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Abstract-- In standard motor applications, traditional 

mechanical bearings represent the most economical approach to 
rotor suspension.  However, in certain high performance 
applications, rotor suspension without bearing contact is either 
required or highly beneficial.  Such applications include very 
high speed, extreme environment, or limited maintenance access 
applications.  This paper extends upon a novel bearingless motor 
concept, in which full five-axis levitation and rotation of the rotor 
is achieved using two motors with opposing conical air-gaps.  By 
leaving the motors’ pole-pairs unconnected, different d-axis flux 
in each pole-pair is created, generating a flux imbalance which 
creates lateral force.  Note this is approach is different than that 
used in previous bearingless motors, which use separate windings 
for levitation and rotation.  This paper will examine the use of 
feedforward control to counteract synchronous whirl caused by 
rotor imbalance.  Experimental results will be presented showing 
the performance of a prototype bearingless system, which was 
sized for a high speed flywheel energy storage application, with 
and without feedforward control. 
 

Index Terms— Magnetic Levitation, Energy Conversion, 
Motors, Permanent Magnet Motors, Rotating Machines, Motor 
Drives, Energy Storage, Flywheels. 

I.  INTRODUCTION 
N very high performance motor applications, suspension of 
the rotor by non-contacting bearings is desired.  Benefits 

include reduction or elimination of maintenance requirements, 
enabling higher rotor speeds, reducing losses, and enabling 
performance in extreme environments.  One way of 
accomplishing non-contact suspension is by using magnetic 
bearings.  Traditionally this involves using separate actuators, 
in which iron and copper parts are dedicated to only one 
function, either levitation or rotation.  This would be limiting 
in applications which require a large amount of levitation 
force in some modes of operation, and a large amount of 
motor power in others.  Furthermore, these actuators increase 
the axial length of the rotor, which lowers the bending mode 
frequencies, complicating control of the system.  Using the 
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motor for both rotation and levitation would avoid these 
problems, and allow the added advantage of reducing the 
system part count. 

Bearingless motors have been demonstrated in synchronous 
reluctance [1], [2], induction [3], permanent magnet [4], and 
switched reluctance [5] configurations.  These motors have 
common iron structures carrying both levitation and rotation 
flux; however, they use different windings for levitation and 
rotation.  So each function is still limited by the windings and 
power electronics, which are dedicated to a single function.  
Furthermore, they are only capable of providing levitation 
forces in a radial plane in the case of radial motors, or in the 
axial direction for axial motors. 

This paper examines the performance of a new bearingless 
motor concept, which was previously described by the authors 
of this paper in [6]-[12].  In this concept, the motor pole-pairs 
are separated, causing a flux imbalance which creates a 
levitation force.  This approach allows all of the motor iron 
and copper to be used for either the levitation or rotation 
function.  Additionally, since these motors have a conical 
shaped air-gap, they can create axial as well as radial forces.  
A pair of these motors with opposing cones is used to provide 
full 5-axis levitation. 

The contribution of this paper is examining the use of 
feedforward to counteract synchronous whirl exhibited by the 
rotor of a prototype bearingless machine.  The synchronous 
whirl is caused by a predictable force due to rotor imbalance.  
Because the synchronous whirl is predictable, a counter acting 
feedforward signal can be added to the levitation controller to 
counteract this effect.  The basic concept of use of a 
feedforward signal to counteract rotor imbalance in a 
magnetically levitated flywheel system is described in [14].   

This paper will first briefly describe the prototype 
bearingless machine.  Next it will examine the physics of the 
synchronous whirl.  Then finally it will be shown how a 
feedforward signal can be applied, and show the experimental 
results of adding this signal. 

II.  PROTOTYPE BEARINGLESS MACHINE 
A standard motor is wound with the pole-pairs connected in 

series or parallel, as shown in Fig. 1.  In this configuration the 
pole-pair flux can be increased or decreased, but pole flux 
cannot be controlled independently, since the poles carry the 
same current.  Thus it is not possible to create a flux 
imbalance on the rotor, which means that the attractive 
magnetic force from each pole-pair is the same; when added 
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vectorially on the rotor they create zero net force.  In the case 
of motors with rotors suspended by mechanical bearings, this 
balanced rotor flux is highly desirable because it reduces 
vibrations due to induced net forces. 

    

 
Fig. 1.  Pole-Pairs Connected in Series 

 
To create a levitating lateral force, it is necessary to 

generate an imbalance in the rotor.  This is achieved in the 
prototype motors by leaving the motor pole-pairs 
unconnected, as shown in Fig. 2.  Now the flux in each pole-
pair can be controlled independently. 

