and/or routes are shared 

between departure and arrival flows [12-16]. In 

recent studies, Capozzi et al. demonstrated that 

integrated departures and arrivals in metroplex areas 

have the ability to improve operations efficiency 

[17,18]. Moreover, Xue et al. showed in recent 

stochastic scheduling analyses focusing on integrated 

operations in the terminal airspace, that flight time 

could be saved when arrival and departure procedures 

share waypoints [13]. However, shared waypoint 

solutions are sensitive to uncertainty. Xue et al. 

analyzed the impacts of flight time uncertainty on 

scheduled integrated operations and on controller 

interventions [14]. It was found that the results 

computed by the stochastic optimization could help 

identify compromise schedules that reduce both the 

number of controller interventions and delays. 

However, considering uncertainty in models can 

represent a computational challenge with a level of 

complexity that can prevent real-time applications 

and further developments. Previous work conducted 

by the authors focused on minimizing computation 

time when dealing with uncertainty through the usage 

of Graphics Processing Units (GPU) [19]. The GPU 

computing technique enabled a fast decision support 

algorithm to schedule flights evolving in a mixed-
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environment sharing resources in the presence of 

uncertainty. 

Given the similarities to production or 

manufacturing operations scheduling problems, 

airport runway scheduling problems can be described 

in terms of machine job-shop scheduling 

terminology. A few examples can be found in [5,20-

21]. Beasley et al. adapted the machine-scheduling 

model to solve the aircraft-sequencing problem [5]. 

The processing time of a job on a machine was 

analogous to the separation requirements between 

aircraft. Both job-shop and aircraft sequencing 

problems are time and sequence dependent. A review 

of the literature shows that many machine-scheduling 

models developed so far consider sequence-

dependent setup times and most of them are 

deterministic [22,23]. The stochastic machine job-

shop scheduling studies primarily focused on 

probabilistic processing times [24-26]. But in the 

context of arrival and departure operations at airports, 

uncertainty affects the exact knowledge of 

operational factors such as pushback times or taxi 

times to the runway. In machine scheduling 

terminology this can be referred to probabilistic 

release times and probabilistic due dates. Stochastic 

versions of such problems received limited attention 

and probabilistic release times and due dates were 

rarely introduced. One of the only models that 

considers both was developed by Wu and Zhou to 

solve a single machine-scheduling problem [27]. 

However, the model developed in that study does not 

include sequence-dependent setup times. The first 

attempt that considered sequence-dependent setup 

times, probabilistic release and due dates can be 

found in a recent work by Sölveling et al, who 

developed a runway planning optimization model 

[11]. 

This present paper contributes to stochastic 

scheduling optimization in the field of air traffic 

management. This document presents an alternative 

method to model and solve integrated departures and 

arrivals in the terminal airspace under uncertainty. A 

scheduler is built that computes schedules for 

terminal airspace waypoints that are shared by both 

arrivals and departures. Inspired from operations 

research, the scheduler is based on a machine job-

shop scheduling problem formulation in which jobs 

and machines are respectively represented by aircraft 

and waypoints. For both arrivals and departures, 

wake vortex separation requirements are enforced at 

the runway threshold, i.e. sequence-dependent setup 

times, and speed-varying constraints are derived to 

represent the temporal control separation strategy 

adopted. Because flight times are sensitive to 

perturbations, error sources are added to release flight 

times and probabilistic runway dates are examined to 

illustrate the impact of uncertainty on estimated times 

of arrival and estimated times of departure. Second, a 

multistage stochastic programming approach is 

chosen to formulate the problem because of its ability 

to handle multi-objective optimization and multiple 

constraints in the presence of uncertainty. The first 

stage attempts to solve the optimal sequencing 

problem based on aircraft weight classes and the 

second stage attempts to solve the routing and 

scheduling problem while minimizing the impact of 

flight time uncertainty. The third stage focuses on 

adjusting the computed schedules to maximize the 

on-time performance of the flights to the runway. The 

stochastic programming problem is formulated as the 

optimization of an expected value cost function and 

candidate solutions are obtained by solving sample 

average approximation problems with finite sample 

size. Third, a proof-of-concept study is accomplished 

by applying the scheduler to arrival and departure 

flows in a model of the northern-western flows of the 

Los Angeles terminal airspace. Several simulations 

are run and individual flight time savings are 

computed for both departure and arrival flows. 

Finally, a more thorough statistical analysis is 

performed to assess the methodology performance, 

and evaluate the impact of the number of scenarios 

considered in the sampled problem on solutions and 

computation times. The objective of this work is to 

provide a stochastic optimization formulation that 

solves a routing and scheduling problem for terminal 

airspace traffic and produces optimal solutions with 

minimal runtime.  

This paper is organized as follows. The problem 

formulation is presented in Section II and the solution 

approach is described in Section III. In Section IV, a 

proof-of-concept is conducted and results are 

discussed. A statistical analysis is performed in 

Section V. Finally, a summary of the accomplished 

work, concluding remarks and next steps are 

presented in Section IV. A nomenclature is added in 

Appendix at the end of the paper for notations 

reference. 



Problem Formulation 

This section presents the framework in which 

the integrated arrival/departure operations problem is 

approached and modeled.  

Problem Setup 
Aircraft Weight Classification  

During all flying phases, aircraft generate wake 

vortices of different strengths and intensities, which 

mainly depend on aircraft weight. Therefore this 

study considers different weight-based aircraft types 

defined according to the Federal Aviation 

Administration (FAA) aircraft weight classification 

[30]. The standard defines three aircraft weight 

categories, small (S), large (L) and heavy (H). In 

addition, the Boeing 757 is often considered as 

category. A Boeing 757’s weight is in the large class, 

yet it’s wake is the size of a heavy’s wake. Recently a 

fifth category, called “super”, was added with the 

introduction of the A380 in the National Airspace 

System, but in this paper this aircraft type is not 

considered [38]. Therefore, four categories, denoted 

�� �� ���, are considered in this work. 

Aircraft Separation  

To ensure safe operations in terminal airspaces 

in current operations, the FAA defines aircraft 

separation distances that need to be enforced between 

aircraft at all times [30]. Controllers spatially 

separate aircraft flying on the same traffic flow by 

imposing these separation requirements. Moreover, 

controllers also spatially segregate arrival and 

departure flows by assigning them independent 

routes to fly. This introduces inefficiencies in the 

airspace usage with longer flight routes and altitude 

constraints.  

