

Affordable Development and Demonstration of a Small NTR Engine and Stage: A Preliminary NASA, DOE and Industry Assessment – Invited Talk –

EXPL-01 Advanced Propulsion for Exploration

S. K. Borowski and R. J. Sefcik (NASA GRC) A. L. Qualls and B. G. Schnitzler (ORNL) C. R. Joyner (Aerojet Rocketdyne) 216-977-7091, Stanley.K.Borowski@nasa.gov

presented at the

AIAA Space & Astronautics Forum & Exposition (Space 2014) San Diego, CA

Tuesday, August 5, 2014

Glenn Research Center -

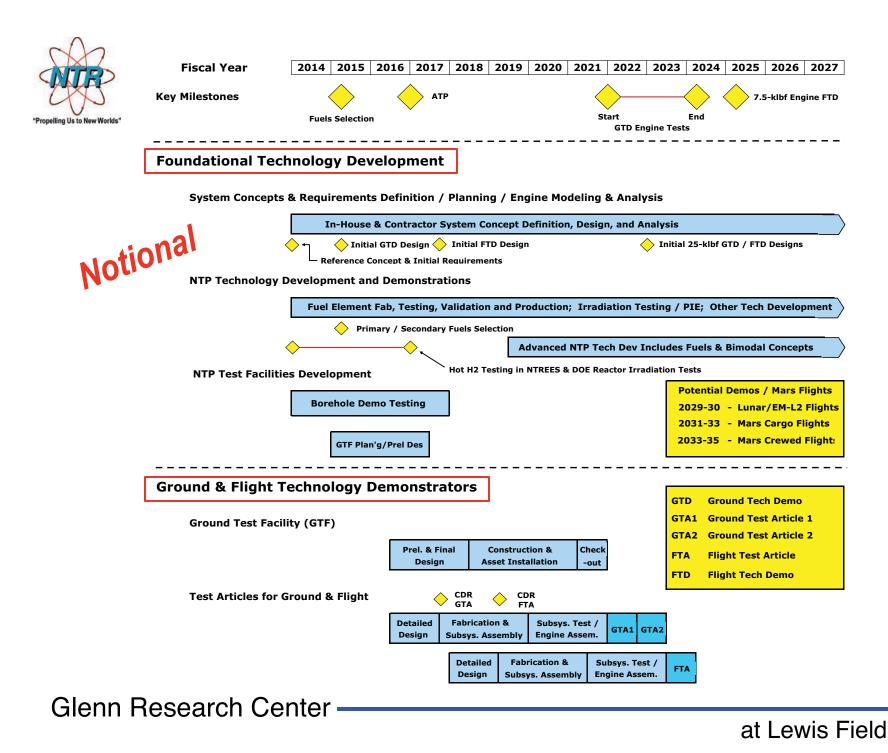
NASA

Contributors

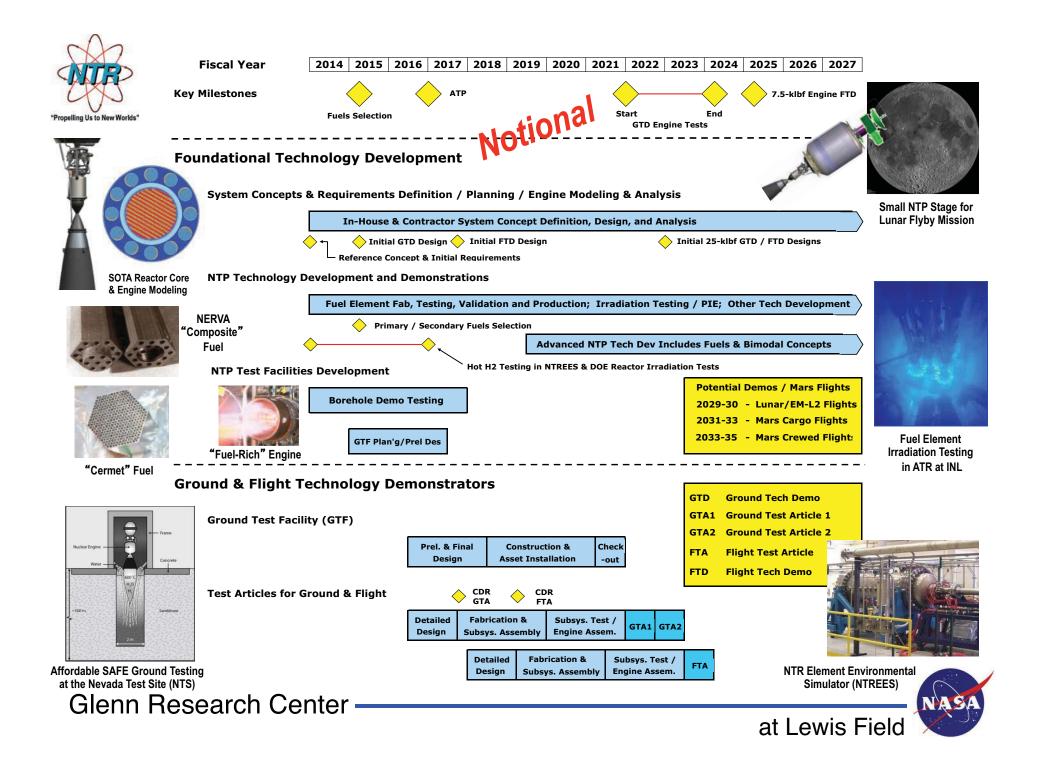
W.M. Marshall¹, T.J. Parkey¹, M. G. Houts², J. W. Warren³, J. E. Fittje⁴, D. R. McCurdy⁴ A.L. Qualls⁵, B. G. Schnitzler⁵, A. D. Belvin⁶, S. D Howe⁷ and C. R. Joyner⁸

