
63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved. 

IAC-12- B2.2.5          Page 1 of 7 

IAC-12- B2.2.5 

SCAN TESTBED SOFTWARE DEVELOPMENT AND LESSONS LEARNED 

Thomas J. Kacpura1

NASA Glenn Research Center, U.S.A, Thomas.J.Kacpura@nasa.gov

Denise M. Varga2

NASA Glenn Research Center, U.S.A., Denise.M.Varga@nasa.gov

NASA has developed an experimental flight payload, the Space Communication and Navigation (SCaN) Testbed, 
to investigate software defined radio (SDR) communications, networking, and navigation technologies, and is 
operational in the space environment. The payload consists of three software defined radios each compliant to 
NASA’s Space Telecommunications Radio System Architecture, a common architecture standard for space software 
defined radios. These software defined radios are new technology developments for NASA and industry partners. 
Launched in July 2012, the payload is externally mounted to the International Space Station truss for conducting 
experiments representative of future mission capability. Experiment operations will include in-flight reconfiguration 
of the SDR waveform functions and payload networking software. The flight system will communicate with 
NASA’s orbiting satellite relay network, the Tracking and Data Relay Satellite System (TDRSS) at both S-band and 
Ka-band and direct to the ground to any Earth-based compatible S-band ground station. The system will be available 
for experiments by industry, academia, and other government agencies to participate in the technology assessments 
and standards advancements.  This paper focuses on software lessons learned through development, integration and 
testing as related to the avionics processor system, and the software required to command, control, monitor, and 
interact with the SDRs, as well as the other communication payload elements. 

I. INTRODUCTION 
HE National Aeronautics and Space Administration 
(NASA) Space Communications and Navigation 

(SCaN) Testbed Project is studying the development, 
testing, and operation of software defined radios (SDRs) 
and their associated applications for future use by 
NASA missions. To that end, the NASA Glenn 
Research Center (GRC) has assembled and launched a 
flight testbed which consists of reconfigurable and 
reprogrammable SDRs operating at L-band, S-band, and 
Ka-band, along with the required radio frequency 
(RF)/antenna systems necessary for communications. 
The three SDRs were built by Jet Propulsion Laboratory 
(JPL)/Cincinnati Electronics, General Dynamics 
Advanced Information Systems, and the Harris 
Corporation. The JPL SDR can receive Global 
Positioning Satellite (GPS) signals while simultaneously 
operating as an S-band transceiver, and is a heritage 
design based on the Electra software defined radio. The 
General Dynamics SDR is capable of full-duplex S-
band communications, and leverages GD’s experience 
with the 4th generation Tracking Data and Relay 
Satellite System (TDRSS) transponder. Harris 
Corporation provided a full-duplex Ka-band SDR, 
which is the first NASA Ka-band SDR.  All three SDRs 
are compatible with TDRSS. 

The end use of the on-orbit, adaptable, Software 
Defined Radio (SDR)/Space Telecommunications Radio 
System (STRS)-based testbed facility is to conduct a 
suite of experiments on the International Space Station 

(ISS) to advance technologies, reduce risk, and enable 
future mission capabilities. The SCAN Testbed will 
provide NASA, industry, other Government agencies, 
and academic partners the opportunity to develop and 
field communications, navigation, and networking 
technologies in the laboratory and space environment 
based on reconfigurable SDR platforms and the STRS 
Architecture.  An example of this might be a lunar rover 
communicating with a home base on the moon, and the 
home base relaying communications back to earth. 

The SDRs are a new technology for NASA, and the 
support infrastructure they require is different from 
legacy, fixed function radios.  SDRs offer the ability to 
reconfigure on-orbit communications by changing 
software for new waveforms and operating systems to 
enable new capabilities or fix any anomalies, which was 
not a previous option.  Examples are implementing a 
new coding scheme or a new modulation technique, or 
simply changing the data rate.  These SDRs are not 
stand alone devices, but required an external source of 
command and control and data handling.  This requires 
extensive software to be developed to utilize the full 
potential of these reconfigurable platforms.  