To mitigate such constraints and allow some 

flexibility in future operations, this work integrates 

arrivals and departures by implementing a temporal 

control separation strategy that converts separation 

requirements prescribed in distance to time scale 

using the aircraft speeds. In the air and between all 

aircraft pairs, a fixed separation distance of 4 nautical 

miles (nmi) is imposed according to [18] and 

converted into time via the speed of the leading 

aircraft of each pair. On the ground at the runway, the 

standard wake vortex separations are imposed 

between all aircraft pairs [30,37]. But because the 

sequence of aircraft weight-class determines wake 

vortex separation requirements, the requirements are 

asymmetric at the runway. If a large aircraft leads a 

small, the separation requirement will be greater than 

the opposite because large aircraft produce larger 

wake turbulences than small aircraft. Moreover, 

separation times are different for arrival and 

departure flights because arrivals and departures fly 

at different speeds.  

Airspace and Route Model 

A general airspace and route model was defined 

to facilitate its use for any terminal airspace. Because 

Standard Terminal Arrival Routes (STARs) and 

Standard Instrumental Departures (SIDs) procedures 

need to be flown by aircraft when flying within the 

terminal airspace, these procedures are used in this 

model to define the airspace routes as ordered sets of 

waypoints. 

Uncertainty and Controller Intervention 

Considerations  
In terminal areas, flight schedules are subject to 

uncertainties that come from many sources such as 

errors in aircraft dynamics, inaccurate wind 

predictions or human factors. In this model, in order 

to better reflect the reality of current air traffic 

operations, uncertainty is added to the flight times by 

introducing errors that follow probabilistic 

distributions. Details about the distributions will be 

provided in a later section. As a consequence, 

controllers might be required to intervene and prevent 

an unexpected loss of separation. 

Machine Job-Shop Modeling 
In this paper, a machine job-shop scheduling 

formulation is derived from operation research and 

adapted to model the integrated departure/arrival 

operations in the terminal airspace. Integrating flights 

using shared resources includes routing, sequencing 

and scheduling. Therefore, the scheduling model is 

extended to a scheduling and routing model. 

Similarities between the present scheduling problem 

and most of the machine job-shop scheduling 

problems found in the literature allow describing this 

problem using job-shop scheduling notations. To 

emphasize the mapping of the technique to this 

application, these are mentioned in parenthesis. 

The present problem consists of a set of aircraft 

(set of jobs), denoted ��, to be scheduled for arrival 

or departure in the terminal airspace considered in a 



given planning horizon (e.g. from 9:00AM to 

9:30AM). Each aircraft belongs to an aircraft 

category (job category) defined by a specific type �. 

An aircraft type is twofold, it is represented by a 

weight class � � ��� �� �� ��  (Table 1) and an 

operation � � �����, where � stands for arrival and 

�  for departure. For example, a large departing 

aircraft and a small arriving aircraft have their types 

respectively denoted by ��� and ���. The set of all 

weight-operation combinations form the aircraft type 

set � , i.e. � � ���� � � � �� � � ��. In the terminal 

airspace, each aircraft � � �� flies a route defined by 

a flight plan, i.e. sequence of waypoints (sequence of 

machines), defined by the SIDs and STARs of the 

airspace and route model. The entire set of waypoints 

is denoted by �  and each waypoint � � � . For 

modeling simplicity, the runway is considered as the 

last waypoint of arrival routes and as the first 

waypoint of departing routes. For arrival procedures, 

no vectoring to the base turn is modeled.  

Additionally, each aircraft has a release time ��, 

processing times ��� at each waypoint � of the route 

flown, and a deadline �� also called due date. The 

aircraft release time corresponds to when the aircraft 

is expected to enter the airspace considered. Hence, 

for arrival flights, the release time is when aircraft are 

expected to fly by the first waypoint of the arrival 

route, and it is the estimated time of departure (ETD) 

at the runway threshold for departing flights. An 

aircraft starting time �� corresponds to the exact time 

the aircraft enters the airspace. A processing time ��� 

is defined by the time aircraft � is being processed by 

waypoint � . Each waypoint �  can only process one 

aircraft at a time and each aircraft � can only fly by 

one waypoint at a time. Therefore in this model, a 

processing time is defined as a waypoint block time 

and depends on the separation time requirements 

between type-based aircraft pairs. To determine the 

waypoint block time for aircraft � , the model 

identifies the type of the following aircraft. Then 

using the types of the aircraft forming the aircraft 

pair, it computes the separation time requirement. On 

the ground at the runway, wake vortex separation 

times define the runway block times. However, in the 

air, waypoint block times are determined by the 

conversion of distance separations to temporal 

separations via the speed of the leading aircraft. In 

operations, based on the aircraft leader’s speed, 

updated speed clearances are given to the following 

aircraft to maintain separation. Aircraft due dates are 

times at which aircraft are expected to exit the 

considered airspace. In the present case, the due date 

is defined as the estimated time of arrival (ETA) for 

an arrival and as the fly by time of the last waypoint 

of the departure route for a departure. These due 

dates are estimated time values and in reality aircraft 

might complete their journey earlier or later than 

expected. Therefore, an aircraft also has a completion 

time, which corresponds to the exact time aircraft exit 

the airspace; it is denoted ��  for aircraft � . Each 

arrival/departure considered has an ETA/ETD and 

these times represent expected time values at the time 

of operation; they are not known with certainty. To 

integrate impacts of uncertainty, perturbations are 

added to release dates and due dates of both arrival 

and departure flights such that probabilistic runway 

dates ETA/ETD are examined. Finally, denoted by �� 

the global exit time of aircraft �  computed after 

uncertainty considerations.  

To illustrate the different notations introduced, 

two waypoint timelines are drawn in Figure 2.   

 

Figure 1. Waypoint timelines with two arrivals  

Each row corresponds to a timeline associated with a 

waypoint and for simplicity only two waypoints, 

WPT and RWY, are considered. In this simple 

example, two arrival flights of types ����and ����are 

being scheduled. Both aircraft arrive at waypoint 

WPT later than their respective release time (�� � �� 

and �� � ��) because of uncertainty. At the runway 

RWY, the first aircraft arrives later than its ETA 

( �� � �� ) whereas the second aircraft is ontime 

�� � �� �  For the two timelines, waypoint 

processing times ��� � , where �� � ���  and �� �

���������, are represented by blocks of different 

lengths.  