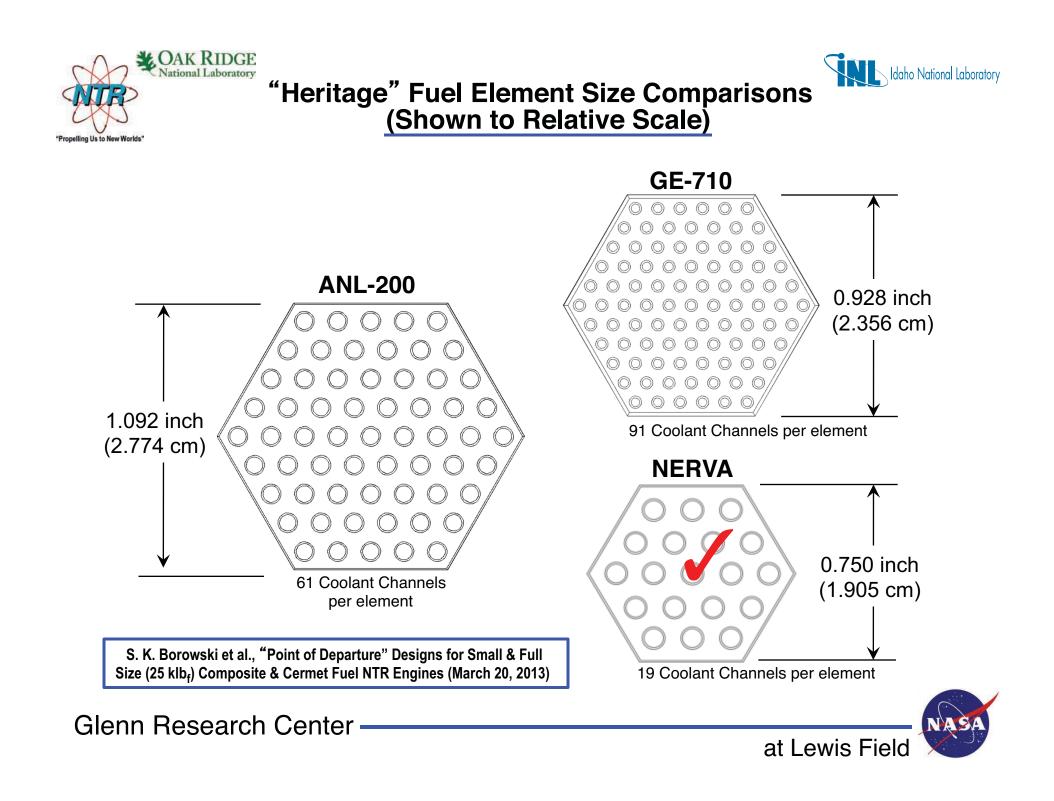
¹NASA Glenn Research Center, Cleveland, OH 44135
 ²NASA Marshall Space Flight Center, MSFC, AL 35812
 ³NASA Headquarters, Washington, DC 20546
 ⁴Vantage Partners, LLC at Glenn Research Center, Brook Park, OH 44142
 ⁵Oak Ridge National Laboratory, Oak Ridge, TN 37831
 ⁶US Department of Energy, Washington, DC 20585
 ⁷Center for Space Nuclear Research, Idaho National Laboratory, Idaho Falls, ID 83402
 ⁸Aerojet Rocketdyne, West Palm Beach, FL 33410

Glenn Research Center



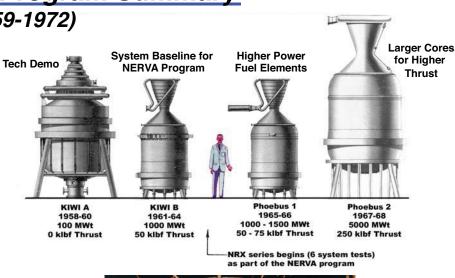
Formulation of Affordable and Sustainable NTP Development Strategy is Underway Involving NASA, DOE and Industry


- In FY' 11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program
- A strategy was outlined by GRC and NASA HQ that included 2 key elements "Foundational Technology Development" followed by specific "Technology Demonstration" projects
- The "Technology Demonstration" element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by 2025
- In order to reduce development costs, the demonstration projects would focus on developing a smaller, lower thrust (~7.5 klb_f) engine that utilizes a "common" fuel element design scalable to the higher thrust (~25 klb_f) engines used in NASA's Mars DRA 5.0 study (NASA-SP-2009-566)
- Besides reducing development costs and allowing utilization of existing, flight proven engine hardware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability – increased payloads and decreased transit times – valued for robotic science missions identified in NASA' s Decadal Study
- NASA, DOE (NE-75, ORNL, INL) and industry (Aerojet Rocketdyne) are working together on formulating a strategy leading to the development of a small GTD (~7.5 klb_f) engine in the early 2020's followed by a FTD "lunar flyby" mission using a small NTP stage (SNTPS) around 2025
- The preliminary assessment provided here along with similar information proposed by DOE/NE-75 provides a strawman for continued refinement allowing an informed cost estimate to be made



