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Abstract. The method of elevation classes, in which the ice
surface model is run at multiple elevations within each grid
cell, has proven to be a useful way for a low-resolution atmo-
sphere inside a general circulation model (GCM) to produce
high-resolution downscaled surface mass balance fields for
use in one-way studies coupling atmospheres and ice flow
models. Past uses of elevation classes have failed to conserve
mass and energy because the transformation used to regrid
to the atmosphere was inconsistent with the transformation
used to downscale to the ice model. This would cause prob-
lems for two-way coupling.
A strategy that resolves this conservation issue has been

designed and is presented here. The approach identifies three
grids between which data must be regridded and five trans-
formations between those grids required by a typical cou-
pled atmosphere–ice flow model. This paper develops a the-
oretical framework for the problem and shows how each of
these transformations may be achieved in a consistent, con-
servative manner. These transformations are implemented in
Glint2, a library used to couple atmosphere models with ice
models. Source code and documentation are available for
download. Confounding real-world issues are discussed, in-
cluding the use of projections for ice modeling, how to han-
dle dynamically changing ice geometry, and modifications
required for finite element ice models.

1 Introduction

Many questions still surround the issues of how ice sheets
respond to climate forcing and how those changes will af-
fect sea level, regional and global climate. Recent observa-
tions have shown accelerating mass loss from the Greenland
and Antarctic ice sheets (Vaughan et al., 2013), adding ur-
gency to these questions. Although general circulation mod-
els (GCMs) are able to project changes in ice sheet surface
mass balance, projection of changes in ice sheet mass due to
ice dynamics with GCMs remains a challenge (Church et al.,
2013). A number of climate modeling groups are addressing
these deficiencies by adding dynamic ice flow effects to ex-
isting GCMs: GISS ModelE (Schmidt et al., 2006), CESM
(Hurrell et al., 2013), HadGEM2 (Collins et al., 2011), etc.
This is done by coupling the GCM with an existing ice flow
model, such as Glimmer–CISM (Rutt et al., 2009), BISI-
CLES (Cornford et al., 2013), ISSM (Larour et al., 2012),
PISM (Bueler and Brown, 2009), etc. A full understanding
of the long-term evolution of an ice sheet within a coupled
climate system requires coupling with the ocean as well as at-
mosphere. Surface runoff, ocean cavity circulation and salin-
ity gradient effects are all important. In this paper, we focus
only on coupling with the atmosphere.
One can distinguish between one-way and two-way cou-

pling. In one-way coupling, the GCM is used to develop sur-
face mass balance (SMB) and temperature fields, which are
then used to drive the ice flow model off-line. This process
misses effects caused by feedbacks from the ice sheet to the
rest of the Earth system: for example, decreased ice sheet
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albedo (Qu and Hall, 2006) or lowered atmosphere orogra-
phy (Ridley et al., 2005). Past studies with one-way coupling
have yielded useful insight into the future of present-day ice
sheets; examples include Huybrechts (1994), Greve (2000),
Stone et al. (2010), Bindschadler et al. (2013), Lipscomb
et al. (2013), Nowicki et al. (2013a), Nowicki et al. (2013b)
and Goelzer et al. (2013). However, ice sheet feedbacks are
expected to be increasingly important for simulations of the
long-term evolution of ice sheets and the climate associated
with them. This kind of feedback probably plays a significant
role in many events in the paleorecord (Dansgaard–Oeschger
events, Heinrich events, the Younger Dryas).
Two-way coupling strategies address these issues by al-

lowing the atmosphere to be influenced by changes in the
ice sheet elevation, extent and albedo over time. We distin-
guish between loose and tight two-way coupling. Loose two-
way coupling involves running a series of GCM simulations
with different ice sheet configurations, each based on the re-
sult of the previous. Each GCM run is a separate simulation,
without continuity of mass or energy between runs. Stud-
ies with loose two-way coupling have yielded insight into
future equilibrium states for ice sheets and climate (Ridley
et al., 2005, 2010). However, ice sheets change configura-
tion in these runs without accompanying mass and energy
fluxes required to make those changes happen. This is equiv-
alent to applying an unknown impulse forcing to the ice sheet
each time it is changed. Although the coupled ice sheet might
eventually reach the correct equilibrium state, the transients
involved in achieving that equilibrium will be suspect. Un-
fortunately, results relevant to human society all require an
understanding of the transients. For successful simulation of
transients, we turn to tight two-way coupling. It involves run-
ning the ice flow model, step by step, along with the rest of
the GCM – while conserving mass and energy along the way.
Attention to conservation is required, since the GCM is sim-
ulating a more nearly closed system that could run for a long
time.
When one couples dynamic ice flow models with GCM

atmospheres, two models operating on different grids and
timescales must communicate: ice flow models operate at
low frequency on a high-resolution grid with local projec-
tion, while GCM atmospheres operate at high frequency on
low-resolution global grids. A number of issues arise due
to this mismatch, including how one creates high-resolution
surface mass balance fields from low-resolution GCM in-
put. Elevation classes address the latter issue. They were first
introduced for precipitation downscaling in a GCM by Le-
ung and Ghan (1998) and later applied to one-way coupling
from GCM atmosphere to ice flowmodels by Lipscomb et al.
(2013). The key insight is that mass and energy fluxes be-
tween the atmosphere and an ice sheet vary approximately
by elevation within a local region.
When using elevation classes, a third grid is introduced,

the elevation grid. This allows the GCM to compute surface
fields at a variety of elevations within each atmosphere grid

cell, not just the elevation seen by the atmosphere. A high-
resolution surface mass balance is produced on the ice grid
by first computing SMB on the elevation grid, and then us-
ing a vertical interpolation scheme to produce SMB on the
ice grid. This method of interpolation produces surprisingly
good results: although it cannot capture certain localized ef-
fects (e.g., wind direction), it has been shown to allow GCMs
to produce surface mass balance fields approaching the qual-
ity of those produced by regional climate models (Vizcaino
et al., 2013).
Inside the GCM, SMBs computed on the elevation grid

must be regridded to the atmosphere grid as well as the ice
grid. In order to maintain conservation in a tight two-way
coupled system, it is essential that the set of regridding op-
eration chosen is self-consistent: that is, if a flux field on the
elevation grid is regridded simultaneously to the atmosphere
and ice grid, then the total amount of flux represented by
the resulting two fields should be the same. For conservation
purposes, the specifics of these two transformations are not
important, as long as they are consistent with each other. Past
efforts at one-way coupling have defined these two transfor-
mations in ways that each make intuitive sense, but are not
consistent with each other. This is not a problem for one-way
coupling, but it would cause conservation problems for two-
way coupling.
This paper develops the concept of the elevation grid on

which the ice surface model runs, and then derives a set of
conservative regridding transformations between the atmo-
sphere, elevation and ice grids. The coupled processes un-
der consideration along with the transformations required for
tight two-way coupling are introduced in Sect. 2. Section 3
focuses on the elevation grid, while the grid fundamentals
necessary for the two-way coupling are presented in Sect. 4.
Section 5 deals with the use of projection and associated is-
sues encountered when bridging between the spherical ge-
ometry of GCMs and Cartesian ice sheet models. We show
how to choose and implement the transformations in Sects. 6
through 9 and work through realistic examples of these trans-
formations in Sects. 10 through 12. We touch on a number of
extra “wrinkles” in the real-world problem: procedures to use
when the elevation grid is based on a horizontal grid other
than the atmosphere grid in Sect. 13, and regridding proce-
dures required when ice elevations, ice extent or elevation
grid change in the simulation in Sect. 14. Finally, we present
in Sect. 15 a library, Glint2, that can be used to tightly couple
GCMs and ice sheet models.

2 Coupled processes

The coupled atmosphere–ice system involves three models
interacting with each other: an atmosphere model, an ice
flow model and an ice surface model situated between them
(Fig. 1). The atmosphere model is coupled with the ice sur-
face model, which tracks the top few meters of ice. Processes
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Fig. 1. Configuration of the three models, and the separate spa-
tial domains they occupy. The atmosphere model (A) is coupled
to the ice surface model (E), which tracks the top few meters of
ice. The ice surface model (E) is then coupled to the dynamic ice
flow model (I ). The dynamic ice flow model, operating at long time
steps, is insulated from high-frequency surface processes in the ice–
atmosphere interaction.

modeled here include a full surface mass–energy balance
computation, snow–firn compaction, albedo effects, meltwa-
ter percolation, runoff, refreezing, etc. The bottom of the ice
surface model is coupled to the ice flow model.

2.1 Ice surface model

In order to couple an ice sheet to a GCM atmosphere, SMB
on the ice sheet must be calculated from GCM outputs.
Some one-way coupled studies have used temperature index
schemes (Huybrechts, 1994; Greve, 2000; Stone et al., 2010;
Bindschadler et al., 2013; Nowicki et al., 2013a, b; Goelzer
et al., 2013): the mean surface temperature over each cou-
pling time step (typically one month or year) is used to com-
pute SMB, and both are passed to the ice flow model. It is
hard to see how energy can be conserved with such a scheme.
The problem is that the atmosphere must run for many time
steps before atmosphere–ice sheet energy fluxes are com-
puted on a coupling time step. The computed flux on the ice
sheet will not be the same as that sum of fluxes seen by the
atmosphere over the previous coupling time step – and it is
“too late” to go back and change the atmosphere to match.
For this reason, a full energy balance scheme, computed

each atmosphere time step (typically one hour) and inte-
grated over the coupling time step, is considered essential
in a GCM setting. Energy flux between atmosphere and ice
sheet follows diurnal and seasonal cycles, making positive
and negative contributions to the integrated flux. It is impor-
tant that energy flux is computed at a small enough time step

to capture these effects accurately; typically, the atmosphere
time step is sufficient.
While ice sheets move slowly and can be modeled with

long time steps, the modeling of the surface of the ice sheet
requires short time steps. This is accomplished by introduc-
ing the ice surface model as a third model, sitting in between
the ice flow model and atmosphere model. The top of the ice
surface model couples with the atmosphere model every at-
mosphere time step, whereas the bottom couples with the ice
sheet model every coupling time step. The ice surface model
needs to be thick enough so there is little variation in tem-
perature at the bottom: 15m is sufficient. This ensures that
the heat flux with the ice flow model will be small and low
frequency.
The ice surface model can serve an additional purpose of

modeling the great variety of surface processes that may be
relevant to the long-term evolution of ice sheets: snow–firn
compaction, surface runoff/drainage networks, water per-
colation, refreeze, albedo effects and wind-blown snow, to
name a few.
The use of an ice surface model solves some important

problems, but it also introduces nonphysical elements into
the model. Ice contained in the ice surface model does not
advect along with the ice flow model, nor does it contribute
to the stress field of the ice below it in the ice flow model.
In both cases, we expect the relative error to be small: the
top 15m of snow/firn contains less than 1% of the mass of
a 1000m thick ice sheet. There may be ways to fix these
problems – however, there is no need to make the ice surface
model thicker than it needs to be. Numerous studies have
shown that ice sheets below about 15m are fully insulated
from surface weather and seasonal cycles (Zagorodnov et al.,
2006).

