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ABSTRACT

Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and
submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them
an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency
domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise
control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum
KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also
present evidence for a double superconducting gap in molybdenum.
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1. INTRODUCTION

Kinetic inductance detectors (KIDs)1 are a type of pair-breaking, superconducting, incoherent detector for
millimeter and sub-millimeter radiation. They have undergone rapid development in the last decade. KIDs have
a broad range of applications in astronomy, quantum computation, parametric amplifiers, and other efforts.3

However as a result of the fundamental requirement that the incident radiation be pair-breaking and of practical
limitations on base temperature, for lower-energy incident radiation it is more difficult to design a practical KID
that will not be limited by thermal noise at practical bath temperatures. One of the primary aims of this work
is to push the long wavelength limit of KIDs in order to make them useful for cosmic microwave background
(CMB) applications. The detectors described in this work were designed for the 100 GHz module of the QUBIC
telescope,2 a bolometric interferometer which will be fielded at the Concordia Station in Antarctica for studying
CMB polarization.

2. DESIGN

We selected Mo for the resonator layer due to constraints on Tc, the superconductor critical temperature; we
require a Tc � 1.3 K to be pair-breaking with 100 GHz radiation, and Tc � 0.7 K to avoid being thermal noise
dominated at our laboratory base temperature of 150 mK. Tc = 0.915 for bulk samples of Mo and is higher for
very thin films. TiN is another material that can meet these Tc requirements and has other desirable properties
for KIDs, including quasiparticle recombination time and density of states. However due to fabrication challenges
we decided to work with Mo at present; we plan to pursue TiN in future rounds of fabrication. In order to achieve
the high sheet resistance required to attain a good match to free space and good optical coupling, we require
very thin films of Mo. The prototype chip described here has a Mo resonator film with a profilometer-measured
thickness of 9 nm. The film is highly tensile (∼900 MPa), however measured sheet resistance and Tc were within
the expected range, suggesting that the film is of acceptable quality.

The detector is a lumped-element KID (LEKID) featuring an integrated Nb groundplane (Figure 1, left),
on the back side of the wafer, which serves several purposes: it acts as a groundplane for the microstrip res-
onator and readout transmission line features on the wafer frontside; it provides lossless isolation of the chip
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Figure 1. Left: Crossection of the inductor section of one pixel, showing the Mo meanders at the top, Si substrate, and
the integrated Nb groundplane at the bottom. Not to scale. Right: Top view of a single pixel. Note the intermediate
length of the 6th interdigitated capacitor finger, which tunes the resonant frequency.

Figure 2. CST simulation of the reflectance of the inductor section of the pixel design. Low reflectance corresponds to
high optical efficiency. The highlighted band indicates the frequency range of the ∼100 GHz atmospheric window.
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Figure 3. Internal quality factor for the 16 resonators with measurable Qs (resonators 5 and 17 were too faint to measure Q
and no data was taken at the 8th resonator’s frequency for logistical reasons) are shown over a range of bath temperatures.
The heavy dotted black line indicates the theoretical internal Q based on fundamental thermal quasiparticle loading only.

from the lossy copper chip holder package; and it provides a quarterwave backshort for the incoming optical
radiation, which substantially improves optical efficiency(Figure 2). To achieve quarterwave spacing for the
backshort/groundplane, Si wafers with a made-to-order thickness of 230 ± 25 μm were specified. The actual
thickness of the wafers used was 232 ± 3 μm. The resonator design (Figure 1) features an inductor with 10
meanders, 33 μm wide, with a pitch of 415 μm. The interdigitated capacitor has 6 fingers with width 20 μm
and spacing 20 μm. This results in a geometric inductance of 60 nH, and a capacitance of 1.0 pF. For the the
9 nm thick Mo used for the resonators described here, we expect a kinetic inductance of 31 nH. Therefore, the
expected resonant frequency is 527 MHz. The resonant frequencies of the pixels are tuned for multiplexing by
varying the length of the last capacitor finger and by adding additional inductor meanders. We have chosen a
relatively low readout frequency because of the advantages in reducing TLS noise3 and because this reduces the
cost of some of the room temperature readout electronics.