Glenn Research Center

Rover / NERVA* Program Summary

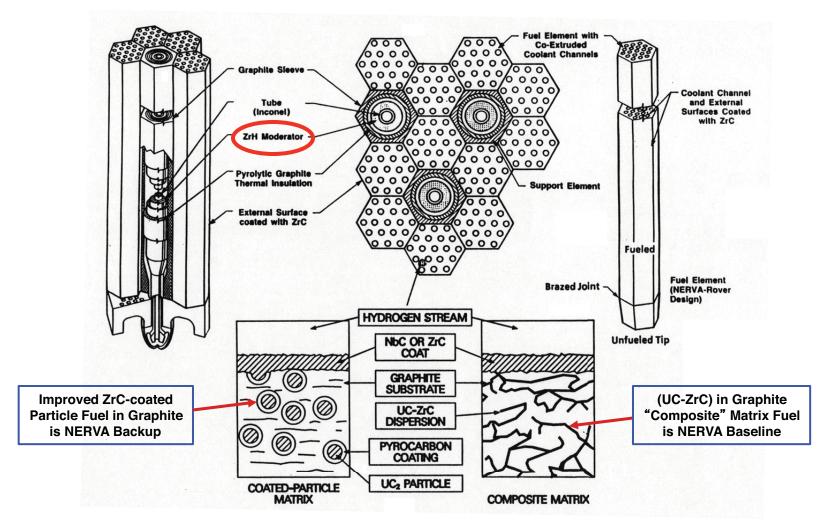

(1959-1972)

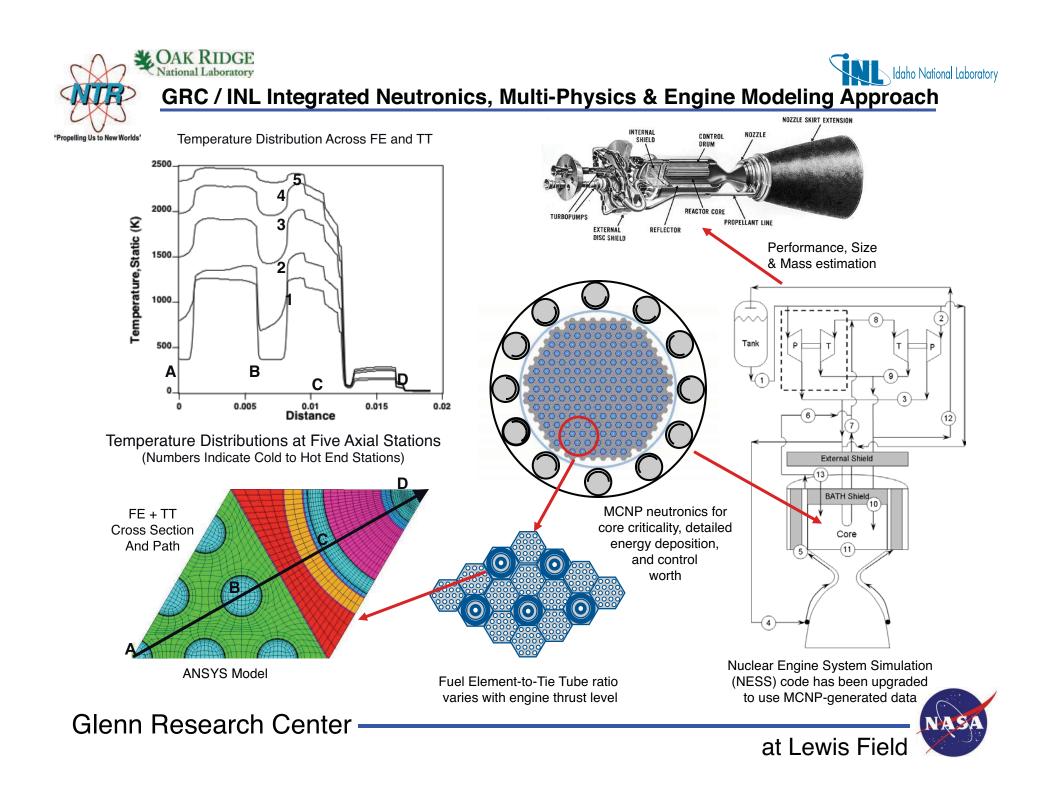
The smallest engine tested, the 25 klb, "Pewee" engine, is sufficient for human Mars missions when used in a clustered arrangement of 3 – 4 engines

- 20 NTR / reactors designed, built and tested at the Nevada Test Site "All the requirements for a human mission to Mars were demonstrated"
- **Engine sizes tested** .
 - 25, 50, 75 and 250 klb_f
- H₂ exit temperatures achieved
 - 2,350-2,550 K (in 25 klb, Pewee)
- I_{sp} capability
 - 825-850 sec ("hot bleed cycle" tested on NERVA-XE)
 - 850-875 sec ("expander cycle" chosen for NERVA flight engine)
- **Burn duration**
 - $\sim 62 \min (50 \text{ klb}_f \text{ NRX-A6} \text{ single burn})$
 - ~ 2 hrs (50 klb_f NRX-XE: 27 restarts) / accumulated burn time)