This paper focuses on development, integration and 
testing as related to the avionics processor system, and 
the software required to command, control, monitor, and 
interact with the SDRs, as well as the other 
communication payload elements.  An extensive effort 
was required to develop the flight software and meet the 
NASA requirements for software quality and safety.  
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The flight avionics is radiation tolerant, and these 
processors have limited processing capability in 
comparison to terrestrial counterparts.   A big challenge 
was interfacing the avionics with multiple SDRs 
simultaneously, which complicates the effort.  The 
effort also includes ground software, which is a key 
element for both the command of the payload, and 
displaying and archiving the telemetry and data created 
by the payload.   

The verification of the software was a time 
consuming effort.  The challenges of specifying a 
suitable test matrix with reconfigurable systems that 
offer numerous operating configurations is highlighted.   
Since the flight system testing requires methodical, 
controlled testing that limits risk, a nearly identical 
ground system to the on-orbit flight system was required 
to develop the software and write verification 
procedures before it was installed and tested on the 
flight system. This effort is the basis of a new testing 
paradigm that goes beyond the current “test as you fly, 
fly as you test” approach.    

The development of the SCAN Testbed was an 
accelerated effort to meet launch constraints, and this 
paper discusses tradeoffs made to balance needed 
software functionality and still maintain the schedule.  
Future upgrades are discussed that optimize the avionics 
and allow experimenters to utilize the SCAN Testbed 
potential. 

II. GENERAL LESSONS LEARNED 
This section covers some of the general lessons 

learned in developing the software for this project.  
Many of the lessons learned were driven by developing 
software for a flexible testbed with reconfigurable 
radios for which existing design approaches are no 
longer suitable. 

II.I Balance the “ilities” (flexibility, upgradeability, etc.) 
Offered by SDRs with Resources and Schedule 

The existing approach for procuring radios is to 
choose ones that meet the existing requirements exactly.  
SDRs are designed to meet more than the existing 
launch requirements; they need to be sized with 
additional resources so that new capabilities can be 
added.  One challenge is that spacecraft often have fixed 
resources, so additional capabilities need to be carefully 
sized.

II.II Choose Your Test Matrix Carefully  
Mission critical systems such as radio systems 

require that they are carefully tested to ensure that they 
will perform as designed under all possible conditions.  
This is in opposition to the fact that the schedule for 
developing and testing spacecraft systems is usually 
very constrained, driven by launch date requirements.  
When introducing reconfigurable systems, they require 

testing a larger number of operating conditions than 
fixed legacy systems.  This requires a careful analysis to 
select the key operating conditions to verify, focusing 
on understanding the nominal and range of conditions in 
which the radio is expected to operate.  With Software 
Defined Radios, there can be an infinite number of test 
cases and properly bounding your test conditions is key 
to verification prior to operations. 

II.III Good SDR Documentation Set Required 
Good documentation is key to acquiring an in-depth 

understanding of the SDRs and their operation.  Each of 
the agreements with the vendors required a set of 
documentation to be delivered at various portions of 
their development cycle.  The documentation needs to 
describe the hardware and software in detail, as well as 
the operation of the radio.  Any commercial software 
systems need to have documentation provided.  The 
interfaces that the spacecraft will connect to the radio 
needs to be well-documented, and having this 
information early in the development cycle allows 
parallel development of the avionics with its data 
systems and the radios.  Vendor test data is also useful 
to understanding the performance and operation of the 
SDR, along with operating logs and anomaly resolution 
data. 

II.IV High Fidelity Software Development Systems Are 
Necessary  

The project requested breadboard, engineering 
model and flight models of each radio.  Since each radio 
had a fair amount of development, the goal was to have 
a breadboard first, the engineering model next, and the 
flight system as the final deliverable.  The breadboard 
systems were early development systems to allow 
interfacing with the avionics, with a focus on the 
processor and waveform signal processing memory.  
The engineering model was to be nearly identical to the 
fight system, to be used in the ground integration unit 
for flight system software development and hardware 
checkout. The use of these interim SDR deliveries 
would enable the integration and test of the flight unit 
radios to be proven before installation into the flight 
payload. 

The challenge was that the actual deliveries did not 
occur quite that way.  The breadboard systems were 
early development systems, but in the effort to allow an 
early vendor delivery, they lacked the fidelity of the 
engineering and flight units, most importantly the RF 
functionality.  Having the ability to upgrade these units 
would have been useful post-launch for future 
waveform development.  Also, the engineering units 
and flight units were delivered very close together, 
leaving little to no time to incorporate findings from 
testing with the engineering models into the flight 
radios. New developments often run into issues; 
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schedule risks that were realized resulted in close 
deliveries of the SDRs leaving little or no opportunity to 
incorporate changes from engineering model testing into 
the flight models.  