Problem Statement 
The following problem will be discussed in this 

paper as a means to examine the proposed solution 

for schedule integration. Given a set of aircraft 

�� � ���� � ��  each departing or arriving in a 



particular airspace within a 30-minute time period, 

compute the optimal aircraft schedules and routings 

such that the impact of flight time uncertainty is 

minimized subject to the following constraints: 

• Waypoint Capacity Constraints: waypoints 

must process one aircraft at a time and 

aircraft must be separated in the air at each 

waypoint by a minimum distance 

(converted to time using speed) from any 

other aircraft.  

• Flight Plan Waypoint Precedence 
Constraints: when assigned to a route, 

aircraft have to fly the corresponding flight 

plan and follow the waypoints in order. 

• Runway Constraints: each aircraft must be 

separated by the minimum wake vortex 

separation (converted to time) at the 

runway threshold. Moreover, no departing 

flight can be on the runway before its 

estimated time of departure. 

• Speed Constraints: each aircraft speed 

must stay within a specific speed range 

delimited by minimum and maximum 

speeds appropriate for that aircraft type. 

The minimization objective is threefold. The 

first goal is to find a feasible aircraft sequence that 

minimizes the sum of exit times for the �  flights 

considered, i.e. overall minimum flight time delay. 

The second goal is to process the aircraft as soon as 

possible after their release times in order to minimize 

the amount of flight delay at release (i.e. minimize 

the difference between each aircraft start time and 

release time). The last goal is to minimize the 

earliness and tardiness of the computed schedules at 

exit waypoints. Because of the uncertainty presence 

in the flight times, potential conflicts, i.e. loss of 

separation between aircraft might occur. In order to 

simulate the resolution of such conflicts, the 

controller behavior is modeled as the number of 

times aircraft speed must be changed. Using the 

notations previously defined, the objective function 

can be written as in Equation 1. The variables 

denoted by � represent the relative objective weights 

and each � � ����� . For the second and third 

objective terms in Equation 1, ��� ����  and ��� � ��� 

represents respectively for each aircraft � , the 

earliness and tardiness costs at release waypoints and 

the earliness and tardiness costs at exit waypoints. 
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���
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�

���
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To account for uncertainty, it is assumed that 

release times �� and flight due dates �� are not known 

with certainty. It is assumed that error sources that 

follow discrete and finite probabilistic distributions 

are added to the different release times and flight due 

dates. A scenario �� is a vector of perturbed flight 

times ��
�  if � � �  or ��

�  if � � �  (i.e. ��
�
� �� � ���  or 

��
�
� �� � ���) with a corresponding probability of 

occurrence. Let �� � ���� �� � ���
� be the vector of 

perturbations ���  for scenarios of type �, � � �����, 

where ��  is the number of scenarios of type � . 

Finally, denote �� as the set of all scenarios of type 

�, � � �����, such that �� � ���� �� ����
�, where 

each scenario has a probability of occurrence ���. 

The objective function of the stochastic problem 

is now extended to include the uncertainty �� on the 

release times and �� on the due dates, and formulated 

as the optimization of an expected value cost function 

to consider all scenario occurrences. This formulation 

computes the optimal aircraft sequence, including 

both arrivals and departures, at the runway threshold. 

The output of the program defining the optimal 

aircraft sequence at the runway is a vector � which 

can be described by the sequence of aircraft positions 

at the runway, i.e. � � ��
��

�
�� ��

��

�
�� ��

��

�
� where 

� is the position such that ��� � � �� and ���  is 

the type of the aircraft having a weight class � and an 

operation � . Denote �  as the set of all possible 

sequences and � � � . The objective function 

previously detailed in Equation 1 can then be 

rewritten as following: 

���
���

����� �� �� � �� � ���������������������������������� 

Equation 2 includes the uncertainty dependency, i.e. 

�� � � � �����  in the perturbed flight times ��
�  if 

� � � or ��
� if � � �. 



Solution Approach 

The integrated arrival/departure terminal 

airspace operations problem is modeled as a machine 

job-shop scheduling and routing problem as 

described in the previous section. A multistage 

stochastic programming approach is developed to 

solve the scheduling and routing of the integrated 

terminal airspace operations under uncertainty.  

Information about aircraft and schedules 

received by air traffic controllers becomes more 

certain the closer aircraft operations are to execution 

(arrival and departure). An air traffic controller is 

more likely to know with high accuracy the aircraft 

type mix of the aircraft set that will depart or arrived 

in the next 30-minutes than the exact arrival and 

departure times of each aircraft. Therefore, 

decomposition by stage is appropriate for the 

stochastic scheduling. 

Given the described structure, the scheduling 

and routing problem can be modeled as a 3-stage 

stochastic program. Due to wake vortex separation 

requirements, the runway capacity directly depends 

on the aircraft weight sequence. Hence, the first stage 

seeks to find the optimal aircraft sequence based on 

the aircraft weight classes and this stage is purely 

deterministic. Then, once the optimal sequence is 

computed, the second stage schedules and routes the 

aircraft. Because release times may be affected by 

uncertainty, errors that follow normal distributions 

are introduced in the release times. Several scenarios, 

each representing a set of perturbed release flight 

times, are generated and tested. Finally, the third 

stage adjusts the schedule and route of each flight 

considered to maximize the on-time performance of 

the aircraft at its exit. To compute robust schedules, 

several scenarios corresponding to different sets of 

due dates are generated and tested in this last stage. 

Because of uncertainty, there are many 

parameters that can affect the flight schedules. 

Aircraft may reach the runway earlier, on time or 

later than their estimated flight schedules. Depending 

on how early or late a flight will be, uncertainty 

induces a variety of potential different scenarios. 

Naturally, the number of scenarios will increase 

exponentially if the number of flights is increased. 

Therefore, sampling techniques are used to generate 

good solutions for a subset of scenarios. 

Mathematical Formulation 
Given the problem statement, each stage is now 

described on its own and followed by a summary of 

the overall program. The constraints presented in 

previous section are enforced in the solution process 

and are met by all three stages combined. 

Stage 1 

The first stage problem is a deterministic 

sequencer. It consists of computing a sequence of 

aircraft types at the runway threshold such that the 

sum of global exit times of each flight is minimized 

subject to several constraints. The first and second 

constraints ensure that the number of runway slots for 

each aircraft type is equal to the number of aircraft of 

each type in the input data and that only one aircraft 

is assigned per runway slot. The last constraint 

ensures that the runway separation requirements are 

met. 