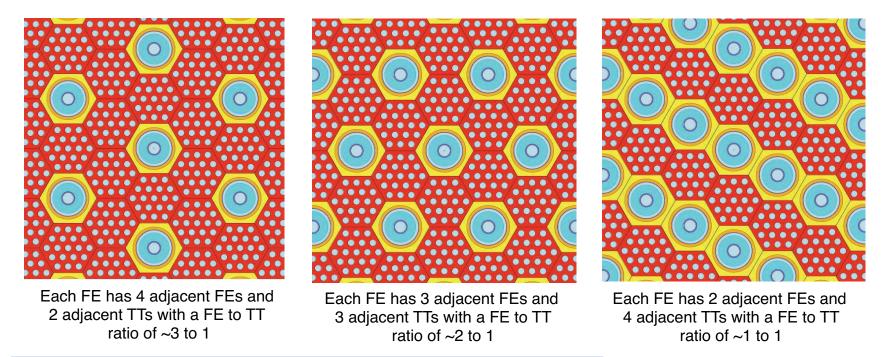
* NERVA: Nuclear Engine for Rocket Vehicle Applications

Glenn Research Center -


The NERVA Experimental Engine (XE) demonstrated 28 start-up / shut-down cycles during tests in 1969.



"Heritage" Rover / NERVA Reactor Core Fuel Element and Tie Tube Bundle Arrangement



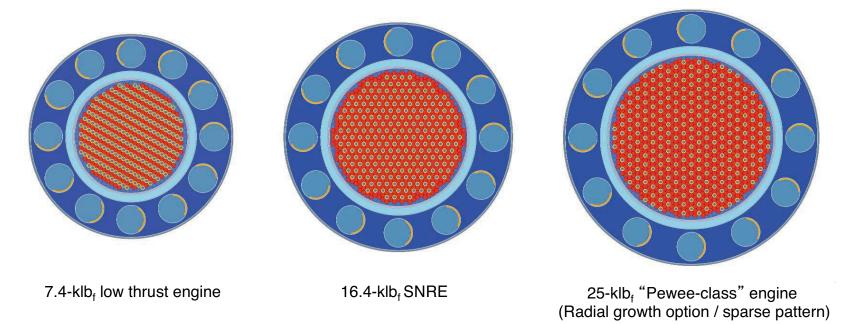
Fuel Element (FE) – Tie Tube (TT) Arrangements for NERVA-derived NTR Engines

"Sparse" FE – TT Pattern used for Large Engines "SNRE" FE – TT Pattern used in <u>Small Nuclear Rocket Engine</u>

"Dense" FE – Tie Tube Pattern used in Lower Thrust Engines

NOTE: An important feature common to both the Sparse and SNRE FE – TT patterns is that each tie tube is surrounded by and provides mechanical support for 6 fuel elements

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine Design", AIAA-2011-5846

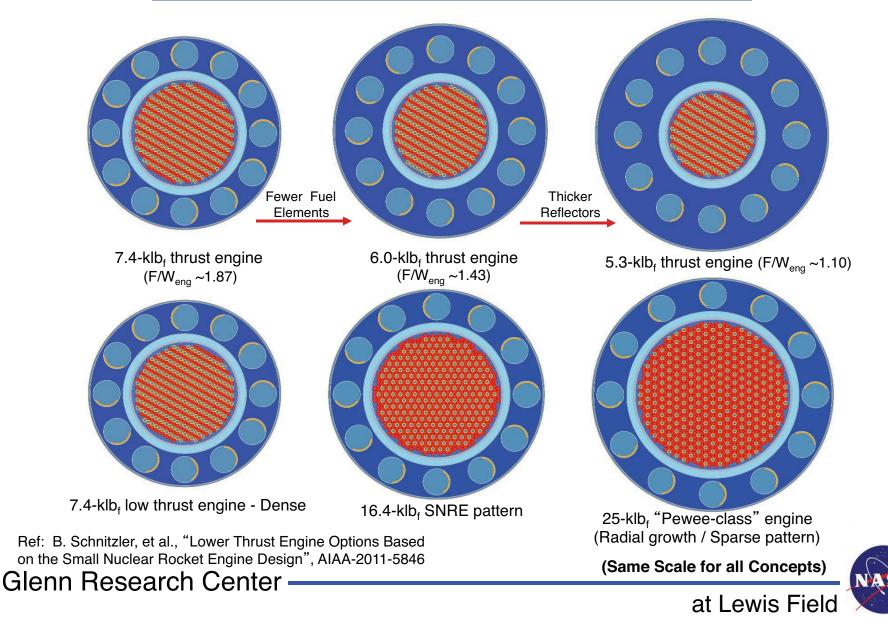

Glenn Research Center -

Development of Common Scalable Fuel Elements for Development & Testing



- During the Rover program, a common fuel element / tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968)
- NASA and DOE are evaluating a similar approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions

Ref: B. Schnitzler, et al., "Lower Thrust Engine Options Based on the Small Nuclear Rocket Engine Design", AIAA-2011-5846 paper presented at the 47th Joint Propulsion Conference, San Diego, CA


NASA

Cross Sections for Low to High Thrust Engines using Various Fuel Element – Tie Tube Patterns

Performance Characteristics for Small & Full Size NERVA-derived Engine Designs – Composite Fuel