3. FABRICATION

The prototype detector chips were fabricated in the Detector Development Laboratory at NASA Goddard
Space Flight Center. There are three patterned frontside layers plus one unpatterned integrated Nb ground-
plane/backshort on 40 Ωcm, 230 μm thick Si(001) wafers. At cryogenic temperatures the conductivity of silicon
arising from free carriers freezes out and the microwave attenuation is limited by dielectric loss. Frontside layers
are: A Nb microstrip readout line, Au heat sinking pads with Ti underlayer for improved adhesion, and Mo
microstrip resonators.

4. MEASUREMENTS

Measurements were conducted in a laboratory cryostat, using an adiabatic demagnetization refrigerator (ADR)
pre-cooled with a pumped liquid helium bath. Typical base temperatures are ∼150 mK, and the temperature
of the cold plate can be controlled between the base temperature and ∼3 K by ramping the ADR magnet. The
ADR is controlled by a 3 T superconducting solenoid magnet which is installed in a magnetically shielded housing
to reduce the risk of the ADR field affecting device measurements. Measurements so far have focused on the
resonator quality factors and center frequencies under various bath temperature and magnetic field conditions.
Future work will seek to measure noise and optical responsivity.
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4.1 Resonator Quality Factors

Internal, coupling and total resonator quality factors - Qi, Qc, and Qt respectively - were measured for the 18
detectable resonances on the test chip. At the coldest bath temperatures, the highest Qis were nearly an order
of magnitude lower than expected. The internal Q saturates at a maximum value at low temperature, indicating
that there is some unknown source of temperature-independent dissipation which dominates at low temperature.
Figure 3 shows the dependence of internal Q on temperature, with 0 normal component of Earth’s magnetic field
(a discussion of chip orientation with respect to Earth’s magnetic field can be found in section 4.2).

4.2 Magnetic Field Trapping

One possible source of Q degradation is magnetic field trapping. If there is a finite magnetic field component
normal to the plane of the inductor at the moment when it passes through the superconducting transition,
magnetic flux can be trapped by the superconducting material, which can decrease the gap parameter, decreasing
Q.1 In an effort to identify the cause of the degraded internal quality factors, Qs were measured with the cryostat
in three different orientations relative to Earth’s magnetic field: 180 mG component of BEarth normal to the chip,
47 mG normal to the chip, and 0 mG normal to the chip. The chip was heated above the transition temperature
of the Nb groundplane and re-oriented between measurements to ensure all trapped flux during the measurements
was associated with the intended cryostat orientation. Error in cryostat orientation is approximately 5◦, or about
16 mG.

Results are summarized in Table 1 where a representative sample of measured Qis for the first 7 detectable
resonances are shown at similar temperatures for the three orientations with respect to Earth’s magnetic field.
As expected, the highest Qis were observed in the 0 mG normal field orientation, with an average Qi of 4300
for the 7 resonators shown in detail in the table, or 3500 for all 18 resonators detectable at that temperature.
The average Qi in the maximum normal field component orientation was cut by more than half compared to 0
normal field. The intermediate orientation, at 47 mG, was degraded by about 10% compared to the 0 mG case.

Table 1. Measured Qs for the first 7 detectable resonances. A 180 mG decrease in the normal component of BEarth

doubles the average measured Qi.

Resonance number 180 mG normal
B field, 201 mK

0 mG normal B
field, 219 mK

47 mG normal
B field, 204 mK

1 2100 4700 4900

2 2000 3100 3200

3 2700 5000 3900

4 2200 4400 4100

6 2100 4700 3700

7 2000 4500 3500

9 1500 3400 3700

average Qi 2100 4300 3800

percent of max 48% 100% 89%

We conclude that magnetic flux trapping can have a significant effect on observed internal resonator quality
factors in KID devices, however cryostat orientation is not sufficient to relieve the tension between our measured
and expected Qs. Magnetic field orientation will nonetheless be important consideration in the design of KID-
based systems requiring high quality factors.