2.2 Three models, three grids

Each of the three models in the coupled system runs on its
own grid. The atmosphere is run on the atmosphere grid (A)
and the ice flow model is run on the ice grid (I ). The ice sur-
face model is run on the elevation grid (E), which is based
on the atmosphere grid (see Sect. 3). All three grids are two-
dimensional, in the sense that they are used to construct two-
dimensional functions f (x,y) over the domain. Regridding
operations are needed to pass mass and energy fluxes be-
tween the models.
It is important to keep in mind the relative size of the

three grids. We set up a test using the GISS 2◦ × 212
◦ atmo-

sphere grid (Schmidt et al., 2006), overlapping with the 5 km
grid from SeaRISE (Sea-level Response to Ice Sheet Evolu-
tion; Bindschadler et al., 2013). We used 40 elevation points,
spaced every 100m from 0m to 4000m. In this case, A had
146 grid cells, I had 66 906 and E had 1829. These numbers
only account for grid cells involved with the Greenland ice
sheet. In general, the ice grid will be finest, the atmosphere
grid coarsest and the elevation grid in the middle.
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Fig. 2. Data flow (blue arrows) for the coupling between atmo-
sphere, ice surface and dynamic ice flow models (boxes). Since the
three models run on different grids, regridding operations (ovals)
are required at each step. Figure 21 shows the inputs required to
compute these regridding operations.

Time frequency mismatches are another issue. The atmo-
sphere runs at high frequency, each time step being typically
1 h. On the other hand, the atmosphere and ice flow models
are coupled at much lower frequency, typically one month
or any other time period. We call these two time steps the
atmosphere time step and ice coupling time step.

2.3 Fully coupled system

Figure 2 shows the data flow of the fully coupled system.
Steps of the data flow are organized based on their frequency:
the top circle of steps runs at the same frequency as the GCM
atmosphere, while the bottom circle runs at the ice coupling
frequency – typically one month or more. We describe the
steps involved in coupling the GISS ModelE (Schmidt et al.,
2006) with PISM (Bueler and Brown, 2009); however, these
steps are general for any GCM or ice flow model. We now
trace through the data flow on a typical coupled run.

2.4 Atmosphere time step

When the atmosphere runs, it produces a set of fields on
the atmosphere grid that affect the processes in the ice sur-
face model: for example, downwelling long-wave radiation,

A Atmosphere grid, projected to Cartesian plane
A′ Original atmosphere grid on the sphere
I Ice grid
G Interpolation grid (e.g., ice or exchange grid)
E Elevation grid
M Interpolation matrix: E → G
R Area-weighted remapping matrix: G → A
Λ “Repeat” transformation matrix: A → E
X Area-weighted remapping matrix: G → I
X ′ Area-weighted remapping matrix: I → G
P Diagonal scaling matrix: A′ → A
L0 Function defined to be constant within grid cells
L1 Function defined by piecewise linear

interpolation between grid points

Fig. 3. Definition of symbols used throughout the paper. See Ap-
pendix A for notational conventions.

downwelling shortwave radiation, precipitation, etc. These
fields must be regridded from A to E. We denote the set of
fields to be regridded with a capital letter, RA; the result of
the regridding is RE (see Appendix A and Fig. 3 for nota-
tional conventions).
The ice surface model is run at the same frequency as the

atmosphere. Among its outputs are mass and energy fluxes
with the atmosphere: evaporation, sublimation, upwelling
long-wave radiation, latent heat release, etc. These are repre-
sented by−FE and are regridded to−FA before being passed
back to the atmosphere on the next time step.
The ice surface model also produces fluxes in the ice flow

model; these are described immediately below.

2.5 Coupling time step

On each atmosphere time step, relevant flux outputs from the
ice surface model are accumulated as F̄E for future coupling
with the ice flow model. They are named F̄E because these
fluxes are in general equal and opposite to fluxes sent to the
atmosphere. Every coupling time step – about once a month
– the accumulated F̄E is regridded to the ice grid (F̄I ) and
passed to the ice flow model.
The ice flow model produces changes in ice surface topog-

raphy and extent, as well as a small energy flux between the
ice flow and ice surface models (together, we call these DI ).
Changes in ice topography and extent are regridded to the
atmosphere grid (DA) and used to adjust the atmosphere’s
orography. The energy flux is regridded to the elevation grid
(DE) and applied to the ice surface model.

2.6 Regridding requirements

We see that the fully coupled system requires the use of five
regridding operations at various points in its run (Fig. 2).
These regridding operations must be conservative, in the
sense that none of them can change the integral of the field
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on the domain as a whole. In fact, we would like to impose a
stronger conservation condition so that values are conserved
within each atmosphere grid cell.
We develop these five regridding operations in the sec-

tions below. We begin by discussing the method of elevation
classes in a general manner (Sect. 3) and then move on to
developing basics of conservative regridding (Sect. 4). Be-
cause conservation is defined in terms of integration over ar-
eas, part of our discussion involves a definition of how to
integrate functions on the elevation grid E. Finally, we show
how the required set of operations can be constructed in a
fully self-consistent manner.
Throughout, we assume that the atmosphere grid A has

L0 parameterization: functions on A are represented by their
mean value within each grid cell. This becomes our basis for
conservation: all regridding operations are conservative over
every atmosphere grid cell. We do not require any specific pa-
rameterization for the ice grid, but we consider cases for L0
(piecewise constant) and L1 (piecewise linear) parameteriza-
tions, the latter which are commonly used in finite element
ice models.

3 Elevation points

The method of elevation classes, when applied to the
atmosphere–ice coupling problem, involves running the ice
surface model at one or more elevations in each atmosphere
grid cell (Lipscomb et al., 2013). Temperature, pressure and
precipitation are extrapolated to a set of elevations within the
grid cell. They are then used in an ice surface model to com-
pute a full surface mass and energy balance at each elevation.
The result is a set of “what-if” scenarios, giving an estimate
of what the fluxes would have been, had the ice surface of the
grid cell been at the given elevation – rather than the eleva-
tion seen by the atmosphere model.
The modeler must choose which elevations to use for each

atmosphere grid cell. The simplest approach is to use a fixed
set of elevations across all grid cells – for example, every
100m from 0m to 4000m.
However elevations are chosen, the result is a new “grid”

– the elevation grid – on which the ice surface model is run
and surface fluxes are generated. The elevation grid is derived
from the atmosphere grid, in the sense that each elevation
grid “cell” (or elevation point) is associated with one parent
atmosphere grid cell. If elevation point Ej is associated with
atmosphere grid cell Ai , we write Ej ∈ Ai .
Once the GCM has computed a conserved quantity on the

elevation grid, those values can be used to develop a relation
between elevation and SMB within each atmosphere grid
cell. Suppose we have computed a flux field f E : SMB, for
example. For an atmosphere grid cell Ai , consider the com-
ponents of the flux field f E

j that are related to the enclosing
atmosphere grid cell Ai . Or more formally, consider f E

j for
all j such that Ej ∈ Ai . We can think of these component

Fig. 4. Interpolated surface mass balance (SMB) function within
one atmosphere grid cell. These values come from one month (July)
of a run of GISS ModelE with elevation points. The vertical dashed
line indicates the mean elevation of the grid cell, “seen” by the at-
mosphere. Dots and squares represent the results of extrapolated
SMB computations at other elevations: dots represent elevations
found within the grid cell, whereas squares represent elevations out-
side the cell’s range. SMB values at intermediate elevations are in-
terpolated.

values as samples of a 1-D function relating elevation to flux
(SMB), within the localized region of Ai . By interpolating
between those points using standard methods, one can con-
struct a continuous function relating flux to elevation within
Ai . As long as enough points are used and the function being
interpolated is smooth enough, this procedure will yield an
arbitrarily accurate representation of the “true” function.
In fact, the functions we typically wish to interpolate – sur-

face mass and energy balance averaged over about a month –
are quite smooth as functions of elevation (Fig. 4). In the face
of spatially invariant precipitation, one would expect SMB
to be constant to first order above the equilibrium line alti-
tude (ELA), and to decrease linearly with elevation below
the ELA. Near the ELA, one would expect a smooth tran-
sition because the ELA goes up and down over a month of
diurnal cycles. This is in agreement with experimental work,
which has shown SMB below the ELA to vary linearly with
temperature (Braithwaite, 1981; Box et al., 2013).
How many elevation points are required to properly re-

solve the elevation–flux relationship? This depends on the in-
terpolation scheme: higher order schemes will require fewer
points than piecewise linear interpolation. But the general
shape of the function – two straight lines connected by a
curve near the ELA – implies that not many points are
needed, except for near the ELA.
If one knows where the ELA is on every atmosphere grid

cell, then this is a useful guide in selecting elevation points.
But if one is studying ice sheets in a changing climate, then
the ELA will be expected to move over time. It is possible
to adaptively move elevation points as the ELA moves. But
it is simpler just to use many points everywhere. In our tests,
we have used 40 points at 100m spacing, which is proba-
bly more than sufficient for coupled ice sheet simulations.
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We have not done a careful study of the optimal number of
elevation points.
The method of elevation classes – or elevation points –

provides a way to construct an interpolated relation between
elevation and surface mass–energy flux within each atmo-
sphere grid cell. Additional choices need to be made in or-
der to produce fully downscaled flux fields on the ice grid
(Sect. 6). We are now almost ready to define the transforma-
tions posited in Sect. 3. But first, we pause for some ground-
work on grid fundamentals in Sect. 4 and projection issues in
Sect. 5.