Engine System					<u>Nominal</u>	<u>vth Option</u> Enhanced				
Thrust (klb _f)	7.42	16.4	25.1	25.1	25.1	25.1				
Chamber Inlet Temperature (K)	2736	2695	2790	2940	2731	2807				
Chamber Pressure (psia)	1000	450	1000	1000	1000	1000				
Nozzle Expansion Ratio(NAR)	300:1	100:1	300:1	300:1	300:1	300:1				
Specific Impulse (s)	894	875	906	941	894	913				
Engine Thrust-to-Weight	1.87	2.92	3.50	3.50	3.60	3.60				
Reactor										
Active Fuel Length (cm)	89.0	89.0	132.0	132.0	89.0	89.0				
Effective Core Radius (cm)	14.7	29.5	29.5	29.5	35.2	35.2				
Engine Radius (cm)	43.9	49.3	49.3	49.3	55.0	55.0				
Element Fuel/Tie Tube Pattern Type	Dense	SNRE	SNRE	SNRE	Sparse	Sparse				
Number of Fuel Elements	260	564	564	564	864	864				
Number of Tie Tube Elements	251	241	241	241 0.25	283	283 0.45				
Fuel Fissile Loading (g U per cm ³)	0.60	0.60	0.25		0.45					
Maximum Enrichment (wt% U-235)	93	93	93	93	93	93				
Maximum Fuel Temperature (K)	2860	2860	2860	3010	2860	2930 40				
Margin to Fuel Melt (K)	40	40	190	40	110					
U-235 Mass (kg)	27.5	59.6	36.8	36.8	68.5	68.5				
		· /				5				
enn Research Center —		on the	Small Nuclear I	Rocket Engine D	esign", AIAA-20 ⁻	11-5846				

NTP Fuels and Engine Development Sequence Nuclear & Non-Nuclear Testing

Fuel Specimens

- Fabrication and characterization
- High temperature testing including hot H_2 exposure and flow rates
- Irradiation testing at high temperature
- Fuel Elements (Prototypic Cross-Section, Segments or Full Length)
 - Fabrication and characterization
 - High temperature testing including H₂ exposure and prototypic flow rates (e.g., NTREES)
 - Irradiation testing

Reactor Design

- Neutronics and Physics
- Heat Transfer
- Dynamics
- Structures
- I&C

Engine Ground Test

- \bullet Prototypic fuel temperatures, hot $\rm H_2$ flow rates, and operating times
- Engine test also serves as fuel qualification test

Ref: J. Werner, 47th AIAA JPC, INL, 2011

Glenn Research Center

at Lewis Field

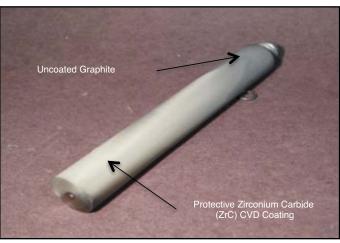
Addressing Ground Test Challenges

- Utilize the SAFE borehole concept
- Use temporary facilities & services at the ground test site
- Minimize engine size & number of tests to qualify for launch
- Maximize existing facilities (e.g., DAF) and capabilities for testing and PIE

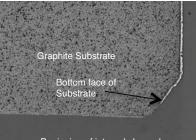
NERVA Graphite - Composite Fuel Elements with Protective ZrC Coating are Being Produced Now at ORNL for NCPS Project

elling Us to New Worlds

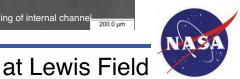
Right: Layoff base / Graphite insert



Above: 19 and 4-hole NERVA fuel element extrusion extrusion dies; Left: Graphite extruder with vent lines installed for DU capability



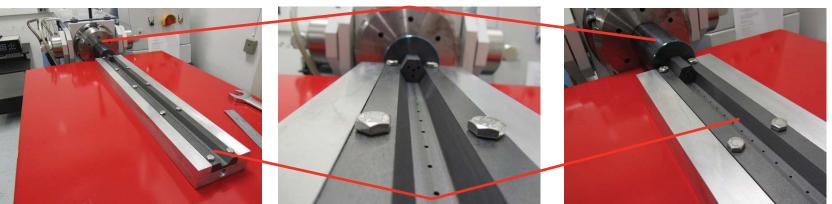
Above and Left: **Extrusion samples** using carbonmatrix/Ha blend 0.75" across flats, 0.125" coolant channels



Above: Test Piece highlighting ZrC Coating **Right: Coating primarily on external surface**

Glenn Research Center -

Beginning of internal channe 200.0 um



NERVA Graphite - Composite Fuel Elements with Protective ZrC Coating are Being Produced Now at ORNL for NCPS Project

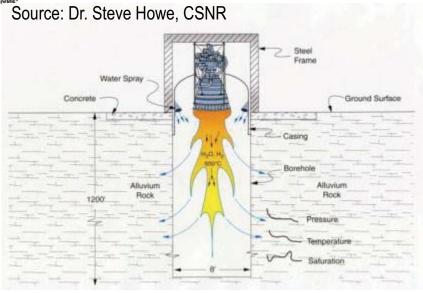
Fuel Fabrication

- Layoff base/graphite insert has been fabricated and installed.
- New feed materials (graphite, resin, and ZrC) have been ordered.
- A new 19-hole extrusion die has been designed and fabricated.
- Modifications have been made to the 4-hole hexagonal die design to reduce friction during extrusion.
- 4-hole fuel elements will be used first to establish ZrC coating specs, then will transition to prototypic NERVA-type 19-hole element.
- Elements with depleted uranium (DU) will undergo rf-heating tests first before enriched uranium elements are tested in DOE reactor.