 
 

Fig. 2.  Independent Pole-Pair Windings 
 
Each pole-pair is controlled using Field Oriented Control 

(FOC).  In FOC, the flux and torque are controlled by 
transforming stationary reference frame quantities (currents, 
flux, voltage, etc.) to the rotor reference frame.  Fig. 3 shows 
the motor windings represented in the rotor reference frame: 
the d-axis is directed into the magnet, and the q-axis is 
directed 90 electrical degrees ahead of the d-axis.  The d-axis 
controls the flux, and the q-axis controls the torque.  By using 
different rotor reference frame d-axis currents in each pole-
pair, a flux differential can be created on the rotor.  Using 
finite element analysis, the flux differential caused by running 
a d-axis current into the first pole-pair while setting the d-axis 
currents in the other pole-pairs to zero was calculated; results 
are displayed in Fig. 4.  The force caused by this flux 

imbalance can be calculated using Maxwell’s stress tensor. 
 

 
Fig. 3.  Pole-Pairs in Rotor Reference Frame 

 

 
Fig. 4.  FEM Flux Imbalance 

 
The induced force caused by a flux imbalance is attractive 

and in line with the air gap; because of this, a radial motor can 
only produce radially directed forces, and an axial motor can 
only produce axially directed forces.  The prototype motors 
examined by this paper employ a conical air-gap to create 
axial as well as radial force components.  This machine uses 
two motors with opposing cones, as seen in Fig. 5.  Fig. 6 
shows the available force vectors in the two motor planes.   

 
Fig. 5.  Pair of Opposed Bearingless Conical Motors 

 
A motor control system, with associated power electronics 

and sensors, was built to run the prototype machine. In this 
controller, five PID position control loops determine the force 
applied to the rotor while levitating; two for each radial plane, 
and one for the axial direction.  While levitating and rotating, 
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position measurements are taken with eddy current proximity 
sensors.   

 

 
Fig. 6.  Force Vectors from Both Motors 

III.  SYNCHRONOUS WHIRL 
The main cause of synchronous whirl is rotor imbalance.  

Since this prototype machine was not designed go to high 
speed, the rotor was not mechanically balanced.  Even if it had 
been balanced, some imbalance would still exist.  Consider a 
disk with the center of mass offset from the geometric center 
[13], as seen in Fig. 7.  The forces in the x and y direction are 
given by (1) and (2) respectively. 

 

 
Fig. 7: Imbalanced Rotor 
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Where ω  is the angular velocity, m is the mass, and d is 
the distance the center of mass is offset from the geometric 
center of the imbalanced disk.  The equations of motion can be 
expressed as [13]: 
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Where k  is the spring constant and c is the damping 
coefficient of the disk’s suspension; in this case, these are 

defined by the gains of the PID controller. These equations 
can be written more compactly in complex form; first the 
imbalance force can be expressed as: 
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This can be simplified with Euler’s formula: 
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The equations of motion can be written as: 

imbalancexyxyxy FPkPcPm =⋅+⋅+⋅ ���  (7) 

Where Pxy is the position expressed as a complex number.  
The Laplace transformation of the imbalance force is: 
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Now by substituting (8) into the Laplace transformation of (7): 
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The position can now be expressed as: 
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This can be simplified with partial fraction expansion: 
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Equation (11) does not have RHP poles, because the system 
is assumed to be stable: 

0
2

4Re
2

>
�
�

�

�

�
�

�

�

⋅
⋅⋅−−

m
kmccal  

(12) 

and 

0
2

4Re
2

>
�
�

�

�

�
�

�

�

⋅
⋅⋅−+

m
kmccal  

(13) 

The coefficients are: 
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Now the inverse Laplace transform is taken on the position: 
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For a stable system, the first two terms approach zero as t 
approaches infinity.  The steady state solution is the third 
term.  The magnitude of C can be expressed as: 
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The phase of C can be written as: 
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So the whirl (position of rotor center of geometry) leads the 

imbalance (position of the center of mass) by an angle of β .  
The magnitude of the whirl hits a maximum when the angular 
velocity is: 

m
k
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(20) 

This speed is known as a critical speed.  The magnitude of 
the whirl at this critical speed is: 

c
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It is seen that damping is required to limit the magnitude of 
this whirl at the critical speed.  Equation (19) shows that the 
angle of the whirl of the center of geometry ( β ) with respect 
to the angle of the center of mass ( 0θ ) starts at zero degrees, 
then it increases to 90 degrees as the rotor approaches the 
critical speed.  After the rotor surpasses the critical speed the 
the angle ( β ) jumps to -90 degrees; as speed continues to 
increase the angle ( β ) asymptotically approaches 0 degrees.  
It is seen from (18) that as speed is increased from the critical 
speed, the magnitude of the imbalance approaches the distance 
between the center of mass and center of geometry.  This 
means that the center of geometry of the rotor is rotating 
around the rotor’s center of mass.   