4 Grid fundamentals

Numerical models represent continuous fields with linear
combinations of a finite set G of basis functions – which we
call a parameterization (Appendix A describes our mathe-
matical notation). For example, suppose thatG uses the basis
functions g(x,y) = [g1(x,y), . . . ,gn(x,y)], where g(x,y)

is the vector of all the basis functions. Suppose we have an
n-dimensional vector f G with components f G

i . That vector
represents the function f G(x,y) formed by a weighted sum
of the basis functions:

f G(x,y) = f G · g(x,y). (1)

A wide variety of basis function sets are used for different
problems. Most commonly in climate modeling, f G

i repre-
sents the mean value of f G(x,y) within some well-defined
bounded region, which we call a grid cell. From a conserva-
tion point of view, a function f G(x,y) with L0 parameteri-
zation may be taken to be constant within each grid cell, with
discrete “jumps” from one grid cell to the next. In this case,
the basis function gi(x,y) for grid cell i is equal to 1 inside
the cell and 0 outside.
L0 parameterizations are widely used in climate and fi-

nite difference ice flow models. Finite element ice flow mod-
els might use L1 or even higher order parameterizations
(Zienkiewicz et al., 2013), and they use the term “mesh” to
describe the geometry of their basis functions. In this paper,
we use the term “grid” to refer to both the vector space in
which f G lives and its associated parameterization.

4.1 Integration on grids

Because we are working with conserved quantities, it is es-
sential that we can integrate functions over any well-defined
region B. Because a parameterization defines f G(x,y) on
every point, this integral is well-defined. Substituting from
Eq. (1) and using linearity, we get∫

B

f G(x,y)dA = f G ·
∫

B

g(x,y)dA. (2)

If we wish to integrate over B repeatedly, we can pre-
compute

∫
B

g(x,y)dA, and then take dot products with f G

as needed. How one integrates the basis functions depends
on the nature of those basis functions. We give specifics for
L0 and L1 grids in Appendices B and C, respectively.

4.2 Comparison across grids

In regridding applications, we need to compare fields across
different grids. They cannot be tested for simple point-by-
point equality, due to differences in grid structure. Instead,
we compare by integrating two fields over the same region or
set of regions.
If we have two fields f G and f H on two different grids,

we say that f G is equivalent to f H on region B, or f G ≡B

f H if

f G ·
∫

B

g(x,y)dA = f H ·
∫

B

h(x,y)dA. (3)

Suppose we wish to compare f G and f H over an entire
domain? If we have a set of regions A = {A1, . . . ,An} tiling
that domain, then we can say the two fields are equivalent
on A if they are equivalent on all of A1, . . . ,An. Note that A
could be an L0 grid, or simply a set of regions on the domain.
If we have a regridding transformation F() such that f H =
F(f G), then we say that F() is conservative on A if f G ≡A

f H .

4.3 Area-weighted remapping

Suppose we have two grids G and H , with H being L0 pa-
rameterized – for example, G might be an ice grid and H

an atmosphere grid. Suppose we have a field f G, which we
wish to regrid in a conservative manner to result in the field
f H . One common way to do this is to compute each com-
ponent f H

i based on the value of f G(x,y) integrated over
the area covered by the ith grid cell in the grid H . Or, more
formally,

f H
i = 1

|Hi |

⎛
⎜⎝f G ·

∫

Hi

g(x,y)dA

⎞
⎟⎠ . (4)

By construction, this transformation is conservative on H .
Note that f G and f H will generally not be equivalent over
other regions other than grid cells in H – for example, over
grid cells in G (if G happens to be L0 parameterized).
Area-weighted remapping is closely related to our defi-

nition of equivalence above. If we have two fields on two
different grids, equivalence on H can be tested by regrid-
ding both fields to H and comparing the resulting vectors.
The transformation from G to H is linear and thus repre-
sentable by a matrix. It is variously called area-weighted
remapping or conservative regridding (Ramshaw, 1985). The
matrix is computed by integrating the source basis functions
g1(x,y), . . . ,gn(x,y) over every grid cell in the destination
grid.
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Fig. 5. An exchange grid, obtained by overlapping a sample atmo-
sphere grid and ice grid (not to scale). Each resulting grid cell, ir-
regularly shaped, overlaps with exactly one atmosphere grid cell
and exactly one ice grid cell.

4.4 Interpolation grid

We are now almost ready to discuss our implementations of
the transformationsE → I andE → A (see Appendix A and
Fig. 3 for mathematical notation). But first, we must intro-
duce the interpolation grid G, which is used to rigorously
define basis functions on the elevation grid E. The user has a
choice of how G is to be chosen.
In general, G is chosen simply as the ice grid I . If I is

L0-parameterized, we might instead choose G to be the ex-
change grid between A and I (Fig. 5): the L0 grid whose
grid cell outlines are formed by the intersection of grid cells
in A and I (Balaji et al., 2006). The exchange grid is a use-
ful choice for G because every exchange grid cell overlaps at
most one atmosphere grid cell. This choice has its pros and
cons, which we explore in Sect. 9. Either way, the interpola-
tion grid G is similar to the ice grid I and can be thought of
as an ice grid proxy in most cases.

5 Projection issues

Whether the source grid is L0 or L1, area-weighted remap-
ping algorithms need to find the intersection of grid cell out-
lines from two grids. Technically, this is only possible if the
two grids exist on the same surface. In our case, atmosphere
models exist on the surface of a sphere, whereas ice flow
models work on a Cartesian plane. Unless an ice flow model
formulated in spherical coordinates is used, the exchange
grid between an atmosphere grid and an ice grid cannot be
directly computed.
This problem is solved using a map projection (Snyder,

1987). We let A′ be the original atmosphere grid and then let
A be the projected atmosphere grid – projected to the Carte-
sian plane using the chosen projection. Regridding compu-
tations described in this paper are made to/from A, the pro-
jected grid.
In general, the area of a grid cell can change when it

is projected. Changes in area due to the use of a projec-
tion that does not preserve areas are called projection error

(Lauritzen and Nair, 2008). Even if an equal area projection
is used, in practice grid cells still experience small changes
in area. This is because projected grid cells have complex
shapes, but the algorithms in Appendix D are only able to ap-
proximate these shapes with polygons. Changes in area due
to polygonal approximation of curves, or numerical artifacts
in the methods used, are called geometric error (Lauritzen
and Nair, 2008).
Whether a change in grid cell area arises from projection

or geometric error, data must be rescaled to maintain conser-
vation when transforming a field f A′ to f A:

f A
i = |A′

i |
|Ai |f

A′
i . (5)

Note that this transformation is diagonal and invertible.
Because this is simply a rescaling, the regridding schemes
presented in this paper are not operationally affected by pro-
jection issues.
Although this rescaling scheme may be used to address

any change in grid cell area, it is preferable to eliminate or
minimize these changes to begin with. To this end, we con-
sider projection and geometric error separately.

5.1 Projection error

The stereographic projection used in SeaRISE (Bindschadler
et al., 2013) can change the area of grid cells by up to 10%.
If a projected grid cell is 10% smaller then the original, then
that means that 1m of accumulation in the GCM will turn
into 1.1m in the ice flow model. This could cause significant
discrepancies in dynamic ice flow. Because the projection in
SeaRISE is constructed to minimize errors in a band along
the 71◦ N parallel, we would not expect the magnitude of
projection error to change significantly if an oblique stereo-
graphic projection were used instead.
One solution to the problem of projection error would be

to use an equal area projection – the Lambert equal area
projection, for example. However, equal area projections do
not preserve angles, which distorts the ice dynamics at a lo-
cal scale. We conclude that nonphysical distortions happen
whether an area-preserving or angle-preserving projection is
used. It is not yet clear which choice gives better results in
the end.
One innovative approach to this problem is to use an angle-

preserving projection, but to allow ice flow model grid cells
to vary in size, based on the local distortion of space intro-
duced by the projection. Parameters dx and dy are kept for
each grid cell. These grid parameters are included in the ice
flow model equations, thereby accounting for shape and area
distortion caused by the projection in a physically meaning-
ful way (Pollard and DeConto, 2012).

5.2 Geometric error

Geometric errors are typically three orders of magnitude
smaller than projection errors. In theory, they may be
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Fig. 6. An example of geometric error, in which grid cells change
size due to polygonal approximation. This map, made using a Lam-
bert equal area projection centered on the North Pole, shows a set of
latitude–longitude grid cells – a kind commonly used in atmosphere
models. Solid blue lines show polygonal approximations, while dot-
ted red shows the actual grid cells on the sphere. Note that all grid
cells (in this local map) shrink when approximated.

arbitrarily reduced further by increasing the number of sides
used in the approximating polygons – the parameter n spec-
ifies the number of line segments used to approximate each
side of the original grid cell in its projected state. But this
method has its limit in practical terms.
Consider a typical latitude–longitude grid on the sphere

with a Lambert equal area projection centered at the North
Pole (Fig. 6). In this case, the area of a polygonal approxi-
mation will always be smaller than the area of the actual grid
cell: we end up inscribing polygons inside of circles. The
geometric error will depend on the number of sides of the in-
scribed polygon, which in this case depends on the number
of grid cells in the circle, and on n.
This is the method used by Archimedes to approximate

the value of π in ∼ 250 BCE (Heath and Archimedes, 1897,
p. 91). Unfortunately, it converges only quadratically, as
O(1/n2). Meanwhile, memory use to store all those poly-
gons goes up by O(n). Memory and time requirements will
therefore be exponential in terms of the number of digits of
accuracy required: each additional digit of accuracy will re-
quire an increase in the number of sides by a factor of

√
10. It

is therefore not practical to make geometric error arbitrarily
small by increasing n. In our experience, a value of n = 2
yields geometric error of approximately 10−4. We believe
n = 2 offers an acceptable trade-off between efficiency and
accuracy.