II.II Engineering and flight units must be identical.   
The engineering units used similar components to 

the flight units for the most part, but they were not 
identical.  The trade was cost and schedule, since the 
flight units used radiation hardened or tolerant 
components with long lead times. However, using 
identical components is crucial in the engineering 
systems, so that software with critical timing margins 
and performance can be verified on the ground before 
being deployed on the flight unit. For example, the 
firmware executed on Xilinx Virtex IV FPGAs has 
different performance due to timing differences between 
the space grade and commercial grade components.  
These timing differences are critical when developing 
high data rate waveforms that have timing margin 
constraints, and the ground testing is not a good 
predictor of the flight performance.     Another example 
is the first time we took our avionics software from the 
Ground Integration Unit (GIU), which is our ground 
testbed, to the flight system, the boot process started, 
then almost immediately the avionics computer 
rebooted.  This cycle repeated over and over until power 
was removed from the system. It turns out that the 
timing of the commercial hardware was different 
enough from the flight hardware that on the flight 
system, when the SpaceWire card was initialized, it 
immediately began sending out interrupts before the 
interrupt handler had been initialized.  This had never 
been a problem on the GIU.  The solution was to 
initialize the interrupt handler before initializing the 
SpaceWire card. 

II.V Prioritize Your Requirements – They Are Not All 
Created Equal 

Due to a compressed development schedule, the 
software team prioritized requirements to ensure that the 
capabilities absolutely required to operate the testbed 
were implemented first.  This way, if unforeseen 
problems impacted the schedule, the payload could still 
be shipped in time for launch.  Since this is a 
“reconfigurable” testbed, the ability to upload new 
software is mandatory.  The payload also has safety-
critical software to inhibit radiation when it presents a 
hazard (during Extra-Vehicular Activity or docking 
operations by visiting vehicles, as two examples), and 
these inhibits must be verified in order to fly on ISS.  
Finally, the interface to ISS is necessary in order to be 
able to command the payload and to upload and 
download files, including new software.  These 
requirements became Priority 1 (P1) requirements.  
Other requirements necessary to meet the project’s 

“Minimum Success” criteria, or which required the 
actual flight hardware to verify were also categorized as 
P1.  Priority 2 (P2) requirements were those 
requirements that were strongly tied to meeting the 
remaining Mission Success criteria.  P3 requirements 
were those tied to experiment capabilities that could be 
uploaded after launch without impacting payload 
checkout.

This categorization proved invaluable when 
negotiating requirements implementation within the 
project.  At launch time, all P1, several P2, and one P3 
requirements were implemented.  Several large 
capabilities were not implemented, but are scheduled for 
development post-ship and are currently under 
development.   

II.VI GIU: Proved to be invaluable as a tool to dry run 
procedures, unit test software, and perform software 
verifications:  Saved valuable time on the critical path 
of Flight System 

As described above, the engineering unit radios were 
installed into the GIU.  The development and testing 
conducted on the GIU was a heavily-scheduled, but 
important, development tool before conducting the 
integration and testing of the flight system. Operation 
on the flight system required prior verification on the 
GIU with the engineering units and an approved 
procedure, so considerable time was spent using the 
GIU to prepare for flight system operation.  The 
contention for the use of this hardware required the 
different project organizations, e.g. Comm, Software, 
Operations, to schedule shifts of time on the GIU from 6 
am to midnight on some days.  The breadboards were 
also used for development, but they lacked the fidelity 
of the GIU to go directly to flight unit operation.   

Software verification was also conducted on the 
GIU.  While the key software tests were conducted on 
the flight system, an exercise was done to identify 
software verifications that could be conducted on the 
GIU instead of the flight system with relatively low risk 
of seeing differences between the two systems.  This 
allowed a parallel path to complete software 
verifications, but testing had to be carefully considered 
so verifications done on the GIU were valid as flight 
demonstrations.            

III. SOFTWARE LESSONS LEARNED 
The following lessons apply specifically to software 

development. 