Stage 2 

Once uncertainty has affected release times, the 

second stage problem assigns flights to the aircraft 

runway slots determined by stage 1. A separate stage 

2 is completed for each scenario ��. Stage 2 also 

computes the optimal scheduling and routing for each 

flight. The objective is formulated as the 

minimization of the sum of differences between start 

time and release time of each aircraft. At that point, 

the program does not know the due dates and tries to 

process them as soon as they enter the airspace 

model. Instead, completion times, i.e. ETAs for 

arrivals and fly by times at the last waypoint of 

departure routes for departures, are estimated such 

that the separation distances are respected. For the 

assignment, this stage is constrained to only assign 

one flight with the appropriate type to one aircraft 

slot on the runway. For the schedule and routing 

computations, this stage needs to respect the flight 

plan waypoint precedence constraints, the waypoint 

capacity constraints and the speed constraints. 

Stage 3 

Once uncertainty has affected due dates, the 

third stage optimizes the schedules of each flight by 

minimizing the sum of differences between due dates 

and completion times of each aircraft. Therefore, the 

scheduling and routing computed in stage 2 are re-

optimized to minimize the earliness and tardiness of 

each flight at the exit waypoint. As with stage 2, a 

separate stage 3 is completed per scenario ωd. The 



optimization in stage 3 is subject to the same set of 

constraints as stage 2. 

During each stage, knowledge is assumed from 

previous stage and information is carried from one 

stage to the next. Using the modeling framework, 

notations and stage descriptions, the problem 

formulation can be described as an embedded 3-stage 

stochastic program as illustrated by Equation 3. 

���
���

�� � � �������
���

�� �� �� � �������
���

����� ���������� 

where ��  is deterministic and where �� and, �� 

depend on the realization of perturbations ��  and ��. 

��, �� and �� can be written as follows. 

�� � � �� ��

�

���

������ � ����������������������������������������������������� 

For each scenario ��, 

�� �� �� � �� ����� �� � �� � �

�

���

� ����� �� � �� � � � ���� � ������������ 

For each scenario ��, 

�� �� �� � �� ����� �� � �� � �

�

���

� ����� �� � �� � � � ���� � ������������ 

The objective function in Equation 3 consists of 

a weighted sum of three terms. In fact, the second 

term of Equation 3 can be split into the sum of two 

expected values when using the linear properties of 

expected value. The first term is the first stage 

objective (Eq. 4), the second term is the expectation 

of the second stage objective function value (Eq. 5) 

and the last term is the expectation value of the 

expectation of the third stage objective function value 

(Eq. 6). To evaluate the solution of this type of 

formulation and obtain optimal candidate solutions, 

many scenario problems have to be generated and 

tested. This would require a significant computational 

effort. Therefore, a methodology is developed to 

reduce the size of the scenario set to a manageable 

size and a sampling method is introduced. 

The Sample Average Approximation 
The solution methodology chosen is the Sample 

Average Approximation (SAA) method. Assuming 

that samples ���� � ��
 
can be generated from a 

random vector � , where �  is the sample size, the 

SAA method is a Monte Carlo based technique that 

approximates a stochastic program by replacing the 

expectation by its sample average. The stochastic 

program is thus replaced by a sample average 

approximation that can be solved by a deterministic 

optimization algorithm. In this problem, because two 

random vectors �� and �� are considered, denote �� 

and ��  as the respective number of replications of the 

random vectors. Therefore, the SAA problem for the 

3-stage stochastic program can be defined as:  
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��

���
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where ��, ��  and ��  are defined respectively by 

Equations 4, 5 and 6. 

In this research, because it is assumed that the 

random vectors ��  and ��  follow discrete 

distributions with finite support of respective size �� 

and �� , each element of the respective finite 

supports ���� �� � ���
�  and ���� �� � ���

�  has 

respective probability ��� �� � ���
 and ��� �� � ���

. 

The expected value problem can then be replaced by 

its equivalent using probabilities and the SAA 

problem for the 3-stage stochastic program can be re-

written as: 
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where ��, ��  and ��  are defined respectively by 

Equations 4, 5 and 6. Denote Equation 8 equivalent 

to ������ ����. 

In summary, the proposed approach 

approximates the true stochastic problem defined by 

Equations 3, 4, 5 and 6 by a SAA problem defined in 

Equation 7. Denote ��
 
and �  as respectively the 

optimal objective function value of the true problem 

and the optimal objective function value of the SAA 

problem. Shapiro and Homem-de-Mello showed in 

[29] that �  converges to ��
 
with probability 

approaching one as the sample size increases (i.e. 

�� � �� and �� � �  in this problem). However 

increasing the number of random vector realizations 

introduces large computational times. Therefore, the 

proposed methodology suggests solving several SAA 

problems with smaller sample size rather than solving 

one SAA problem with a large number of random 

vector realizations. Define � as the number of SAA 



problem independent replications. As defined 

previously, recall that �� and �� are the respective 

finite number of realizations (or scenarios) in stage 2 

and stage 3. The following steps summarize the 

proposed solution methodology using the SAA 

method: 

A. For each repetition � � �����: 

a. Generate ��  and �� 

independently and identically 

distributed scenarios for each 

flight. 

b. For each fixed scenario 

�� � ������: 

i. Solve the 3-stage 

program, store the 

optimal solution for each 

scenario, �� � ������ , 

and compute statistical 

upper bounds.  

ii. A list of �� solutions is 

obtained. Save the 

solution (i.e. sequence, 

schedule and routing) 

with minimum objective 

function.  

c. A list of ��  solutions is 

obtained. Save the solution (i.e. 

sequence, schedule and routing) 

with minimum objective 

function. 

B. A list of �  candidate solutions is 

obtained. Compute statistical lower 

bounds. 

C. For each of the � solutions, compute the 

optimality gap and estimated variances. 

Choose the solution according to specific 

optimization goals.  

Because the problem is formulated as a mixed-

integer linear program, a global solution will be 

computed for each repetition. However, the values of 

parameters � , ��  and ��  affect the robustness of 

the computed optimal solutions and the computation 

time. Hence, their adjustments are studied in the 

statistic analysis section. 

Implementation 
The mathematical model of the mixed-integer 

linear program is implemented in Python [31] and 

Gurobi [32] is used as the optimization solver. The 

branch and bound algorithm is selected to solve step 

A.(b).i of the proposed methodology. The code is run 

on a Macintosh platform with 2.5GHz Intel Core i5 

and 16 GB RAM. To accelerate the computation 

time, a multi-threading approach is implemented to 

compute each repetition individually with one thread. 

Note that the relative weight �s, � � ����� are set to 1 

in this particular implementation but will be varied in 

future implementations. 