6 Transformation: elevation to ice/interpolation grid

We can now derive the first of the five transformations
posited in Fig. 2. We begin with the transformation E → G

from the elevation grid to interpolation grid, because this is
the transformation that ice modelers are most concerned with
when seeking high-quality downscaled flux fields. In various
contexts, this transformation might be referred to as an inter-
polation, downscaling or regridding operation.
In Sect. 3, we showed how values f E at elevation points

may be used to construct a flux–elevation relationship fi(z)

in each atmosphere grid cell Ai . These relationships may
then be used to construct f G on the interpolation grid. The
resulting transformation forE → G potentially involves hor-
izontal and vertical interpolation, of which the modeler has
considerable choice.
We present here three methods of interpolation from

E to G: z interpolation (Sect. 6.1), bilinear interpolation
(Sect. 6.2) and elevation class interpolation (Sect. 6.3). All
three methods assume that G is L0 parameterized and can be
used for the basis of a conservative coupling. And since they
are all linear, they can all be represented by a (sparse) matrix,
which we will call M. The methods are extended to the L1
case in Sect. 6.4

6.1 Z interpolation

Z interpolation constructs a flux field f G on the interpola-
tion grid through direct application of the flux–elevation re-
lationship fi(z) derived in Sect. 3 for atmosphere grid cell
Ai . Supposing G is L0 parameterized, consider an interpola-
tion grid cell Gj , wholly contained in one atmosphere grid
cell Ai , with mean elevation zj . We would set the value of
that grid cell to f G

j = fi(zj ). If Gj intersects more than one
atmosphere grid cell, the same procedure is followed for each
atmosphere grid cell Ai it intersects – and the results are
summed together, area-weighted by |Gj ∩ Ai |.
We call this z interpolation. As long as standard interpo-

lation methods are used to construct fi(z), z interpolation
defines a linear function from f E to f G and can be rep-
resented by a matrix. An example of the result is shown in
Fig. 7a. In general, z interpolation produces SMB fields that
vary smoothly within each atmosphere grid cell but that con-
tain discontinuities between grid cells.

6.2 Bilinear interpolation

There is some concern that discontinuities created by z in-
terpolation could cause problems as an input to an ice flow
model. In that case, a bilinear interpolation step may be used
to create a smooth field, as in Lipscomb et al. (2013). This
scheme sets the value of interpolation grid cell Gj equal to
a linear combination of fi(z), fk(z), fl(z) and fm(z), where
atmosphere grid cells Ai , Ak , Al and Am are the four grid
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Fig. 7. Results of (a) z interpolation and (b) bilinear interpolation,
to develop a downscaled field on the ice grid from an elevation point
field. Bilinear interpolation eliminates the discontinuities present at
atmosphere grid cell boundaries. However, total SMB is changed,
particularly for localized events such as snowstorms, for example in
the northwest. This could introduce biases in the long-term evolu-
tion of the ice sheet, even though both schemes can be made to con-
serve mass and energy. This figure is for demonstration purposes
only. See Sects. 10 and 11 for thorough regridding examples.

cells with centers closest to the center of Gj (Fig. 8). Results
are shown in Fig. 7b.
Bilinear interpolation has an advantage over z interpola-

tion in that it produces smooth fields. However, bilinear in-
terpolation presents a number of problems:

– The fields it produces will have a significantly different
total mass than the fields produced by z interpolation.
Our experience with monthly SMB fields over Green-
land indicates that storms tend to leave large amounts
of snow in a few localized areas. Bilinear interpolation
tends to reduce the total amount of snowfall in these
cases, causing potentially significant differences in the
GCM model run.

Variations in total mass caused by the choice of inter-
polation procedure will not cause conservation prob-
lems: we make this clear in Sect. 7. However, an in-
terpolation scheme that produces a significantly differ-
ent mass from the apparent “intent” of the GCM could
cause biases. In particular, a scheme that makes snow-
storms smaller than the GCM “intended” would pro-
duce a negative bias in the equilibrium extent of the
ice sheet.

– It introduces significant numerical diffusion into the
system.

– TheA → E transformation derived with bilinear inter-
polation can introduce nonphysical artifacts (Sect. 12).

�

���� ����

���������

Fig. 8. Setup for bilinear interpolation. The value in an ice grid cell
(square) will be the sum of the values at the four nearest atmosphere
grid cell centers, weighted by �-longitude and �-latitude along the
axes.

– It is also not always clear how to extend bilinear in-
terpolation to the case of non-rectangular atmosphere
grids. This problem can also affect non-regular points
in mostly regular grids (e.g., at the poles of a latitude–
longitude grid).

6.3 Elevation class interpolation

One final choice for regridding is to define elevation classes
as they were originally formulated (Leung and Ghan, 1998).
In this approach, each atmosphere grid cell is grouped into
sub-regions based on elevation bands. For example, an at-
mosphere grid cell near the coast spanning elevations of
0m–600m might be grouped into sub-regions of 0m–200m,
200m–400m and 400m–600m. The grid E can then be
thought of as having irregularly shaped grid cells formed by
the intersection of atmosphere grid cell boundaries and ele-
vation contours (Fig. 9). Area-weighted remapping is used to
interpolate from the elevation grid to the atmosphere grid.
Elevation class interpolation is equivalent to a specialized

form of z interpolation, in which the 1-D function fi(z) (for
grid cell Ai) is interpolated as a discontinuous piecewise
constant function (Fig. 10), rather than a piecewise poly-
nomial (Fig. 4). Unless one expects significant discontinu-
ities in topography or the elevation–flux relationship, such a
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Fig. 9. Traditional elevation class schemes are equivalent to run-
ning the ice surface model on an L0 grid, where grid cell outlines
are created by the intersection of the atmosphere grid and elevation
contours. One such grid is shown in this figure. Note that grid cells
extend only as far as the ice sheet; the grey line shows the Greenland
coast.

zero-order interpolation scheme would be expected to give a
less accurate version of f G than a higher order scheme such
as z interpolation. Since we expect the elevation–flux rela-
tionship to be smooth with elevation, we recommend the use
of z interpolation over elevation class interpolation.

6.4 Interpolating to L1 grids

We have outlined methods for the interpolation E → G, as
long as G uses an L0 parameterization. The procedures need
to be modified for interpolation or ice grids using L1 param-
eterization. In a finite element mesh (“grid”), field values are
determined at mesh vertices and linearly interpolated within
each triangular element (Zienkiewicz et al., 2013). Any of
the interpolation methods above may be used to determine
the value of f G(x,y) at each vertex. Once vertex values have
been interpolated on the vertices of a finite element mesh, the
value of f G(x,y) at all other points is fully determined.

Fig. 10. Interpolated SMB function within one atmosphere grid cell
when using elevation classes. The resulting piecewise constant in-
terpolation is almost never preferable to the piecewise linear inter-
polation in Fig. 4. Traditional elevation class schemes are discour-
aged because they offer no benefit over first-order z interpolation.

7 Transformation: elevation to atmosphere grid

As shown in Fig. 2, a regrid step from the elevation to the
atmosphere grid is required on every GCM time step. Once
the modeler has chosen the transformation E → G, we show
here how to derive a transformation for E → A that is con-
sistent with it.
To derive this transformation, consider one GCM time

step, during which a flux field f E between the atmosphere
and ice surface is computed on the elevation grid. That
field will be regridded both to the interpolation and atmo-
sphere grids. Conservation requires that the resulting fields
are equivalent on A, i.e,

f A ≡A f G. (6)

If the transformation E → G derived in Sect. 6 is repre-
sented by the matrixM, then we can write f G =Mf E . Sub-
stituting into Eq. (6), we get the requirement

f A ≡A Mf E. (7)

Equivalence on A can be tested by conservatively remap-
ping both sides to A and then comparing (in this case, the
left-hand side is already on A, so no remapping is required
there). Denoting R as the matrix that conservatively regrids
from G to A, we have the requirement

f A = RMf E. (8)

If we treat this as a definition for the transformation E →
A, we have derived a transformation for E → A that is con-
sistent with the transformation we already chose for E → G.
In other words (Fig. 11): we will regrid from E to A

by first regridding from E to G (represented by the ma-
trix M) and then use area-weighted remapping from G to
A (represented by the matrix R). The GCM, which needs to
use the transformation E → A, does not need to know any-
thing about the ice grid used to derive that transformation. It
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Fig. 11. The transformation from elevation grid to atmosphere grid is derived by first interpolating to the ice grid (represented by matrix
M) and then using a conservative area-weighted remapping step to the atmosphere grid (matrix R). The two steps may be combined by
computing the matrix product RM. This construction ensures that a quantity computed on the elevation grid will have the same total mass
when regridded to the ice grid or atmosphere grid. The two transformations from the elevation grid to the ice and atmosphere grids are said
to be consistent.

just needs to know the final matrix RM, which can be pre-
computed via matrix multiplication.
We have derived a transformation for E → A that by def-

inition is consistent with a previously chosen transforma-
tion for E → G. Our approach differs from previous efforts,
which would start out with E → A and try to find a transfor-
mation for E → G that is consistent with it.

7.1 A basis for the elevation grid

Every vector space has basis functions, including the eleva-
tion grid E. Our choice for the transformation E → A con-
strains the basis functions we use on E. To find these basis
functions, we expand on the central idea in the previous sec-
tion, i.e., that we can determine properties of a field on the
elevation grid by regridding to the ice grid. In this case, we
define f E(x,y) to be equal to f G(x,y), where f G =Mf E .
In other words, we can evaluate f E(x,y) at a point by in-
terpolating f E to G and then evaluating f G(x,y). This def-
inition is consistent with our method for f A in the previous
section.
We now use this principle to obtain a formula for the basis

functions of E. Substituting into Eq. (1), we get

f E(x,y) = f G(x,y) =Mf E · g(x,y). (9)

Rewriting in indicial notation, using the commutative
property of multiplication, and swapping index letters, we
get

f E(x,y) = f E
i Mjigj (x,y). (10)

We can use this, along with Eq. (1), to determine the basis
functions for the elevation grid:

ei(x,y) = Mjigj (x,y) (11)

or, switching back to vector notation,

e(x,y) =MT g(x,y). (12)

Equivalently, the basis function ei(x,y) is the function
obtained if we set the f E

i = 1 and all other components of
f E = 0, regrid to the interpolation grid, and then examine
the resulting function f G(x,y).
In general, these basis functions will be not orthogonal.

Their exact form depends on choices made in choosing M,
i.e., vertical and horizontal interpolation choices, as well as
grid geometry issues. We have plotted some example basis
functions in Fig. 12.
Note that if elevation class interpolation is used (Sect. 6.3)

and G is the exchange grid, then our scheme reduces to a
traditional elevation class scheme, and basis functions will
represent constant-value sub-grid tiles, which are orthogonal.