4.3 Double-gap behavior in Mo

A number of superconducting materials are know to exhibit “double-gap” behavior;4–8 magnesium diboride is
especially well-represented in the literature. In a double-gap superconductor, some of the conduction electrons live
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Figure 4. Shown here is the frequency and temperature data (circles), plotted as described in section 4.3. The dashed line
is a simple single-gap expectation from Matis-Bardeen with α = 0.27 and ρ = 200μΩcm. The solid line is a fit allowing
for two superconducting gap energies. Gaps of 0.75 × ΔBCS and 0.40 × ΔBCS , with 89.9% and 11.1% of the electron
states respectively, give the best fit.

in a low-gap state and some live in a high-gap state. Because electrons occupying these states are intermingled in
physical space, they proximitize and a simple DC critical temperature measurement reveals a single Tc. However,
one expects the internal quality factor in a double gap material to be degraded relative to the Qi expected based
on the DC critical temperature; electrons in the low-gap state see a much higher bath temperature to Tc ratio,
which results in a larger than expected population of thermally excited quasiparticles. To detect a double gap in
a superconducting material, one can measure the dependence on temperature of a superconducting resonator’s
resonant frequency. If the data is a good fit for one BCS gap at high temperatures and a good fit for a different
BCS gap at low temperatures, this is evidence for a double gap or multi-gap material. This behavior is easiest
to see and understand by looking at the dependence on 1/T of log(1 − (f(T )/f(0))2), which should be linear
with a slope m = −Δ/k in the low-temperature limit. Figure 4 shows the 0 mG BEarth data from the test chip
displayed in this manner. The dashed line shows the relatively poor best fit for a simple single-gap model. The
solid line shows a substantially better fit to the data by allowing 11.1% of the 1/Lk to come from a low-gap state
with Δ = 0.4 ×ΔBCS (i.e. a superconducting energy gap which is only 40% of the gap energy expected from
a simple BCS prediction) and the remainder of 1/Lk coming from a typical gap state with Δ = 0.75 ×ΔBCS .
Figure 5 shows an alternative view of the same data set, now with inverse internal quality factor and inverse
bath temperature for two resonators with the lowest and highest internal Qs. The solid line shows the expected
Qis for a simple two-gap model with parameters as described in figure 4. However, figure 3 shows that at low
temperature, Qi saturates as a result of an unknown temperature-independent dissipation. The dashed lines
show the two-gap prediction for Qi with two different constant values added in to account for the unknown
additional dissipation. When the additional constant dissipation term is included, the two-gap model is a good
fit for the data.

An alternative explanation for this data is the Klapwijk model for gap broadening in disordered superconduc-
tors.9 Distinguishing the two-gap model from the gap-broadening model in our samples will require additional
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Figure 5. Two-gap fit to the data, with and without an additional temperature-independent dissipation term. The purple
circles are the data from the resonator with the lowest internal Q. The blue x marks are the data from the resonator
with the highest internal Q. The green triangles are the data from the resonator with the best-matched coupling Q,
Qc = 1 × 104. The solid blue line is the expectation for a simple two-gap model. The dashed blue and green lines are
expectations for two gap models with, respectively, 1.5× 10−4 and 2.5× 10−4 added to 1/Qi to account for the observed
temperature-independent dissipation.

data.

5. CONCLUSIONS

We are developing a prototype KID array for the QUBIC telescope, optimized for 3 mm observations at 100
mK. We observe significantly lower than expected Qs in our resonators. These low total quality factors are
attributable to lower than expected internal quality factors, however we have not yet definitively determined
the source of the unanticipated internal dissipation. We have determined that orientation of the detector chip
relative to Earth’s magnetic field is an important consideration, however this is insufficient by itself to explain
the discrepancy between observation and theory.

There is some concern that, despite the magnetically shielded housing for the 3 T ADR magnet, there may
be enough field leakage that the device quality factor may be affected. The worst-case leaked field from the ADR
perpendicular to the plane of the chip is of the same order as Earth’s magnetic field, however we believe the
actual leaked field is likely to be much smaller than Earth’s field. Future work will include measuring the actual
ADR field near the chip during a cooldown and adding additional magnetic shielding either to the ADR housing
or to the chip housing based on simulations currently underway.

We have also found some evidence for double superconducting gap behavior in the Mo resonators. The low-
gap population of electrons may be sufficient to relieve the tension between the expected and observed internal
quality factors, however additional data will be required to definitively confirm or rule out this explanation.
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