IV.  FEEDFORWARD COMPENSATION 
Typically imbalance is mitigated with feed-forward for 

subcritical speeds.  This can be thought of as electrically 
balancing the rotor.  When the rotor is at supercritical speeds (

criticalωω > ), synchronous notch filters are used on the position 
feedback, because the rotor spins around its center of mass.  
At subcritical speeds ( criticalωω < ) this will not work, because 

feedback is necessary to counteract the imbalance force.  In 
this case rotor imbalance can be counteracted with a 
feedforward signal.    

 
Fig. 8:  x and y position, bottom plain, no feedforward 

 
 Fig. 8 shows the x and y position of the rotor in the 

bottom sensor plane.  The measured position is the center of 
geometry of the rotor; note the circular whirl.  Now 
considering the rotor position time domain signal as complex, 
with the x directed component considered real and the y 
directed component considered imaginary, the FFT was taken 
and is shown in Fig. 9.   

The synchronous components are at ±12 Hz.  Notice that 
there are different components for positive and negative 
frequencies.  To consider the meaning of this note the 
synchronous component can be expressed as: 
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Where syncω  is the angular velocity of the rotor, syncfA −  and 

syncbA −  and syncf −θ  and syncb−θ  are the magnitudes and angles of 
the positive and negative synchronous rotor displacements.   
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Fig. 9:  FFT bottom plain, no feedforward 

 
The inverse Fourier transform is expressed as: 
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Which can be applied to (22): 
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This implies a circular component in the forward direction and 
a circular component in the reverse direction.  The 
interference of these forward and backward components will 
create an elliptical shape in the measured position orbit. 

 Given this, a feed-forward signal is added to the 
measured x and y positions, in general this signal would have 
a magnitude and phase in both the positive and negative 
directions: 

( )mechanicalmeasmeas ffyixPos θ+⋅+=  (27) 

Now (24) is rewritten in terms of mechanical angle. 
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Since the imbalance excitation changes as speed increases, 

this feed-forward signal must change as speed increases.  In 
practice the feed-forward signal is tuned at specific rotor 
speeds and the gains and magnitudes are interpolated between 
these speed points.  One method of tuning would be to take the 
FFT of rotor position without feed-forward compensation, 
then the compensating feed-forward signal would have the 
same forward and backward amplitudes, but the phases would 
be shifted by 180 degrees.  This feed-forward signal would be 
added to the position commands.  The only disadvantage of 
this method is that it requires that feed-forward be off for the 
measurement, and for extremely unbalanced rotors, this might 
not be possible without touching the touchdown bearings.  But 
this same process could be employed in stages where some 
sub-optimal amount of feed-forward is used.  Then the new 
feed-forward signal is the sum of the old feed-forward signal 
and the one calculated from the FFT of rotor position. 

 In implementation the feed-forward was tuned every one 
hundred RPM, up to 1000 RPM.  (Note that the motor was 
designed for a high speed flywheel application of 100000 

RPM.  However, due to the complex shape of the stator and 
limitations in the available budget, a non-laminated stator 
design had to be used, and thus the prototype tested in this 

paper can only be run at lower speeds).  For simplicity only 
the forward rotating feed-forward components were used, 

because they were much larger than the backward 
components.  The tuning strategy was to simply adjust the 
gain and phase of the feed-forward signal until the circular 

shape of the position was minimized.

 
Fig. 10: x and y position with feed-forward 

 
 The positions for the case of the rotor spinning at 725 

RPM with the feed-forward command implemented are shown 
in Fig. 10.   The FFT of this data is shown in Fig. 11.  Note 
that the forward synchronous component has been reduced by 
about 4.5 times.  The backward synchronous component is the 
same, as expected, because a backward component was not 
included in the feed-forward compensation. 
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Fig. 11: FFT of bottom plane with feed-forward 

 

V.  CONCLUSION 
This paper examined the effect of imbalance on a 

bearingless motor system.  It was shown that feedforward can 
be used to reduce the synchronous whirl of the rotor due to 
imbalance.  
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