7.2 Forward transformations: summary

We have now defined three of the five regridding transforma-
tions required by Fig. 2: E → G, G → A and E → A. We
call these the forward transformations because they are lin-
ear and can be represented by matrices. See Fig. 13 for a
diagram of how these transformations may be used to regrid
fields.
We defined these three transformations in a consistent

manner. We began by allowing the user choice in construct-
ing the transformation from the elevation to interpolation
grids, represented by matrix M: this makes sense because
users desire choice for E → G. We then noted that standard
area-weighted remapping, represented by matrix R, may be
used to regrid from the interpolation grid to the atmosphere
grid. From these two choices, transitivity requires that the
transformation from the elevation to atmosphere grid is rep-
resented by the matrix RM. Conservation is maintained be-
cause E → G and E → A are consistent with each other,
producing f G and f A that are equivalent on every grid cell
in A.
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Fig. 12. Unitless basis functions for the elevation grid E, constructed using 20 elevation points and z interpolation (the exchange grid was
used as the interpolation grid). The grey box represents one atmosphere grid cell on the west coast of Greenland, with the coastline shown as
black lines. White lines in the atmosphere grid cell represent elevation contours corresponding to each elevation point. The basis functions
corresponding to elevation points at 950m, 1150m and 1350m are shown. Note that basis functions overlap and are not orthogonal. Because
of the z interpolation, each basis function has maximum value at its corresponding elevation, but it has a non-zero support up to one elevation
point away.

Our choices for these transformations lead directly to a
well-defined set of basis functions for the grid E, examples
of which we plotted. Fields on this grid will be represented
in terms of these basis functions – for example, surface–
atmosphere fluxes and ice surface model state.

8 Reversing the transformations

We have defined three transformations so far, but Fig. 2 indi-
cates that five are necessary for full functioning of the cou-
pled system. We still need to derive appropriate procedures
for the “reverse transformations” A → E and G → E, indi-
cated in Fig. 13 as dotted lines. Because of the differences in
dimensionality between the three grids (Sect. 2.3), M and
RM are not invertible in a simple linear algebraic sense:
A → E is underdetermined and G → E is overdetermined.
Wemust still find ways to compute these transformations that
retain conservation over atmosphere grid cells.

8.1 Transformation: atmosphere to elevation grid

Suppose we have a flux field f A on the atmosphere grid A.
We wish to regrid it to an “equivalent” flux field f E on the
elevation gridE. In this case, f might represent precipitation
or downwelling radiation from the atmosphere.
The problem is underdetermined. Any solution for which

f A ≡A f E will be conservative. This is the same as requir-
ing that

RMf E = f A. (13)

Because of the many-to-one relationship between eleva-
tion and atmosphere grid cells, our intuition tells us that
f E may be constructed simply by repeating values of f A

within each atmosphere grid cell. This is physically self-
consistent. More precisely, if Ej ∈ Ai , then we would like
to set f E

j = f A
i . We define a simple linear transformation �

that does this: f E = �f A.
Surprisingly, this definition for A → E is only conserva-

tive in some cases. If RM computes each f A
i as a weighted

sum only of values f E
j where Ej ∈ Ai , then we say that RM

is a local transformation – it uses only data from “within”
an atmosphere grid cell to compute a value on that grid cell.
In that case, it is easy to prove conservation by showing that
RM�f A = f A (see Eq. 13). The weights involved in RM
do not matter, as long as they sum to 1 for each component
of f A.
Therefore, if RM is local, we can simply use � for our

transformation A → E. Even better, it is easy to show that
there will be no numerical dispersion in the round-trip trans-
formationE → A → E because�RM is the identity matrix.
The lack of dispersion on this round-trip is important because
it is computed every atmosphere time step.

8.2 Nonlocal RM

If RM is not local, then in general �f A and f A will not be
equivalent on A or even the entire ice sheet. We are forced to
trade off between the most physically self-consistent value
for f E = �f A vs. something that conserves. We can use �,
along with quadratic optimization, to guide us to such a com-
promise.
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We seek a vector f E such that

RMf E = f A. (14)

We also wish that vector to be as close as possible to our
intuition above. That is, we wish to minimize the quantity

||f E − �f A||2, (15)

where our L2 norm is weighted by the weight of each basis
function. That is, we use a weight vector w where

wi =
∫
∞

ei(x,y)dA. (16)

This is a sparse quadratic optimization problem with
equality constraints. A number of numerical packages can
solve it; we used GALAHAD (Gould et al., 2003). In our
tests, solution typically requires a fraction of a second on a
single core. This is so fast that we have found no need to
consider suboptimal solutions to this problem.
This procedure introduces some numerical dispersion into

the fully coupled system from nonlocal regridding opera-
tions; by numerical dispersion, we mean movement of mass
between adjacent atmosphere grid cells, thereby violating
our desired property of conservation with each atmosphere
grid cell. Considering the round-trip transformation E →
A → E, it is clear that this transformation is not local, both
because RM is not local, and because the quadratic program
set up for A → E will be nonlocal.

8.3 Practical issues for nonlocal RM

GCMs are well equipped to deal with sub-grid tiles, each one
occupying a fraction of the overall grid cell. The GCM will
typically implement E → A by computing a weighted sum
over sub-grid tiles in each grid cell, with weights based on
each tile’s fractional area. This capability is used to imple-
ment traditional elevation class schemes.
If the RM matrix is local, then by definition the value

on each atmosphere grid cell is a weighted sum of the ele-
vation points in that grid cell. This is compatible with ex-
isting GCM practice that assumes sub-grid tiles. To use the
methods in this paper, the computation of E → A inside the
GCM does not need to be replaced, it only needs to be fed
a new set of weights. Even though elevation points do not
have well-defined areas, the weight for elevation point j can
be thought of as the “fractional area” that an elevation point
contributes to its containing atmosphere grid cell. The GCM
can be coded as if traditional elevation classes were being
used, even if the user has chosen a more numerically accu-
rate form of vertical interpolation in the construction of the
M matrix.
Things get more complicated for the GCM if the RM ma-

trix is not local. Instead of using a simple set of weights,
the GCM will have to be multiplied by a general sparse ma-
trix RM when computing E → A. An MPI (Message Pass-
ing Interface) gather will be required to compute A → E.
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Fig. 13. The five grids used in the coupling problem, and transfor-
mations between them. The (linear) interpolation step M, from E

to G, is chosen by the user. The (linear) transformation R, from G

to A, is an area-weighted remapping step. These two fully constrain
the transformation from E to A as RM. If I is L0-parameterized,
thenG is the exchange grid betweenA and I , andX andX′ are area-
weighted remapping transformations. If I is L1-parameterized, then
G is equivalent to I , making X and X′ the identity. P is a diagonal
rescaling operation between A′ and A. Reverse transformations re-
quired by the coupled system are shown as dotted lines.

Finally, some GCMs use implicit schemes for ice surface–
atmosphere coupling (Best et al., 2004), requiring a matrix
inversion on every time step. If RM is nonlocal, then a large,
sparse, global matrix inversion will be required, rather than a
number of small, local inversions.
Because of the significant practical complications that

arise with the use of a nonlocal RM matrix, most users find
it simplest to use a local RM matrix if at all possible.

8.4 When is RM not local?

The use of a nonlocal RM transformation can be an added
burden to the GCM developer. It is therefore important to
delineate cases in which RM is not local.
For L1 ice grids, as used with a finite element ice flow

model, RM will be nonlocal: ice elements that straddle two
atmosphere grid cells will by necessity involve elevation
point values from two atmosphere grid cells. This will make
R slightly nonlocal.
Even for L0 grids,M could be nonlocal, depending on the

choice of interpolation schemes for E → G. Bilinear inter-
polation is inherently nonlocal, whereas the other interpola-
tion strategies mentioned above are local.
For L0 ice grids with a local interpolation scheme,RM can

be made local, as long as G was chosen to be the exchange
grid (see Sect. 4.4). In this case, M will be local – because
each exchange grid cell attains its value from elevation points
in just one atmosphere grid cell. R will be local as well, for
the same reason.
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8.5 Transformation: ice/interpolation to elevation grid

Suppose we have a flux field f G on the interpolation grid
G. We wish to regrid it to an “equivalent” flux field f E on
the elevation grid E. As before, we will set up a quadratic
optimization problem.
It would be nice if we could find f E such that Mf E =

f G. This will not usually be possible, since G has far more
degrees of freedom than E. Instead, we will minimize the
quantity

||Mf E − f G||2 (17)

while we maintain conservation on each atmosphere grid cell
(where R defines area-weighted remapping from G to A; see
Fig. 13):

RMf E = Rf G. (18)

This quadratic optimization problem may be solved with
the same methods as in Sect. 8.2. We weight components of
our L2 norm by the integral of each basis function in G.

9 Exchange grid or ice grid?

So far, we have defined our transformations in terms of the
interpolation grid G – which could be either the ice grid or
the exchange grid. But real ice flowmodels operate on the ice
grid, and transformations must ultimately transform to/from
that grid. If we have chosen G as the exchange grid, we need
to extend our transformations above to regrid to/from the ice
grid. We do this by using area-weighted remapping as neces-
sary between G and I .
More formally, we construct transformations for X : G →

I and X′ : I → G using area-weighted remapping. We can
then represent E → I as the matrix product XM. Similarly,
we can construct I → E by first computing f G = X′f I and
then using the reverse transformation G → E to obtain f E

(see Fig. 13).
Note that the transformationX : G → I is not conservative

on A. For this reason, the transformation E → I represented
by XM is not conservative on A either, although it is con-
servative overall: “mass” lost from one atmosphere grid cell
will be gained by neighboring cells. This will cause numer-
ical dispersion when these transformations are used in the
fully coupled system (Fig. 2).
Assuming the ice grid is L0 parameterized, we will now

address the practical issue faced by the user, namely whether
to choose the exchange grid or ice grid as G. If one uses the
exchange grid forG in conjunction with a local vertical inter-
polation scheme, then the RM matrix will be local. This has
a number of advantages. It eases implementation (Sect. 8.3).
There will be no numerical dispersion for the transformation
E → A, used every atmosphere time step. The reverse trans-
formation A → E, also used every atmosphere time step,

will be trivial. However, there will be numerical dispersion
for the transformation E → I , which is used once every ice
coupling time step.
If one directly uses the ice grid for G, then the RM ma-

trix will not be local, producing numerical dispersion for the
transformation E → A and complicating the reverse trans-
formation A → E. However, there will be no numerical dis-
persion for the transformation E → I .
On balance, we recommend keeping the RM matrix local

if possible. Not only does this simplify implementation, it
moves unavoidable numerical dispersion away from the at-
mosphere time step to the less frequent ice coupling time
step.