Layoff Table

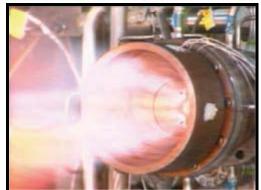
Extruder

- ducted at the Nevada Test Site (NTS) using SAFE (Subsurface Active Filtration of
- Testing should be conducted at the Nevada Test Site (NTS) using SAFE (Subsurface Active Filtration of Exhaust) approach in existing Boreholes.
- NTS provides a large secure, safety zone for conducting NTR testing.
- The Device Assembly Facility (DAF) is located within the NTS and is available for pre-test staging (assembly & "0-power" critical testing) of engine's reactor system prior to transfer to borehole test location also within the NTS.
- DAF is a collection of more than 30 individual steel-reinforced concrete test cells connected by a large rectangular common corridor. Entire complex is covered by compacted earth and spans an area of ~100,000 ft².
- DAF has multiple assembly / test cells; also high bays with multi-ton crane capability. The assembly cells designed to handle weapons grade materials; cells rated for handling up to ~60 kg of enriched U-235 which is twice the amount found in the small 7.42 klb_f NTRE.


Aerial View of the DAF at the Nevada Test Site

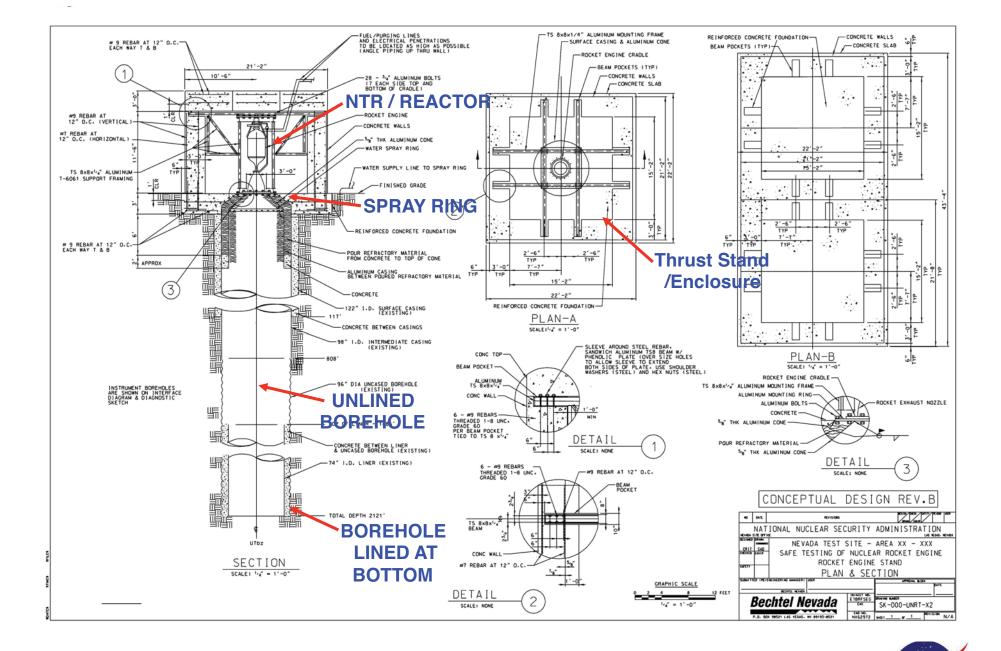
Glenn Research Center -

Non-Nuclear Subscale SAFE Bore Hole Feasibility Test


- Driving the hydrogen exhaust into the alluvium soil at the NTS allows capture of gases in a geology proven to contain heavy elements
- Fission products (if any) exhausted into the hole will be trapped into the soil strata at low concentrations ~10⁻⁹ gms/cm³
- Use of the bore hole as an "in-situ" exhaust scrubber system potentially offers a low cost testing option for NTR
- Potential option is to have a suitably sized subscale validation test performed in the Phase II NCPS effort for ~\$2M
- Component inventory and cost breakdown for subscale test being reevaluated by GRC and DOE to identify potential savings

SAFE: Subsurface Active Filtration of Exhaust

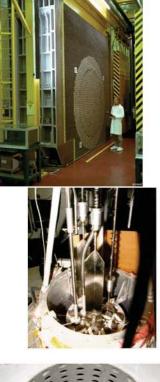
Glenn Research Center -


Schematic at left shows the idealized configuration of the testing concept including the mounting pad, containment, water spray, and dispersion profiles

Aerojet-Rocketdyne' s ~2.1-klbf "fuel rich" H/O engine is an attractive option for non-nuclear, subscale validation testing

Glenn Research Center -

Trailers Configured for Controls and Measurements Readily Moved to Other Test Areas



Other Nuclear Tests

Cold Critical Experiments

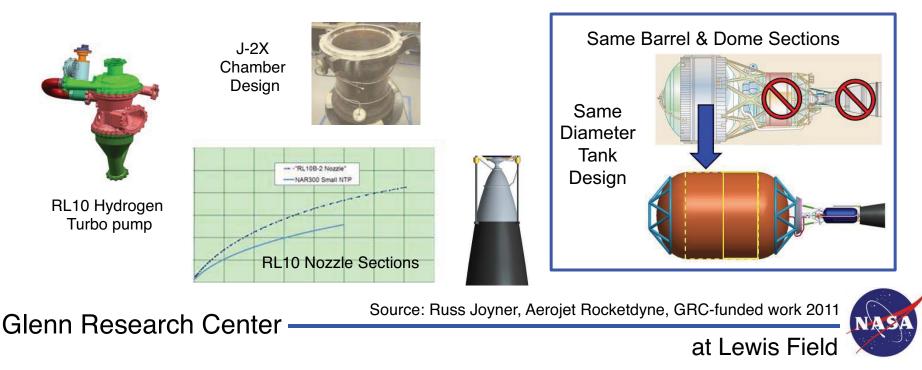
Confirmation of critical configuration Excess Reactivity Static physics/safety parameters