Proof-of-concept  

A proof-of-concept study is conducted on a 

baseline implementation of a simple problem. The 

goal of this research phase is to provide first evidence 

that the solution obtained using the developed 

methodology is a candidate to save total and 

individual flight time without increasing drastically 

the number of controller interventions. 

Experimentation is performed on a realistic 

application and different test cases are explored to 

understand the computed solutions. 

Application to the Los Angeles Terminal 
Airspace 
Description 

The interactions between arrivals and departures 

in the Los Angeles terminal airspace constitute an 

interesting case study because of their complex 

natures and layouts. Figure 1 shows arrival and 

departure routes based on the published SADDE6 

STAR and CASTA2 SID for the Los Angeles 

International Airport (LAX).  

The SADDE6 procedure stipulates that arrivals 

coming from fix FIM should fly toward fix SMO via 

SYMON, SADDE and GHART fixes. Departure 

flights to the North need to follow the SID procedure 

CASTA2. According to CASTA2, departures takeoff 

from Runway 24L (represented by RWY in this 

model) and fly toward WPT1
1  

via NAANC and 

GHART fixes. 

                                                        

1
WPT1 is a waypoint made-up to simplify the route descriptions. 



Figure 2. Route interactions between arrivals and 

departures in the LA terminal airspace 

GHART is the shared resource between SADDE6 

and CASTA2 procedures. In this paper, SADDE6 

and CASTA2 are denoted indirect routes for 

simplicity. Moreover, although it is not common 

practice at LAX, this model assumes that arrivals and 

departures operate on the same runway 24L 

(represented by RWY) to make this study more 

interesting. In current operations, altitude constraints 

are imposed at waypoint GHART− arrival flights are 

required to maintain their altitude above 12,000 feet 

and departure flights below 9,000 feet and this forces 

flights to fly by WPT1 and WPT2. However, Figure 

1 illustrates that if there were no flow interactions, 

arrivals and departures could fly more direct routes, 

share resources and save flight times. A direct route 

for departures would be RWY-WPT2
2
-WPT1 and a 

direct route for arrivals would be FIM-WPT1-SMO.  

Timar et al. [36] showed that in current 

operations of the Los Angeles terminal airspace, 

28.1% of LAX arrivals follow SADDE6 and 10.4% 

of LAX departures follow CASTA2. This can be 

converted to 220 arrivals and 80 departures in a 

typical traffic day. The current study focuses on these 

partial flows and waypoints represented in Figure 1 

are used to model the airspace and flight plan route.  

A representative schedule of 14 flights is 

extracted from historical data corresponding to the 

Los Angeles partial flows dated December 4, 2012. It 

covers a 30-minute traffic time period from 9:00 AM 

to 9:30 AM including 6 departures to the North from 

Runway 24L (RWY) and 8 arrivals from fix FIM. 

                                                        

2
 WPT2 is a waypoint made-up to simplify the route descriptions. 

Table 1 presents the reference schedule and details 

the scheduled initial times of the flights. These times 

are relative to simulation start time and flights are 

listed in chronological order.   

Table 1. Reference Schedule 

Order FIM (sec) RWY (sec) 

0 39 68 

1 446 165 

2 728 363 

3 1106 529 

4 1332 1613 

5 1475 1830 

6 1613 NA 

7 1770 NA 

For testing purposes in this work, a fleet mix of 

14 aircraft (described in Table 2) is to be scheduled 

and routed within the 30-minute time period of the 

reference schedule presented in Table 1. 

Table 2. Aircraft Fleet Mix 

Type 

Aircraft 
Weight Operations 

A0 H A 

A1 L A 

A2 S A 

A3 S A 

A4 L A 

A5 L A 

A6 L A 

A7 L A 

A8 S D 

A9 L D 

A10 H D 

A11 L D 

A12 L D 

A13 L D 

Along each route, in particular along every 

waypoint pair-based route segments, aircraft of all 

types can fly within a speed range such that 

�� � ����������� . For departures, �� � ��������� 

and for arrivals �� � ���������.  



Modeling 

As mentioned previously, this research uses 

temporal controls to separate aircraft at all times. To 

show the benefits of using shared resources in the 

spatial dimension, this research also investigates 

spatial-based separation methods in which temporal 

controls are implemented by default. The spatial 

separation strategy only uses indirect routes used in 

current STAR and SID operations to separate aircraft. 

The hybrid separation strategy additionally allows 

direct routes to be flown for both STAR and SID 

procedures.  

In the formulation of the hybrid separation 

method, three different types of decision variables are 

defined for each flight: a timing variable, a routing 

variable and a speed variable. For each FIM arrival, 

the timing variable is the release time at fix FIM 

whereas for each departure to the North, it is the 

release time at the runway RWY. For both arrival and 

departure flights, the routing variable is the route 

option flown: 0 for indirect and 1 for direct and the 

speed variables are the different aircraft speeds.  

Longitudinal separation constraints are imposed 

at all times between all aircraft pairs. In the air, a 

distance separation requirement of 4 nmi is imposed 

between all aircraft pairs (according to [18]) and 

converted into time scale via the speed of the leading 

aircraft of each pair. At the runway, wake vortex 

separations are imposed between all aircraft pairs. In 

this study, altitude restrictions are assumed to be 

satisfied at all times. 

A constraint on allowed amount of speed change 

on flight segments between two waypoints is added 

to prevent steep speed gradients. No more than 20% 

speed difference is allowed between two consecutive 

waypoints. 

For this application, the objective function is 

adapted to the model of the Los Angeles terminal 

airspace defined previously. The objective described 

by Equation 8 is updated for the application and this 

is shown in the following Equations 9, 10 and 11. 
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The earliness cost parameter ��  is fixed to a 

large value when � � �  to avoid early departures 

from release, i.e. from runway. For experimental 

purposes, the earliness cost ��  for arrivals will be 

varied. Moreover for simplicity and for both arrivals 

and departures, late release times and early or late 

completion times are not penalized, i.e. if � � � or 

� � �, �� � �� � �� � �. However, delaying aircraft 

in the sky, i.e. creating airborne delay, is more 

expensive than delaying aircraft on the ground, i.e. 

creating ground delay. Therefore, the penalty on late 

arrivals at the runway is set such that the cost of 

creating airborne delay for arrivals is twice that of 

creating ground delay for departures, i.e. if �� � � 

and � � �, ��� � ���. 

Experiment Setup  
The experiment setup presents the different test 

case simulations that are used.  