9.1 Exchange grids for finite elements

The discussion in Sect. 9 assumes an L0 ice grid. The results
can be extended to L1 or higher order parameterizations: fi-
nite element ice models, for example. In this case, the con-
cept of exchange grid is not meaningful, since exchange grids
are by definition L0.
Instead of the exchange grid, one can choose G to be just

about any L0 grid, of resolution at least as high as the ice
mesh, where grid cells do not cross atmosphere cell bound-
aries: we will call this a generalized exchange grid. The
user would then need to develop an appropriate conserva-
tive transformation for G → I , whereas the transformation
for I → G would remain an area-weighted remapping (see
Appendix C). Details of this scheme for a particular ice mesh
parameterization are left to the reader.
As in Sect. 9, the transformationG → I would cause some

numerical dispersion, due to the geometry of the ice mesh.
Additional dispersion would be introduced because of mis-
match between the L0 grid G and the higher order mesh I

– although this could be reduced by making G finer. The
trade-offs of choosing G to be a generalized exchange grid
vs. the ice grid are the same as in Sect. 9: numerical disper-
sion is introduced in the ice coupling time step, in exchange
for simplifying implementation and eliminating dispersion in
the atmosphere time step.

10 Regridding examples: local RM

Having shown how to compute all five required regridding
transformations, we now demonstrate them working within
a realistic GCM context. We set up a test using the GISS
2◦ × 212

◦ atmosphere grid (Schmidt et al., 2006), overlap-
ping with the SeaRISE 5 km L0 grid (Bindschadler et al.,
2013) and 40 elevation points, spaced every 100m from 0m
to 4000m.We chose the exchange grid asG (see Appendix A
and Fig. 3 for notation conventions). We ran GISSModelE in
this configuration, using fixed sea surface temperatures cor-
responding to the years 1996–2005. The ice surface model
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(a) (b) (c)

Fig. 14. July SMB computed by ModelE on the elevation grid E (a), and regridded to the atmosphere grid A via the exchange grid (b) or to
the ice grid I using z interpolation (c). For plotting purposes, each elevation point in (a) is assigned to a nearby region of similar elevation;
the value of the elevation point is then plotted in its corresponding region. Bold numbers on the color scale indicate the extreme values of the
plot. Elevation contours are plotted.

was run on the elevation grid, producing monthly averages
of SMB over Greenland, which we label f E (Fig. 14a).
As expected, the broad pattern shows strong melting in

narrow bands at low elevations, along with weak accumu-
lation at high elevations. Atmosphere grid cell boundaries
are prominent because precipitation – the primary source
of positive SMB – is not downscaled to sub-grid resolu-
tion (Leung and Ghan, 1998). The small oscillations at high
elevation are artifacts introduced by ModelE’s ice surface
model.

10.1 Example: elevation to atmosphere grid

Figure 14b shows the original field f E computed on the
elevation grid and regridded to the atmosphere grid A, via
the transformation f A = RMf E . Note how low-elevation
ablation regions become broader and weaker (compared to
Fig. 14a), whereas the interior of the ice sheet remains about
the same. This demonstrates the benefits obtained through
the use of elevation points, as compared with running the ice
surface model on the atmosphere grid (van den Broeke et al.,
2008).
By definition, the transformation RM is conservative on

A: we can evaluate conservation properties of other transfor-
mations by comparing to Fig. 14b.

10.2 Example: elevation to ice grid

Figure 14c shows the original field f E regridded to I , via
f I = XMf E using z interpolation for M. This plot looks

like a smoothed version of Fig. 14a. Atmosphere grid cell
boundaries are still visible because z interpolation is local.
The transformationX : G → I (Fig. 13) introduces a small

amount of nonlocality. And although it is conservative over
the ice sheet in general, it is not conservative over A. This
can be seen (Fig. 15) by regridding f I to A and comparing
with the results of Fig. 14b. This plot quantifies the amount
of numerical dispersion the simulation will encounter every
month when preparing SMB input for the ice model. This
dispersion is caused by ice grid cells that overlap more than
one atmosphere grid cell.
In most areas, numerical dispersion is low, less than 1%.

That is because most atmosphere grid cells are overlapped by
many ice grid cells, with only a few lying on an atmosphere
grid cell boundary. However, numerical dispersion can be
significant for atmosphere grid cells that just nick the edge
of the ice sheet, where a high proportion of their overlapping
ice grid cells also overlap with a neighboring atmosphere grid
cell.
The numerical dispersion encountered here is inherent in

the regridding problem itself, rather than our approach to that
problem. Short of using an ice grid whose grid cells do not
overlap atmosphere grid cells, we see no obvious way to
eliminate this issue. However, we do not believe it to be a
serious problem: the total area of ice sheet affected by it will
be small.
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Fig. 15. Difference in July SMB obtained with E → A, using two
choices for the interpolation grid G: either the exchange grid or the
ice grid. Differences (exchange minus ice) are due to ice grid cells
that overlap more than one atmosphere grid cell.

It is important to point out that although X′ is not (quite)
conservative over A, it is still conservative over the ice sheet
in general. We have verified this numerically in our exam-
ples.

10.3 Example: ice to elevation grid

Since we have not yet developed the surface boundary con-
dition described in Sect. 2.1, we do not have realistic fields
on I to try regridding to E. We will therefore test I → E at
this point using f I = XMf E as input.
We test the transformation in two steps. First, we test

G → E using f G =Mf E as input. Then, we test I → E

using f I = XMf E as input. This allows us to evaluate the
G → E transformation separately from confounding disper-
sion factors involved in G → I .
We computed f ′E = [G → E](f G) where f G =Mf E .

Theoretically, f ′E and f E should be equal. The conservation
property imposed by the quadratic program held: we found
that f ′E ≡A f G ≡A f E to machine precision. However, we
found measurable differences between f ′E and f E (Fig. 16).
Although differences are small in most cases, one area has a
difference of more than 8 out of 37mmday−1, resulting in
no more than one digit of precision. Differences tend to be

Fig. 16. Example of numerical dispersion caused by an ill-posed
quadratic optimization problem. July SMB on elevation grid E was
regridded to the exchange grid. The reverse transformation was then
used to recover the original SMB on E. Plot shows the difference
between the result and the original. In theory, the two should be
exactly the same. Although mass is conserved, differences appear
because the associated quadratic optimization problem is underde-
termined in some areas.

greatest in sparsely populated atmosphere grid cells on the
edge of the ice sheet. We conclude that the answer to the
quadratic program posed in Sect. 8.5 is poorly constrained.
A different numerical solver than the one we used might in
theory result in a better match between f ′E and f E .
But this is not a problem in practice: the goal of G → E

is to obtain a physically plausible field on E with the correct
conservation properties. The preliminary tests presented in
this section are consistent with that goal.
The transformation I → E is constructed by transforming

I → G → E (Sect. 9). We used this to compute f ′E = [I →
E](f I ) where f I = XMf E . The conservation property im-
posed by the quadratic program held: we found that f ′E was
equivalent to f I on A to machine precision.
However, differences between f ′E and f E are even

greater in this case: compare Fig. 17 to Fig. 16. This is be-
cause the transformation X : G → I is not conservative on
A. The end result of transforming E → G → I → G → E

will produce an f ′E that is significantly different from the
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Fig. 17. Example of numerical dispersion in the transformation
I → E, caused by ice grid cells that overlap more than one atmo-
sphere grid cell. July SMB on elevation grid E was regridded to the
ice grid I . The reverse transformation was then used to recover the
original SMB on E. Plot shows the difference between the result
and the original. Although mass is conserved, differences are due
mainly to ice grid cells that overlap more than one atmosphere grid
cell, making it impossible to recover the exact original SMB. The
same color scale is used as in Fig. 16.

original f E . Differences are greatest for elevation points near
an atmosphere grid cell boundary.

11 Regridding examples: almost local RM matrix

In Sects. 8.3 and 9, we discussed the trade-offs between using
the ice vs. exchange grid for the interpolation gridG. Having
shown in Sect. 10 an example of our transformations using
the exchange grid as G, we now show how things change if
the ice grid is chosen for G by re-running the above exam-
ples. In this case, the RMmatrix will be mostly local, except
for nonlocality caused by ice grid cells that intersect more
than one atmosphere grid cell. We say that RM is almost lo-
cal.
In general, differences in results here vs. those in Sect. 10

are insignificant. However, the choice of I as interpolation
grid does change the basis functions used for E, yielding a
system in which the transformation E → I is now conserva-
tive over A.

With a change in E → I , the transformation E → A is
also changed. We calculated the difference between f A com-
puted using this method vs. f A computed in Fig. 14b: this
difference is exactly the same as Fig. 15. In practice, this dif-
ference does not present a real problem: it is impossible to
say which version of f A is more “correct.” Both maintain
conservation over the ice sheet. As predicted in Sect. 9, grid-
related dispersion in I → E is eliminated. Thus, the grid-
related “errors” demonstrated in Fig. 17 are eliminated.
Finally, the use of a nonlocal RM matrix requires use of

the algorithm described in Sect. 8.1 for A → E. Fig. 18a
shows a July precipitation field pA produced by ModelE, for
the same month as the SMB fields above. ModelE currently
does not downscale precipitation to sub-grid resolution (Le-
ung and Ghan, 1998): it therefore yields a precipitation field
on A.
We then computed pE = [E → A](pA), which could

serve as input to the land surface model. Recall that �pA

is the most physically self-consistent value for pE , but that
we choose a different value for pE in order to maintain con-
servation.
Figure. 18b shows the difference between the two, pE −

�pA. Differences are typically in the range [−0.1,0.1]
(about 2%). They tend to be relatively constant within each
atmosphere grid cell and show no discernible pattern be-
tween grid cells. In particular, differences are not related
to elevation. Any errors introduced by this scheme will be
dwarfed by other precipitation errors in the model.
In this example, we used an L0 ice grid to generate a pro-

totypical almost-local RM matrix. We expect similar results
when using an L1 ice grid because the nonlocality in the L0
case was caused by a small number of ice grid cells that over-
lap more than one atmosphere grid cell. A similar situation
exists with any type of higher order mesh.
We conclude by considering, in the case of an L0 ice grid,

whether I orG is a better choice for the interpolation grid. In
many cases, the use of a nonlocal RMmatrix requires signif-
icantly more effort in GCM model development. However,
our experience shows fewer “surprises” in the transforma-
tions when using I as the interpolation grid. In the end, we
expect either choice to yield serviceable results that conserve
mass and energy in the regridding.