- Hot Critical Experiments
 Kinetics parameters
 Safety coefficients (feedback)
- Gamma/Neutron Exposures
 Irradiations to establish tolerance

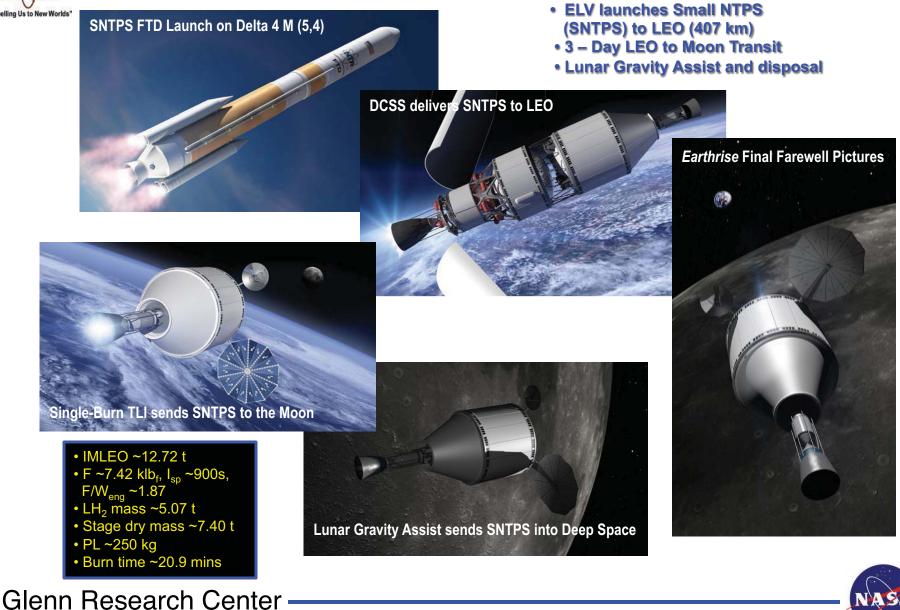
Glenn Research Center -

Small NERVA-derived 7.42 klb_f NTR **Engine Layout and Dimensions**

Aerojet Rocketdyne has been working RL10 Fuel Retracted with GRC to define a small, low thrust Turbopump Length NTR scalable to higher thrust engines 180.6 (in) 459 (cm) Core Core Length PV Dia. Total 35 (in) LO2/LH2 35.9 (in) Length **RL10B-2** 88.9 (cm) 91.2 (cm) 227.6 (in) Tvac 24,750-lbf 578 (cm) Retracted Regenerative Length and 419 cm 180.6 (in) Radiation-cooled 13 ft 459 (cm) Retractable Nozzle Radiation-cooled Section Exit Dia. 47 (in) 52.1 (in) 119.4 (cm) 132.3 (cm) 211 cm 6.9 ft Glenn Research Center -



Current Liquid Rocket and Stage Technologies are Leveraged to Create Affordable NTP Approach


Aerojet Rocketdyne specific chemical liquid rocket engine hardware can be leveraged to reduce the time and cost to develop the small NTP Stage

- The small NTP engine turbo pumps, valves, and nozzles manufactured from same production lines as RL10 and J-2X
 - Small NTP uses RL10 fuel turbopump and nozzle is smaller than current RL10B-2 on Delta 4; could use LOX TP with gas supply to get to Lox-Augmentation of hot hydrogen exhaust
- NTP Stage uses hydrogen tank, avionics, valves from Delta 4 cryogenic stage

2025 Small NTPS FTD Mission: "Single-Burn Lunar Flyby"

Assumptions for "Sporty" SNTPS GTD & FTD Mission Schedule

- A 10-year period to a ground tested "qualification engine" by 2024 is conceivable but challenging and many things must line up / flow well.
- By necessity it would be a success-oriented high–risk activity requiring immediate and serious financial commitments to the following areas:
 - Management and acquisition approach is streamlined
 - Composite fuel is the baseline and fuel element (FE) production levels are scaled up prior to complete verification of all processing activities; Testing conducted in bore holes at NTS
 - NEPA and launch safety analyses is initiated along with ID' ed shipping and ATLO facility mods

• A single co-located nuclear "skunk works" type temporary facility is sited at the NTS near the site of the candidate bore holes. Its function would be reactor assembly, criticality testing, and subsequent disassembly. Required equipment would be procured as "turn-key" for placement in the building. A single hot cell module (similar to that used by the UK at their Sellafield hot cell facility) would be used to disassemble and inspect the reactors after operation. After disassembly, small groupings of parts would be shipped off-site for final disposal in existing shipping casks.