III.I DRIVE YOUR OWN INTERFACES:  If you don’t 
drive your interfaces, they will be driven for you   

The software defined radio vendors reused and 
modified as much software as possible from previous 
efforts.  Therefore, many of the interfaces and command 
dictionaries were already in place.  This required the 
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avionics development to generate three different 
command processors.  Similarly, each radio had its own 
set of telemetry with little commonality among them.  
This reduced development time in the radios, but 
increased time and complexity in the avionics 
development. 

Each radio has two separate interfaces – one used 
for commanding and telemetry and one used for data 
transfer. 
   

Command and Telemetry Interface   
Each SDR has a separate command format.  The 
Harris SDR uses RMAP (remote memory access 
protocol) command format over SpaceWire with 
data in 251-byte packets over SpaceWire.  The JPL 
SDR uses a character command format over 1553 
with data in 260-byte packets over SpaceWire.  The 
GD SDR uses a fixed binary command format over 
1553 with data in 256-byte packets over SpaceWire. 

The GD SDR utilizes a fixed binary telemetry 
packet that is pushed out over 1553 bus at 1 Hz.  
Avionics must read this data before it is refreshed or 
it is lost.  Harris uses a telemetry packet that is filled 
by reading the selected parameters from a 
configuration file and is returned in response to a 
query by avionics.  The SDR JPL has a “heartbeat” 
telemetry packet that is filled with values of 
parameters identified in a configuration file, and 
written to the 1553 registers at 1 Hz.  Additional 
telemetry for the JPL radio can be queried using a 
string command with parameters indicating the 
values to be returned.  This data is displayed in a 
serial interface display. 

All formats were selected based upon heritage 
developments.  The JPL team focused on flexibility 
at the expense of a high level of overhead.  The GD 
team created a very fixed format which was efficient 
but inflexible to changes.  Harris selected an 
approach that was in-between with a fixed amount 
of space in packet, but with the ability to modify 
contents. 

Data Interface 
SpaceWire was selected as the data interface based 
on recommendations from radio partners for a solid, 
high-performance space data application.  This 
hardware and software technology was new to the 
avionics development team.  

The data interface had to be independently 
developed for each radio.  The data is sent in a 
framed format, with a synchronization marker and 
transfer frame primary header (TFPH) to lead a 
fixed block of data.  In addition, the SpaceWire 

protocol has a SpaceWire header. The Harris SDR 
adds and removes the synchronous marker and the 
SpaceWire header, leaving the avionics to simply 
grab the data sent through without any headers.  The 
GD SDR adds and removes the TFPH but not 
synchronization marker.  Avionics is required to add 
and remove the synchronization marker for data 
transfer.  The JPL SDR data interface did not change 
the sync marker or the TFPH.  Avionics was 
required to add and remove both of these for JPL 
data transfer. 

Ground Displays 
Each radio had distinct requirements for display of 
its telemetry resulting in different layouts and 
number of screens on the ground workstations.  The 
GD telemetry stream contained both OE (operating 
environment) and waveform data together.  Harris 
required multiple screens for just its waveform data.  
Ground displays could not be reused between radios 
and thus we had 30 or more displays to generate and 
maintain. 

Some data is displayed periodically (1 Hz telemetry) 
whenever the payload or radio is on. There is also 
the need to display graphs and plots of real time data 
over time.  One radio requires a screen to display 
character commands and command responses being 
transferred over the serial interface to the radio.  

A theme that was common throughout our 
development was – Do you pay up front to have 
commonality, or do you cut costs to vendors and incur 
more cost for payload development?  In our case, since 
the payload was a new development and the radios were 
mostly redesigns of existing models, the payload 
development took the hit to meet the radio interfaces. 

III.II COMM SYSTEMS ENGINEER:  To help flow 
requirements down to subsystems 

The ability to take system level requirements and 
flow them down to each subsystem is a key aspect in 
designing and verifying the system. It is also imperative 
to define the interfaces between each subsystem, as well 
the external interfaces.     