12 Regridding examples: nonlocal RM matrix

In the above sections, we considered how the transformations
in this paper work when the RM matrix is local or almost lo-
cal. Here, we consider the case in which RM is significantly
nonlocal – for example, if bilinear interpolation were used
for the transformation E → I . We would expect the “correc-
tions” and dispersive properties that appear in the case of an
almost-local RM matrix to be significantly larger.
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(a) (b)

Fig. 18.Nonphysical changes in precipitation field introduced byA → E in order to ensure conservation. Panel (a) shows a July precipitation
field computed by ModelE on the atmosphere grid. This field was regridded to the elevation grid E using an almost-local RM matrix for
E → A. It produced a slightly different result than the physically intuitive procedure of “repeating” precipitation values for elevation points
in each atmosphere grid cell — which is not conservative. Those differences are plotted in panel (b).

We encountered numerous problems when we attempted
the use of a significantly nonlocal RM matrix, constructed
using bilinear interpolation for E → I . Most significantly,
the A → E transformation produced elevation points of neg-
ative precipitation when regridding a typical precipitation
field over Greenland (Fig. 19) – an artifact that we believe
would be unacceptable to the majority of modelers. It might
be possible to find a solution to this problems. In the mean-
time, it is simpler to avoid nonlocal interpolation schemes
such as bilinear interpolation.

13 Independent elevation grid

The elevation grid E is constructed by adding elevation
points to each grid cell of an underlying horizontal grid,
which we will denote E0. So far we have assumed that
E0 = A, meaning the elevation grid E is derived from the
atmosphere grid A. Some GCMs use a horizontal layout for
E that is not related toA. In this section, we extend our meth-
ods to address that case.
The first problem is a choice of the interpolation grid G.

The idea of locality in RM no longer makes sense when
E0 �= A. For that reason, G = I is the right choice, X and
X′ will both become identity transformations. The transfor-
mation E → I does not need to change, nor does I → A:

none of these rely on any specific relationship between E0

and A. Similarly, E → A = RM can be computed as before.
The only other thing that must change is the construction

of A → E: the intuitive definition for � (Sect. 8.1) no longer
makes sense. Instead, we construct an intuitive regridding
operation F̄ as follows. Given f A, first regrid to f E0 using
area-weighted remapping. Then convert f E0 to f E using a
“repeat” operator akin to � above. We can now apply the
quadratic programming–based regrid operator developed in
Sect. 8.2, using F̄ instead of � in Eq. (15).
The use of E0 �= A introduces numerical dispersion into

the system. This can be seen by evaluating the locality of the
round-trip transformation E → A → E. This numerical dis-
persion is a fundamental consequence of the use of a different
underlying grid for the ice surface and atmosphere models.

14 Regridding in elevation space

We have tacitly assumed so far that there is one single fixed
elevation grid E with one fixed set of basis functions. This is
not the case in a changing climate, since the basis functions
used for E depend on ice elevation and extent (Sect. 7.1).
The user might wish to explicitly move elevation points as
well – for example, to track a mountain glacier as it moves up
or down. When the vector space E changes, the ice surface
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Fig. 19. Implausible precipitation field produced by A → E when
bilinear interpolation is used. July precipitation (Fig. 18a) was re-
gridded to the elevation grid E using the A → E reverse transfor-
mation, where the matrix for E → A is constructed using (nonlo-
cal) bilinear interpolation. Note the unphysical artifacts (negative
precipitation) for some elevation points.

model state must be regridded from the old elevation grid to
the new elevation grid. We address that issue in this section.
Assume two elevation grids, an “old” grid E and a “new”

grid F . We wish to conservatively regrid a field f E to f F . In
this case, f will not be a flux variable, but rather a conserved
state variable of the ice surface model: snow depth, water
fraction, etc.
This problem can be approached by examining the system

of grids and transformations available in Fig. 13 when one
has multiple elevation grids (see Fig. 20). By “following the
arrows,” the most direct way to transform f E to f F is to first
regrid to the interpolation grid, computing f G =MEf E .
Then use the procedure in Sect. 8.5 to compute f F . Because
all these transformations are conservative on the atmosphere
grid A, the end result f F will be equivalent to f E on A.

14.1 Conserved model state

In previous sections, f represented fluxes between models,
which are conserved. In this section, f is a model state vari-
able of the ice surface model. In order for this regridding
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Fig. 20. When ice extent, ice topography or elevation points
change, the basis functions for the elevation grid E change along
with it. Ice surface model state, which exists on E, must be regrid-
ded to the new set of basis functions. Shown is a grid system that
can serve as a map for this regridding: E is the old elevation grid,
F is the new one and G is the interpolation grid (same for old and
new). Ice surface model state may be regridded from E to F by first
regriddingE → G, thenG → F . Note that this diagram is a simpli-
fied version of Fig. 13 in which two different elevation grids have
been accounted for.

procedure to be physically meaningful, the model state must
be expressed in terms of conserved quantities.
Not all ice surface models are formulated in terms of con-

served quantities. In this case, the regridding procedures may
still be used, as long as the ice flow model can be converted
to/from a form that is expressed in conserved quantities. For
example, an ice surface model might track the temperature,
mass and water fraction of the top layer of ice. Temperature
is not conserved, so this regridding procedure cannot be used
directly. However, model state can be converted to enthalpy
and mass alone (Aschwanden et al., 2012). These quantities
are conserved and can be correctly regridded with conserva-
tive transformations. After regridding to the new elevation
grid, model state can then be converted back to the original
nonconserved parameterization.

14.2 When to regrid

Regridding in elevation space is not just required if one
changes elevation points, but also any time that the transfor-
mation M for E → I changes. Any time that happens, the
regridding described in Sect. 14 should be used. Relevant
events that changeM include

1. changes in ice topography: for example, as an ice sheet
inflates or deflates due to changing climate; when an
ice grid cell changes elevation, the weights inM used
to compute it will change; this change will either be
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Fig. 21. The Glint2 workflow used to compute the regridding opera-
tions required by the fully coupled system (Fig. 2). Glint2 produces
regridding operations based on a variety of factors: atmosphere and
ice grid geometry, ice topography and extent, and levels chosen for
the elevation grid. Glint2 must recompute the operations when any
of these factors changes.

continuous (as in z interpolation) or will jump at cer-
tain thresholds (as in elevation class interpolation).

2. changes in ice sheet extent, as an ice sheet grows or
melts; for example, if an ice sheet shrinks, then some
ice grid cells will no longer participate in the regrid-
ding process, and their associated coefficients in M
will turn to zero.

3. changes in the elevation or number of elevation points.

15 Glint2 coupling library

Here we describe Glint2, an open-source implementation
of the transformations developed in this paper. Glint2 is a
GCM–ice flow model coupling library whose core function
is to compute the five transformations required for a coupled
GCM–ice flow model system (Fig. 2). These transformations
are computed based on a variety of factors: atmosphere and
ice grid geometry, ice topography and extent, and elevation
levels chosen for the elevation grid (Fig. 21).
Glint2 does not just compute these transformations and

provide them as a library, it also provides an application pro-
gramming interface (API) for GCMs to use to couple with
ice flow models. As a realization of the mediator design pat-
tern (Gamma et al., 1994), Glint2 is able to shield the GCM
from a number of details of the coupling. Although it uses a
different codebase, Glint2 has the same purpose as GLINT
(Glimmer Interface; Rutt et al., 2009), namely to build a
coupling library between GCM and ice models. The GCM
programmer who wishes to couple their GCM with an ice
model need only do the following:

1. implement an elevation points scheme, and move the
ice surface model to the elevation grid.

2. request the RM matrix from Glint2, and then apply
it as needed during normal model run; this might be
more complex than it sounds, depending on the GCM’s

system of domain decomposition; storage and applica-
tion of the RM matrix is simplified if the GCM author
knows in advance that it is local.

3. ask Glint2 to regrid ice surface model inputs from
A → E as needed; this step is only required if RM
is nonlocal; otherwise, the transformation � is simple
enough for the GCM to do on its own.

4. accumulate ice surface fluxes on the elevation grid, and
pass them to Glint2 every coupling time step.

5. apply fields returned from the ice flow model via
Glint2; these fields are returned on the elevation and
atmosphere grids as appropriate, eliminating the need
for the GCM to regrid them.

Note that the GCM does not need to know anything about
the ice grid or ice flow model. Interface code is added to
Glint2, not the GCM, for every ice flow model one wishes
to support. Over time, we expect the number of supported
GCMs and ice flow models to increase, according to re-
searcher demand. This structure is useful because it will give
practitioners a way to try different ice models with a GCM
fairly easily.

15.1 Adoption issues

We expect that Glint2 could be useful to anyone with a
GCM who wishes to couple it with an ice flow model. How-
ever, many GCMs have centralized regridding strategies that
Glint2 does not really fit into. We do not believe this should
be a significant barrier to adoption for two reasons:

– In most cases, the elevation grid will have unusual
“customized” basis functions (Fig. 12). Centralized
GCM regridding schemes are not typically equipped
to regrid to/from the elevation grid. Nor are they
equipped with the algorithms required for the reverse
transformations.

– Glint2 hides all details of the ice grid from the GCM,
communicating with the GCMwith fields on the atmo-
sphere and elevation grids. Because all ice grid-related
issues are encapsulated in Glint2, it should not matter
to the GCM how or even whether regridding to/from
the ice grid is accomplished. As far as the GCM is con-
cerned, the ice flow model might as well be running on
the elevation grid.

Another barrier to adoption is the fact that Glint2 is pack-
aged as a library. Many GCM projects are reluctant to add ad-
ditional library dependencies, due to the complications such
dependencies introduce in the build process. We do not be-
lieve this should be a serious problem because coupling with
an ice model already involves the use of outside libraries.
With or without Glint2, the GCM must still manage addi-
tional external dependencies.
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15.2 Availability

Glint2 is written C++ and designed to couple with GCMs and
ice flow models written in Fortran 90/2003, C or C++. It also
comes with a Python interface, making it easy to test and plot
sample regridding problems before incorporating a coupling
strategy into a GCM. Glint2 source and documentation are
available for download (Fischer, 2013).