Experiment Overview 

Different simulations are designed in this proof-

of-concept study to compare the spatial and hybrid 

separation methods with and without the presence of 



uncertainty. Total and individual flight times are 

computed as well as delays and number of controller 

interventions to compare the separation methods.  

Stochastic and Deterministic Characteristics 

The proposed methodology is stochastic in 

nature but it is possible to setup and simulate 

deterministic conditions. In the test case without 

uncertainty, the number of scenarios of each stage in 

the multi-stage formulation is set to zero (i.e. 

�� � �� � �� and no errors are added to the flight 

times. However when sources of uncertainty need to 

be integrated, the SAA parameters � , ��  and �� 

can take a range of different values. In this section, 

values are given without discussions but in the 

following section simulations using different 

numbers of scenarios will be investigated. Table 3 

presents the values of the algorithm parameters that 

are used for the deterministic and stochastic settings.   

Table 3. Experiment Setup 

Conditions 

Parameters 
Deterministic Stochastic 

� 1 50 

�� 0 100 

�� 0 100 

In the case of stochastic settings, error sources 

sampled from probabilistic distributions are added to 

both arrival and departure flight times. In stage 2, 

these are added to the release dates, i.e. at fix FIM for 

arrival flights and to ETDs for departure flights. In 

stage 3, they are added to the due dates, i.e. at RWY 

for arrival flights and at WPT1 for departure flights.  

Results 
Comparison of separation methods in the 

deterministic case 

 In this section, spatial and hybrid separation 

methods are compared under deterministic 

conditions. As mentioned previously, no early 

departures are allowed at release, i.e. at the runway, 

and a penalty is setup for early arrivals at release. In 

the case of spatial separation where only indirect 

routes are flown, the total computed flight time for 

the set of 14 aircraft is equal to 6975.88s with 

individual flight times of 440.06s for each departure 

and 525.29 to 587.0s for arrivals. In the case of 

hybrid separation, the total computed flight time 

obtained is 5639.9s with individual flight times of 

314.64s for each departure and 467.9 to 476.78s for 

arrivals. In this case, to meet runway separation 

constraints, arrivals slow down whereas departures 

are merely ground held. Individual departure flight 

times show that the optimization clears departures to 

takeoff only when a route is found to be flown at 

maximum speed of the speed range authorized. With 

the hybrid separation, a total flight time reduction of 

19.5% is achieved with an individual flight time 

reduction of 125.42 seconds for departures and 

individual flight time reductions up to 119.1 seconds 

for arrivals. It is worth mentioning that in the hybrid 

case, the optimization assigned all flights to direct 

routes. 

Comparison of separation methods in the 

stochastic case 

Schedules are sensitive to uncertainty and 

schedule robustness is required in operations. 

Therefore stochastic conditions are setup in this 

section using the algorithm parameter values 

provided in Table 3. Error sources drawn from 

normal distributions are added to both arrival and 

departure flight times. Based on common values used 

as desired prediction accuracy in previous work 

conducted on arrival trajectory [33,34], the arrival 

time error has a mean of 0 seconds and a standard 

deviation of 30 seconds. For the departure time error, 

a mean value of 30 seconds and a standard deviation 

of 90 seconds is setup based on the departure Call 

For Release, three-minute time compliance window 

[35].  For this experiment, the penalty values are the 

same as the ones used in the deterministic simulation.  

The optimization computes global solutions for 

each repetition. The flight time values provided as 

results correspond to the largest savings obtained for 

all repetitions. In the case of spatial separation where 

indirect routes are flown, the total computed flight 

time for the set of 14 aircraft is equal to 6842.72s 

with individual flight times of 440.06s for each 

departure and 525.29s for arrivals. In the case of 

hybrid separation, the total computed flight time 

obtained is 5677.95s with individual flight times of 

314.64s for each departure and 467.9 to 489.0s for 

arrivals. For the hybrid strategy, the flight time 

difference for arrivals is due to speed change 

imposed to respect separation requirements between 

arrivals and departures at waypoints that are shared 

between flows. With the hybrid separation, a total 

flight time reduction of 17.0% is achieved with an 



individual flight time reduction of 125.42 seconds for 

departures and individual flight time reductions up to 

57.39 seconds for arrivals. It is worth mentioning that 

in the hybrid case, the optimization assigned all 

flights to direct routes. 

With the addition of uncertainty, additional 

delays are imposed to maintain required separation. It 

was found when comparing the aircraft separation 

methods that the hybrid separation method 

introduced a global flight delay amount of 46.9 

seconds associated with two controller interventions, 

i.e. two speed clearances.  

Impact of early arrivals 

Allowing early arrivals can increase flexibility and 

reduce delay. In this section, the impact of early 

release of arrival flights is investigated by varying the 

penalty cost �� �of arrival flight � under the previously 

described stochastic settings. The goal is to 

understand the effects on delay and controller 

intervention of allowing early release for arrival 

flights in the presence of uncertainty. In real world 

operations, the penalty cost �� �on early release of 

arrival flight �  represents the ability of Center to 

speed up arrivals and get to FIM earlier than their 

original estimated unimpeded entry time. To present 

the results, distributions of delays and numbers of 

controller interventions are drawn using Box and 

Whisker plots respectively in Figure 2 and 3. The 

delay is computed as the sum of individual aircraft 

flight delay for each scenario, where flight delay is 

computed as the difference between computed flight 

time (global value) and expected flight time of each 

scenario when flying at minimum speed. The number 

of controller interventions is computed as the number 

of times speed changes occur to avoid separation 

losses between aircraft for each scenario. In each 

following set of graphs, resulting distributions of 

each separation methods, i.e. S for spatial and H for 

hybrid, are computed for a fixed value of the early 

release penalty cost for arrival flights. Four different 

penalties are investigated and they are denoted 

“None”, “Low”, “Medium” and “High”. “None” 

refers to the case in which early release of arrivals are 

allowed (i.e. no penalty) whereas “High” refers to the 

case in which early release of arrivals are forbidden 

(i.e. high penalty). “Low” and “Medium” are 

intermediate penalty cases. “Low” reflects the case in 

which arrival flights can be released early unless 

delay is induced for departure flights. “Medium” 

illustrates the case in which no arrival flights can be 

released early unless reduced delay is computed.  