One of the key tools used to extract the lower level 
requirements and define the interfaces is a data flow 
diagram. A data flow diagram is a graphical 
representation of the flow of data, and shows what kinds 
of information will be input to and output from the 
system, where the data will come from and go to, and 
where the data will be stored. For the SCaN Testbed, the 
diagram shows the data flow originating on the ground, 
flowing up to the flight system, then back down to the 
ground again.   
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In particular, the data flow passing through the 
payload needed to be developed in detail.  The data size 
and headers change as the data passes through the 
various segments of the flight and ground system, which 
is different for each radio and impacts the processing 
required.  Example questions the team asked to develop 
the diagram included: “What does 100 Mbps data rate 
mean from radio to ground?”  “What is the data flow 
from each radio to the avionics?”  Another factor 
examined was the impact of using forward error 
correction coding schemes, which effectively doubled 
the data rate for the standard ½ rate coding scheme 
used.   These diagrams were essential to understand the 
format and the data rate, and many diagrams were 
developed to share this insight between the 
communications and the software team, each of which 
had a different perspective on the data definitions.   

Another complex issue for resolution was allocating 
time synchronization from higher level requirements 
down to each of the lower level subsystems.  Time 
synchronization is a key feature required so that the 
SCaN Testbed is on the same time reference as the ISS 
and the TDRSS.  The flight system has the potential of 
several different sources (ISS, TDRSS, GPS) to obtain 
the timing, and each source requires a different method 
of transferring this data to the payload. Also, the 
avionics and each SDR need to be synchronized.  This 
is to ensure that all the commands, telemetry, and data 
are on the same time reference so these parameters can 
be correlated and stored data can be understood.  This 
sounds like a simple task, but was not simple to 
implement.  The reason for this is that the avionics and 
each radio had a different time oscillator with a different 
accuracy.  Also, the choice of the master clock used to 
keep the master synchronization could change 
depending on the accuracy required.  Measuring the 
accuracy itself was problematic, since your 
measurement system needs to have a higher precision 
than what you are measuring, and we were measuring 
the most precise portion of our system. We didn’t have 
a convenient way of measuring this and are still 
working on this post-ship. 

One lesson learned was with the external ground 
support test equipment used to verify the operation of 
the system.  A large amount of data was generated that 
needed to be evaluated post-test, and the project needed 
to be convinced that the effort to synchronize all the 
external equipment was necessary and the impact to the 
critical path schedule was essential.  Another lesson 
learned was that the time keeping software of all 
systems needed to be understood and carefully 
monitored.  During the thermal vacuum test, one of the 
critical ground support computers switched to European 
daylight savings time.  The reason for this change was 
unknown, but the impact of this unexpected change was 
large in correlating all the collected data.    

III.III Allow Additional Tine and Money When 
Integrating Hardware From Different Vendors  

Our avionics computer is custom-built with cards 
from various vendors.  Some cards were sold to us by 
Vendor A, but portions of the card or drivers were 
developed by Vendor B.  When problems arose with the 
hardware and software integration, it was extremely 
difficult to pinpoint what component was causing the 
problem.  Each of the vendors believed that their 
product was accurate and the adjoining part was at fault. 
This caused extreme schedule delays through attempts 
to communicate with all possible vendors, finding ways 
to recreate the problem for them in order to get their 
help, then working with them for a solution once we got 
their attention. The vendors were willing to assist us and 
were invested in our success.  However, our software 
engineers bore the burden of much unplanned time 
tracking down hardware issues and isolating the cause, 
with the vendors’ support.  In some instances, our 
development time was TRIPLE what we had planned.  
This time should be anticipated and planned for when 
integrating systems with hardware from different 
vendors.   

One of our internal interfaces proved particularly 
problematic.  This was the interface between the 
SpaceWire card and the main processor in the computer, 
which relied on communications over the PCI bus.  
Each vendor had interpreted the PCI bus specification in 
a slightly different way with respect to polling of direct 
memory access (DMA).  This difference of 
interpretation presented itself in our system as a 
deadlock condition over bus usage when attempting to 
transfer high data rates between avionics and the radios.  
The payload would grind to a halt and our only option 
was to reboot the entire system.  In this case it was 
difficult to identify which vendor was “right” since we 
were dealing with a specification that was, perhaps, not 
as specific as it needed to be.  The deciding factor was 
which component cost us less schedule time to fix.  One 
component required that we send a computer card back 
to the vendor to have them replace a field-
programmable gate array (FPGA).  The other 
component could be reprogrammed at our site, which 
was far less impact to our schedule.   