16 Discussion and conclusions

This paper focuses on a system of conservative regridding
strategies needed to support tight two-way coupling between
a GCM and an ice flow model in the context of elevation-
based downscaling in the GCM. Past efforts at one-way cou-
pling have produced downscaling methods that provide SMB
fields that match remarkably well with observations and with
regional models. However, these efforts used an inconsistent
set of transformations, which would result in nonconserva-
tion of mass and energy in a two-way coupled system.
In order to achieve consistency, we began by recognizing

the elevation grid as an integral part of the coupling problem,
along with the atmosphere and ice grids that had previously
been considered. We observed that the ice surface model runs
on the elevation grid and that the downscaling step (from el-
evation to ice grid) is actually another form of regridding.
We have therefore transformed a coupling problem involv-
ing two models and two grids into one with three models and
three grids.
We analyzed the regridding transformations needed in

a typical two-way coupling and determined that five such
transformations are required: three “forward” transforma-
tions and two “reverse” transformations. We then set out to
develop a consistent implementation for these five transfor-
mations, starting with the forward transformations.
We observe that conservation of mass and energy requires

consistency between the transformations from the elevation
to ice grid (E → I ) and elevation to atmosphere grid (E →
A). We achieve consistency by allowing the user to choose
E → I and then constructing a transformation for E → A

that is consistent with the user’s choice. This is a good ap-
proach because it allows the user freedom in choosing a
downscaling transformation for E → I . Our transformations
imply a set of basis functions for the elevation grid, which
we demonstrated in plots.

We then addressed the reverse transformations, using the
notions of consistency developed in the previous sections.
Problems of underdeterminism and overdeterminism, caused
by mismatches in dimensionality between grids, are ad-
dressed by using quadratic optimization for these transfor-
mations.
The result is a set of five conservative transformations

needed to support a two-way coupling of GCMs and ice
models. We defined a property of our E → A transformation
called locality. We showed a number of theoretical and prac-
tical benefits if that transformation is local. We implemented
all five transformations and demonstrated that they work in
practice on realistic input fields.
Although three of those five transformations are well-

known in the literature (Ramshaw, 1985; Lipscomb et al.,
2013), the reverse transformations are new. Most impor-
tantly, we showed how to choose a set of grids, basis func-
tions and regridding schemes so that all five regridding op-
erations are conservative. Note that the elevation grid uses
a “custom” set of basis functions. This is a significant step
beyond past efforts that have focused on conservative regrid-
ding to L0 pre-chosen grids (Ramshaw, 1985).
Our downscaling transformation from the elevation to ice

grids is taken from previous one-way studies (Lipscomb
et al., 2013). Our results “look” almost identical, except for
subtle differences in the other related transformations needed
to ensure conservation. We therefore provide practitioners
with a way to bring already proven downscaling techniques
into a conservative two-way coupled setting.
We went on to package these transformations in Glint2,

a coupling library. As a piece of software, Glint2 serves as
a mediator (Gamma et al., 1994) between the GCM and ice
flow model, insulating each from the specific details of the
other. This will simplify the coupling of GCMs with multiple
ice models, as needed to support future research.
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Appendix A

Mathematical conventions

We use the following mathematical conventions in this paper:
1. A “grid” or “parameterization” is a set of basis func-

tions that may be linearly combined to produce func-
tions over a 2-D domain. Grids are denoted by non-
bold capital letters: A for the atmosphere grid, I for
the ice grid,E for the elevation grid andG for an inter-
polation grid. Basis functions are denoted by non-bold
lower case letters: ai(x,y) is a basis function for A. At
times, the set of basis functions may be represented as
a bold-face vector: a(x,y) = [a1(x,y), . . . ,an(x,y)].

2. Subscripts are used to indicate elements of a vector. If
f is a vector, then fi is the value of the ith index of f .

3. IfA is an L0-parameterized grid andAi one of the grid
cells, then |Ai | is the area of that grid cell.

4. Vector values are indicated in boldface, scalars in non-
bold.

5. Vectors are used to construct a 2-D function (“field”)
within the context of a particular grid. For example,
suppose that the atmosphere gridA uses the basis func-
tions a(x,y) = [a1(x,y), . . . ,an(x,y)], and we have
an n-dimensional vector f A with components f A

i .
That vector represents the function:

f A(x,y) = f A · a(x,y). (A1)

6. Since this paper is about regridding, we need to talk
about the “same” field in different grids. Superscripts
are used for this: if the vector f I denotes the vector
representing a field on the ice grid, then f A denotes a
vector representing the “same” field on the atmosphere
grid.

7. Similarly, f A(x,y) denotes the function implied by
the vector f A and the vector of basis functions a(x,y).

8. We use arrows to talk about transformations between
grids, which transform fields on one grid to fields on
another. Since fields on a grid are represented by vec-
tors, the transformations are functions from one vector
space to another. For example, E → A can be read as
“the transformation from the elevation grid to the at-
mosphere grid.” Many but not all of these transforma-
tions are linear and can be represented by matrices.

9. If a transformation is nonlinear, we use functional no-
tation with square brackets to denote an application of
that transformation: f E = [A → E](f A).

10. We use indicial notation in one place.

11. See Fig. 3 for definition of the symbols used through-
out the text.

Appendix B

Integration of L0 grid

Suppose we have a region B and an L0-parameterized grid
G with grid cells G1, . . . ,Gn. The basis function gi(x,y) is
equal to 1 inside of grid cell Gi and zero elsewhere. We wish
to compute∫

B

gi(x,y)dA = |B ∩ Gi |. (B1)

This is simply equal to the area of intersection of B and
Gi .
If we wish to regrid to an L0 grid A, we must do the above

computation multiple times, setting B to every grid cellAj ∈
A. This creates an overlap matrix L where Lij is equal to the
overlap between source grid cell Gi and destination grid cell
Aj .
The overlap matrix is directly related to the exchange grid

between G and A: every non-zero element of Lij is equal to
the area of one grid cell in the exchange grid. The exchange
grid may be computed as described in Appendix D. The Sur-
veyor’s Formula (Braden, 1986), a special case of Green’s
Theorem, can then be used to compute the overlap matrix
from the exchange grid.

Appendix C

Integration of L1 grid

Appendix B shows how to integrate over areas on an L0 ice
grid. But if an L1 finite element ice flow model is used, one
will need to do this over an L1 ice grid. Here, we show how to
integrate L1 finite element basis functions over an arbitrary
area B.
An L1 finite element mesh is made up of triangular ele-

ments, where the value of a function is defined at the vertices
of the triangles. Values inside each element are interpolated
based on the values at the vertices.
Each basis function Ni(x,y) in a finite element mesh cor-

responds to a vertex (Zienkiewicz et al., 2013). This function
is non-zero only in the triangular elements in which the ver-
tex participates. We define a sub-basis function Nij (x,y) to
be equal to Ni(x,y) within triangular element j , and zero
elsewhere. Thus we define

Ni(x,y) =
∑
j

Nij (x,y). (C1)

Within its element, a sub-basis function takes the shape of
a plane, having the functional form

Nij (x,y) = a + bx + cy. (C2)

The coefficients a, b and c are functions of the locations
of the vertices, not of the values assigned to those vertices.
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Using the techniques from Appendix D, one can compute the
polygon βj as the intersection between element j and region
B. Green’s Theorem may then be used to compute
∫

βj

Nij (x,y)dA. (C3)

We can then apply our definition of sub-basis functions to
achieve our goal:
∫

B

Ni(x,y)dA =
∑
j

∫

βj

Nij (x,y)dA. (C4)

This section has provided just an outline of the process.
The algebra can become complex at times, and a symbolic
computation system such asMaxima can be useful. But in the
end, integration of a vector f I over an area B is computed as
a linear combination of the elements of f I , just as with L0
grids.

Appendix D

Computing the exchange grid

Appendices B and C can be applied repeatedly to compute
conservative regridding matrices from an L0 or L1 grid to an
L0 destination grid. Both procedures assume a way to com-
pute polygonal intersections between two sets of polygons –
also known as an exchange grid (Balaji et al., 2006).
This task is simple in principle, using modern computa-

tional geometry packages such as CGAL (2013). If A and G

are two sets of polygons, we explicitly construct each poly-
gon in A and G and then compute pairwise intersections be-
tween the two sets (Chin and Wang, 1983). This algorithm
provides not just integration formulas, but also the actual
polygonal outlines of the exchange grid.

If an appropriately robust polygon intersection algorithm
is used, our procedure can deal with nonconvex polygons and
other possible irregularities. This is not just a theoretical is-
sue: latitude–longitude grid cells commonly used in GCMs
are not convex in spherical or planar geometry. In other cases,
practitioners might wish to use grid cells consisting of mul-
tiple disjoint polygons.
With issues of polygonal intersection taken care of by pre-

packaged algorithms, the main challenge here is to find those
intersections in a scalable manner. The naive algorithm is to
write a nested loop, requiring |A|× |G| iterations. This algo-
rithm, with O(n2) complexity, takes too long even on grids
commonly used by GCMs and ice flow models today. Most
of the “intersections” of Ai andGj will result in nothing, be-
cause Ai and Gj are far from each other and obviously do
not intersect.
This problem is solved by using an R-tree (Guttman, 1984)

to avoid having to consider intersections of grid cells that are
far away from each other. The procedure works as follows:
first load all the grid cell outlines of A into the R-tree, in-
dexed by their bounding rectangles. Then loop through each
grid cell in G, checking the R-tree for any grid cells in A that
it might intersect with. The polygon intersection algorithm
is run on each of those grid cell pairs to determine the exact
outlines of the exchange grid cells. Running time is cut down
to a more reasonable O(n logn).
Past algorithms exist to compute regridding matrices by

integrating functions around each cell in an exchange grid
(Ramshaw, 1985; Dukowicz and Kodis, 1987; Jones, 1999).
These algorithms were originally presented in terms of
quadrilateral meshes, but they can also be applied to arbi-
trary meshes. However, they never explicitly compute the ex-
change grid polygonal outlines. By explicitly computing an
exchange grid and then using that to produce the regridding
matrix, we have presented here a procedure that is conceptu-
ally simpler, possibly more flexible, but almost certainly not
faster to run.
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