- The GTD program would focus on borehole testing of three units:
 - 1) prototype reactor and engine (80% fidelity) in 2022
 - 2) engineering reactor and engine (90% fidelity) in 2023
 - 3) qualification engine (100% fidelity) in 2024 after qual-level testing (e.g., vibration) in 2023;

The flight unit - identical to the qualification unit - would be launched in 2025

Glenn Research Center

Notional NTP Ground & Flight Test Demonstration Milestone Schedule

D	Task Name	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	202
1	NTP Flight Technology Demonstrator (FTD)														
2	Fuels Selection		Selection												
3	Mission Concept Review	Missio		pt Revie											
4	System Reqmts Review/Mission Definition Review		• 5	System F	Regmts F	Review/M	ission D	efinition	Review						
5	Preliminary Design Review				 Prelim 	inary De	sign Rev	view							
6	Critical Design Review					 Critic 	cal Desig	gn Revie	w						
7	Hot H2 NTREES & Irradiation Testing						 Hot 	H2 NTR	EES & Ir	radiation	Testing				
8	System Integration Review						+	System	Integratio	on Revie	w				
9	Borehole Test Facility														
10	Subscale Validation Testing & GTF Design				Subs	scale Val	idation T	esting &	GTF De	sign					
11	GTF Construction & Asset Installation							GTF C	onstructi	on & As	set Insta	llation			
12	GTF Checkout							i i i i i i i i i i i i i i i i i i i	GTF Che	eckout					
13	Test Facility Critical Decision Reviews														
14	CD-0 : Planning		 CD 	-0											
15	CD-1 : Preliminary Design		+	CD-1											
16	CD-2 : Final Design			+ C	D-2										
17	CD-3 : Construction				+ CD-	3									
18	CD-4 : Checkout							 CD-4 							
19	Stage Design/Development										ge Desig				
20	Stage Flight Article I&T									×	Stage	Flight Ar	ticle I&T		
21	Engine Design/Development								Engine D		evelopm				
22	Engine Integration & Test							1							
23	GTA 1 I&T								GT/	A 1 I&T					
24	GTA 2 I&T									GTA 2	I&T				
25	Engine Qualification Unit I&T									Er	ngine Qu	alificatio	n Unit I&	т	
26	Engine Flight Article I&T										Engine	Flight A	rticle 1&1	г	
27	FTD System Integration & Test										FT	D Syste	m Integra	ation & T	est
28	Launch Processing											Laun	ch Proce	ssing	
29	Launch Approval														
30	Mission Specific Databook				 Missic 	n Specif	ic Datab	ook							
31	PSAR					SAR									
32	USAR					+ USA	R								
33	FSAR							FSA	R						
34	SER									 SER 					
35	NASA/OSTP Review										+	NASA/	OSTP Re	view	
36	Operational Readiness Review													ess Revi	ew
37	Mission Readiness Review													ss Revie	
38	Launch											Laun			

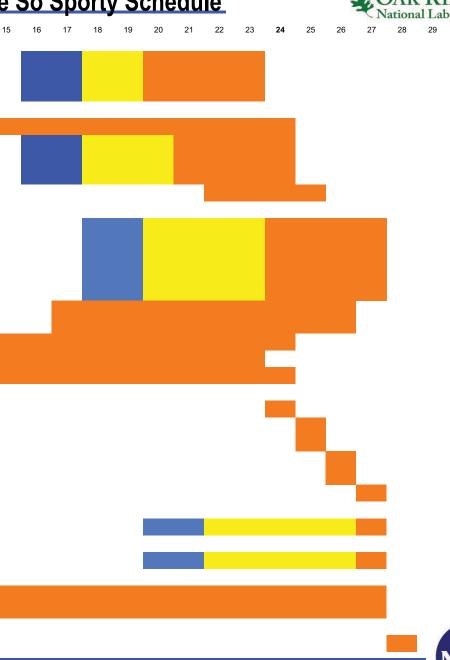
Glenn Research Center ———

Not Quite So Sporty Schedule

Control System Test Facilities Component Safety Test Facilities Training and Simulator Test Facilities

fuel development and testing fuel and material Irradiation test facilities at existing reactor HEU fuel fabrication facility in existing CAT 1 facility fuel qualification

ground test facility assuming borehole testing w/o effluent system reactor assembly facility Remote Inspection/Post-Irradiation Examination Facilities fuel element and bundle separate effects testing for qualification reactor design shield design and fabrication stage integration


> ground test unit ground test ground test unit ground test qualification unit Flight unit

transportation assuming one new shipping cask

CAT 1 Flight Assembly and ATLO facility

Reviews and Approvals from NEPA and facility ORRs through INSRP

Glenn Research Center

Summary and Conclusions

- NASA, DOE (NE-75, ORNL, INL) and industry (Aerojet Rocketdyne) are working together on formulating a strategy leading to the development of a small GTD (~7.5 klb_f) engine in the early 2020's followed by a FTD mission using a small NTP stage (SNTPS) around 2025
- 10-years to a ground tested "qualification engine" by 2024 will require immediate, serious financial commitment along with a streamlined management and acquisition approach *DOE*
- Graphite-based "composite fuel" is the baseline; an engine using this fuel type can be built sooner than one using another less established / less tested fuel at relevant conditions *DOE*
- Testing should be conducted at the NTS using existing bore holes and/or tunnels; should maximize the use of existing facilities and consider temporary new facilities as required; new nuclear infrastructure is a long lead item – DOE
- If graphite-based fuel and borehole testing are not used, years of additional schedule and significant additional dollars will be required *DOE*
- The FTD mission proposed by GRC is a single-burn "lunar flyby" mission to keep it simple and more affordable; small size engine and stage can also reduce development costs & allowing utilization of existing, flight proven engine hardware (e.g., hydrogen pumps and nozzles) *Aerojet Rocketdyne*

If you want to go somewhere soon you need to get moving now - DOE

Glenn Research Center