In the end, we did have to replace the firmware on a 
card that provided our communications over MIL-STD-
1553 and our digital input/output functions.  We 
originally purchased components to develop two flight 
computers and two development computers.  Nine 
months later we decided to add two more development 
systems to support our development schedule and 
twelve software developers and we purchased additional 
components.  In putting together our additional 
development systems, we could not get the 1553 boards 
to boot in the new systems.  It turns out that these newer 



63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved. 

IAC-12- B2.2.5          Page 6 of 7 

boards were a complete redesign of the original boards, 
although they had the same model number.  We could 
not use these new boards without compiling new drivers 
and maintaining two separate software loads, so we 
chose to make do with just our older boards.  With 
about six months to go before shipping our payload, we 
discovered that the older boards were the culprit for 
spurious digital input/output signal changes that were 
NOT initiated through software.  This affected our 
safety-critical ability to make sure or payload was not 
radiating (transmitting) during certain times where the 
radiation could harm people or equipment.  It seems we 
had discovered the reason for the sudden redesign of 
these boards.  We sent all of our older boards back to 
the vendor to replace the firmware and upgrade them to 
the newer design.  New software drivers had to be 
written and integrated into the code base.  During the 
transition, software testing required switching between 
the old and new code base, depending on what type of 
hardware was in the system under test.  In order to keep 
testing going, the cards were sent back incrementally so 
only one system was down at a time. 

III.IV NEW TECHNOLOGY: When adopting new 
technologies (SpaceWire) have a direct line to the 
experts around the world   

We had a technical scenario that had never been 
done before as far as we knew - three SpaceWire 
interfaces controlled by a single computer with four 
different SpaceWire implementations.  With the 
problems described in paragraph III.III, our software 
development took about four times what we had 
estimated. 

Repairs were done in parallel with other testing that 
didn’t require SpaceWire data transfer to minimize loss 
of schedule.  The radios had a self-test functionality that 
would generate data to transmit and calculate bit error 
rate on data being received, which was used instead of 
flowing data through avionics while we struggled to 
solve the SpaceWire issues.  We pulled in experts from 
Goddard Space Flight Center and followed their best 
practices for other spacecraft. 

GRC put together a Tiger Team of NASA and 
vendor consultants to solve the SpaceWire problems.  
The team first looked at software-only solutions; but 
after further investigation and determination of critical 
root cause(s), worked with the vendor to change 
firmware. The software team rewrote the drivers to 

adapt to the changes.  The entire avionics unit was 
pulled to access firmware and new environmental 
testing had to be completed.  Analysis showed FPGA 
change did not impact system Electro-Magnetic 
Interference results.  Throughout the year of SpaceWire 
issues, functional and environmental testing was 
conducted with incremental SpaceWire performance 
capabilities 

Take-away:  
SpaceWire performance is great, but buyers beware.  

SpaceWire hardware is not robust and 
firmware/software interface standards are not mature.  
Utilize FPGAs that are reliably reprogrammable 
without removal from system.

V. CONCLUSION 
The development of any complex system requires a 

well-constructed plan to be successful.  Spaceflight 
systems have been developed to extensive standards and 
practices to insure mission critical systems such as 
radios and control avionics operate as expected once 
launched. The introduction of reconfigurable SDRs 
requires an adjustment of these practices to account for 
the flexibility that the systems offer, but still provide 
confidence in proper operation.

The lessons learned from this development should 
be applicable to future spaceflight systems with 
reconfigurable components.        

.

   

VI. ACRONYMS 
Direct Memory Access (DMA) 
Field-Programmable Gate Array (FPGA) 
General Dynamics Corporation (GD) 
Glenn Research Center (GRC) 
Global Positioning System (GPS) 



63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved. 

IAC-12- B2.2.5          Page 7 of 7 

Goddard Space Flight Center (GFSC) 
Ground Integration Unit (GIU) 
International Space Station (ISS) 
Jet Propulsion Laboratory (JPL) 
National Aeronautics and Space Administration (NASA) 
Operating Environment (OE) 
Radio Frequency (RF) 
Software Defined Radio (SDR) 
Space Communications and Navigation (SCaN) 
Tracking and Data Relay Satellite System (TDRSS) 
Transfer Frame Primary Header (TFPH) 
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