 

 

Figure 3. Delay distributions under uncertainty  



 

Figure 4. Controller intervention distributions under uncertainty  

For all box plots, the box extends from lower 

to upper quartile value of the delay and controller 

intervention data with a red line at the median. The 

bottom and top horizontal lines represent the 

whiskers and they extend the box to show the range 

of the data from minimum to maximum 

From the results it can be observed that when 

early release of arrival flights are allowed, i.e. 

“None” case, the spatial separation method 

introduces more delay and more controller 

interventions than the hybrid separation method. 

However results show that as the early release of 

arrival flights gets more and more penalized, the 

trend reverses with lower values of delays and 

lower numbers of controller interventions. For the 

“Medium” case, both separation methods have 

similar delay and controller intervention 

distributions. However, for the “High” case, the 

hybrid separation method introduces more delays 

and more controller interventions than the spatial 

separation method. Therefore, the results suggest 

that the hybrid separation method surpasses the 

spatial separation method for all cases except the 

“High” case by creating fewer delays and less 

number of controller interventions. In real world 

operations, the results show that to obtain fewer 

delays and less number of controller interventions 

in the terminal airspace when using the hybrid 

separation method, the Center should not speed up 

all aircraft before getting to fix FIM but only the 

ones for which benefits are obtained.  

Analysis 
Observations drawn from the results show that 

when using the hybrid separation method, 

significant flight time savings (total and individual) 

could be obtained even in the presence of 

uncertainty. However, both methods introduce 

delays associated with uncertainty to respect aircraft 

separation requirements. Moreover, because of 

waypoints shared by arrival and departure flows 

when flying direct routes, the number of controller 

interventions increases when using the hybrid 

separation method to make sure aircraft are well 

separated in particular at these shared waypoints. 

Future work is required to investigate how the other 

penalty costs introduced in the optimization 

formulation would affect the amount of delay and 

workload added by such flow interactions. 

Sequencing rules or additional speed constraints 

could be imposed to aircraft prior to flying by the 

shared waypoints. A further penalty cost variation 

analysis could give better insights to obtain lower 

delays and lower controller workload when using 

the formulation presented in this paper. For 

example, if late completion times were penalized, 

how would the number of controller interventions 

be affected? 

Assessment of SAA Performance 

The proof of concept described previously uses 

fixed parameter values for the implementation of 

the Sample Average Approximation methodology. 

This section presents the investigation of different 



parameter values to understand how they affect the 

performance and the results of the SAA 

methodology. Because results show that greater 

savings could be obtained if aircraft fly direct 

routes, the hybrid separation method is 

implemented in this statistical analysis. In the 

preliminary, the statistical bounds are derived for 

the problem. Then the computation setup details the 

values of the parameters tested. Finally, 

computation tables and analysis of the statistics are 

provided. The goal is to determine the number of 

scenarios needed to get robust optimal solutions for 

a fixed number of repetitions when applying the 

proposed methodology in reasonable computation 

time. 

Statistical Metrics  
To solve the stochastic program, the SAA 

methodology prescribes to solve �  SAA 

independent problems with �� and �� independent 

samples in each. Denote ��and �
 
as the optimal 

objective function of the true problem and of the 

SAA problem, respectively.
 
For each replication 

�,�� � �����, the program computes �� and �� 

that respectively refer to the value of the optimal 

objective function and to the solution of the �
th

 

replication. According to Ahmed and Shapiro in 

[28], an unbiased estimator of �����  can be 

described by the following quantity: 
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by definition, Equation 9 

is a statistical lower bound to ��. An estimate of the 

variance of the lower bound estimator can be 

expressed as: 

�
�
� �

�

��� � ��
�
�
� ��

�
� ���

�

���

������������� 

These formulas are computed in step B. of the 

SAA methodology. 

To compute statistical upper bounds of �� , 

consider a feasible solution ��
 
of the problem at 

repetition � . This procedure is applied in step 

A.(b).i of the SAA methodology. To compute an 

estimate of the true objective value �� ��  at point 

�
� for repetition �, one can generate independent 

samples of size ��� and ��� and compute the 

quantity defined in Equation 11. In this work, ��� 

and ��� are numbers of extra-scenarios of type � 

and�� and ��
�
� ���. 
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An estimate of the variance of the upper bound 

estimator can be expressed as: 
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Finally, to characterize the differences between 

upper and lower bounds, the optimality gap is 

computed for each repetition in step C. of the SAA 

methodology along with an estimated variance. For 

each solution ��
 
, � � ����� both quantities can 

be expressed as: 
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Setup 
In this section, an experiment setup is defined 

to compute the statistical bounds derived previously 

in three different cases. The number of repetitions is 

fixed to 50 and the number of extra-scenarios ��� 

and ��� are fixed to 10000. Each test case explores 

a different number of scenarios ��  and ��  such 

that �� � ��. Table 4 summarizes the values of 

parameters tested. 

Table 4. Experiment Setup 

Parameters Case 1 Case 2 Case 3 

� 50 50 50 

�� � �� 10 100 1000 

��
�
� ��� 10000 10000 10000 



The optimization is performed on the Los 

Angeles terminal airspace proof-of-concept 

stochastic settings where the hybrid separation is 

implemented to separate the set of 14 aircraft 

presented previously. To save computation time, 

multi-threading is implemented. Because all 

repetitions are independent from one another, one 

thread is assigned to one-repetition computations.   

Results  
For each case, the SAA methodology 

described in the previous section is applied, 

statistical bounds are computed at each repetition 

and respective case computation times are recorded. 

In order to compare the different test cases and 

show the effect of increasing the number of 

scenarios (�� � �� ) on the results, a Box and 

Whisker plot is drawn to represent the variance 

distribution of the results of each test case. The 

resulting plot is presented in Figure 4. For all box 

plots, the box extends from lower to upper quartile 

value of the variance with a line at median. The 

bottom and top horizontal lines represent the 

whiskers and they extend the box to show the range 

of the data from minimum to maximum. 

Figure 5. Variance Distributions  

Two main observations can be drawn from 

Figure 4. First, the visible data spread between 

maximum and minimum decreases as the number of 

scenarios increases. It is 84 when the number of 

scenarios is set to 10 whereas it is 30 when the 

number of scenarios is set to 1000. Second, the 

median decreases from 184 to 174 when the number 

of scenarios increases from 10 to 1000. Therefore, 

Figure 4 shows that results are more robust for 

larger numbers of scenarios. Additionally, Table 5 

presents the computation times of the three different 

test cases.  

Table 5. Computation Times  

 Case 1 Case 2 Case 3 

Computation 

Time (seconds) 
159.52 315.02 1936.26 

Case 1 with 10 scenarios is the fastest to run 

(~2.6 min) whereas case 3 with 1000 scenarios is 

the longest to run (~32min). Although Figure 4 

shows that case 3 has the least dispersed results, it 

takes about 32 minutes to run. From case 2 to case 

3, increasing the number of scenarios enables a 

4.6% median decrease of the variance. However, 

this requires a 6x computation time increase. 

Therefore for this application, case 2 is the best 

setup and presents a good compromise between 

variance result and computation time.  

Case 2 spread is about 50, this tends to cost 

uncertainty of results from previous section. Table 6 

presents detailed statistics computations of test case 

2 when applying the SAA methodology. For 

simplicity and illustration purposes, results 

corresponding to a few repetitions, i.e. 0
th

, 10
th

, 20
th

, 

40
th

, and 49
th

, are provided. In this table, the first 

column is the repetition number, the second column 

is the estimated upper bound of the objective 

function with estimated variance displayed in 

column three. Column four is the estimated lower 

bound of the objective function, column five 

displays the estimated optimality gap along with its 

variance in column six. The two last quantities 

underneath the table correspond to the overall 

repetition lower bound of the objective and its 

associated variance. 

Table 6. SAA Methodology for Case 3 

� �� �
�

 �������
�

�
�

� Gap Var 

0 19957.5 141.4 19859.9 66.2 200.6 

10 19916.5 108.5 19810.4 115.7 167.7 

20 19902.7 109.9 19829.6 96.6 169.1 

40 19899.5 119.2 19830.4 95.8 178.4 

49 19893.4 127.9 19807.9 118.3 187.2 
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Analysis 
The results of the statistical bounds 

computations show that using large numbers of 

scenarios produces more robust results but at the 

expense of large computation times. However, it 

was found that decent robustness could be found in 

reasonable computation time for the reference 

schedule and stochastic settings considered. In 

particular in the proof of concept study, the number 

of scenarios was set to 100.  According to variance 

results of this section, results obtained previously 

can be qualified as a good compromise between 

robust results and computation time. Future work is 

required to analyze results for which larger numbers 

of repetitions are used. 

Summary, Conclusion and Next Steps 

In this section, a summary of the work 

accomplished is provided as well as concluding 

remarks and next steps for future research. 

Summary 
This work contributes to stochastic scheduling 

optimization in the field of air traffic management. 

In the terminal airspace, integrated departures and 

arrivals have the potential to increase operations 

efficiency. An alternative method to past research is 

presented in this paper to solve the integrated 

arrival departure operations problem under 

uncertainty. The objective was to provide a 

stochastic optimization formulation that solves a 

routing and scheduling problem for terminal 

airspace traffic and produces optimal solutions with 

minimal runtime. 

To accomplish the objective of this work, a 

scheduler was built to compute schedules for 

terminal airspace waypoints that are shared by both 

arrivals and departures. Inspired from 

manufacturing operations, the scheduler is based on 

a machine job-shop scheduling problem 

formulation in which probabilistic release and 

runway dates were investigated. To separate 

aircraft, wake vortex separation requirements were 

enforced at the runway and a temporal control 

strategy was implemented through the usage of 

speed varying constraints. A multistage stochastic 

programming approach was used to solve the 

problem and solutions were obtained by solving 

several sample average approximation problems. A 

proof-of-concept was accomplished by applying the 

scheduler to arrival and departure flows in the Los 

Angeles terminal airspace.  

Scheduling and routing results showed that 

allowing aircraft to share waypoints and fly more 

direct routes may allow greater flight time savings. 

Results also demonstrated that when considering 

flow interactions between arrival and departures, 

additional delays requiring controller interventions 

were needed to maintain safe separation between 

aircraft. Because approximate solutions were 

computed, a statistical analysis was conducted to 

demonstrate that the proposed methodology does 

not require too many scenarios, i.e. more than 100 

scenarios, to produce robust results. A 

multithreading method was implemented to help 

save computation time. Moreover it was shown that 

robust results, i.e. schedules and routings, could be 

obtained with a reasonable amount of uncertainty in 

computation times less than 3 minutes.  

Operational Implications  
This study showed that the methodology 

proposed in this paper is promising to improve 

operation efficiency in the Los Angeles terminal 

airspace by integrating departures and arrivals. The 

developed method can be applied in a fast time 

fashion and determines if benefits exist for different 

input schedules. Such tool shows promising future 

to help support decision-making. 

Next Steps 
In order to understand further the benefits of 

the proposed methodology, work will be conducted 

to compare results of the proposed scheduler with 

genetic-algorithm based schedulers. Future work is 

also necessary to evaluate and test the proposed 

methodology further. In particular, a penalty-

variation analysis is required to understand how the 

penalties introduced in the problem formulation 

affect delays and controller interventions. It might 

also be interesting to integrate schedules from the 

Center prior to handoff at the meter fix to the 

TRACON. Furthermore, future research steps will 

perform a traffic-variation analysis in order to 



understand the algorithm behavior in particular 

when scheduling and routing dense traffic 

scenarios. Additionally, this methodology is being 

extended to the surface operations. Integrating 

surface movements to the current model would 

allow more continuous scheduling and routing and 

is expected to offer additional system benefits.  
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Appendix I 

Nomenclature 

�� Set of aircraft �, � � �� 



� Set of weight class p, � � � �

��� �� �� �� 

� Set of operations �, � � � � ����� 

� Aircraft type, ��� � � � �� � � � 

� Set of aircraft type, � � ���� � � �

�� � � �� 

� Set of waypoints �, � � � 

��� Waypoint runway 

�� Release time of aircraft �  

��� Processing time at waypoint �  of 

aircraft � 

�� Due date of aircraft � 

�� Starting time of aircraft � 

�� Completion time of aircraft � 

�� Exit time of aircraft � 

� Relative objective weight 

�� Earliness of aircraft � at release 

�� Tardiness of aircraft � at release 

�� Earliness of aircraft � at exit 

�� Tardiness of aircraft � at exit 

��
� Perturbed release time of aircraft � 

��
� Perturbed due date of aircraft � 

�� Scenario of time type �, � � ����� 

��� Perturbation of time type��, � � ����� 

�� Vector of perturbations of scenario of 

time type �, � � ����� 

�� Number of scenarios of time type �, 

� � ����� 

�� Set of scenarios time type � , � �

�����, �� � ���� �� ����
� 

� Set of all possible aircraft sequence �, 

� � � 

��� Sample Average Approximation 

� Number of repetitions �, � � � 
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