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Christian Boulet,1,a) Qiancheng Ma,2 and Franck Thibault3
1Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS (UMR8214) and Université Paris-Sud, Bât. 350,
Campus d’Orsay F-91405, France
2NASA/Goddard Institute for Space Studies and Department of Applied Physics and Applied Mathematics,
Columbia University, 2880 Broadway, New York, New York 10025, USA
3Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, Bât. 11B,
F-35042 Rennes, France

(Received 27 December 2013; accepted 5 February 2014; published online 26 February 2014)

A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C.
Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into
account line coupling effects and hence allows the calculation of the off-diagonal elements of the
relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formal-
ism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum
relaxation matrix has recently been proposed. The consequences of the classical path approxima-
tion are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in
the right direction, these corrections appear to be too crude to provide off diagonal elements which
would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In
order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the
off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the
(re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman
spectra of N2, opening the way to the analysis of more complex molecular systems. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4865967]

I. INTRODUCTION

As is well known, within the binary collision and im-
pact approximations, the spectral density may be written in
terms of a relaxation matrixW, which contains all the dynam-
ics of the active molecule-bath interactions and which is gen-
erally not diagonal within the line space.1 At low perturber
pressures, when the isolated line approximation is applica-
ble, only the diagonal elements are important; these define
the Lorentzian line widths (γ k) and shifts. At higher pressures
(depending on the distance between adjacent components),
the lines overlap and the off-diagonal elements of the W ma-
trix can no longer be neglected since they lead to line mixing
effects, i.e., transfer of intensity among the various lines.

Therefore, determination of the whole relaxation matrix
W (i.e., including its non-diagonal elements) is essential. Most
of the theoretical analyses have been based on fitting or scal-
ing laws, and calculations from first principles starting from a
given potential energy surface appeared only recently, thanks
to progress in computing power. Of course, a full quantum
theory, at the Close Coupling (CC) level is the most accurate
approach. However, the very large number of coupled chan-
nels involved renders CC calculations unfeasible for complex
molecular systems except for those consisting of two diatomic
molecules (in limited situations2,3) or even simpler ones.4–6

In an attempt to overcome this difficulty, alternative approx-
imate theories have been developed, either purely classical7
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or semi-classical.8–10 However, it can be reasonably claimed
that the calculation of the whole relaxation matrix for com-
plex molecular systems, starting from the knowledge of the
intermolecular potential remains an open problem.

If one considers only the diagonal elements of W, un-
til recently, it was believed that the ultimate refinement of
the Anderson-Tsao-Curnutte theory, known as the Robert-
Bonamy formalism,11 can treat molecule-molecule systems
reasonably well. However, a recent series of papers have
shown that this can be achieved only if the intermolecular
potential is adjusted.12,13 When there is no room to adjust
the potential (as in those cases where the potentials are accu-
rately known), the RB formalism significantly overestimates
the halfwidths, at least for the systems investigated in these
works. In a recent paper,14 we have shown that part of that
deficiency was due to an oversimplification of the RB formal-
ism: the neglect of the non diagonality (within the line space)
of the matrix elements of the cumulant expansion of the Liou-
ville scattering operator Ŝ. By removing this approximation,
i.e., by including line coupling into the formalism one ob-
tains better results, at least for the calculated halfwidths of the
Raman Q lines of the N2-N2 pair, for which benchmarking
CC results were available.12, 15 Moreover it becomes possible,
with this new formalism to calculate not only the diagonal
elements of W but also its off-diagonal elements as well, giv-
ing us an opportunity to propose a method allowing line mix-
ing effects to be considered for complex molecular systems
(like a mixture of polyatomic molecules). In the present paper,
we will still test the new formalism on the Raman isotropic
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spectra of N2 which is now possible after recent fully quan-
tum calculations of W.16

Section II gives a brief summary of the symmetrized re-
fined RB formalism which is then applied to the N2-N2 sys-
tem with a particular emphasis on the various rules that must
be verified by the non-diagonal elements. As will be shown,
the semi-classical frame leads to some deficiencies in the for-
malism. Sections III and IV propose a number of correction
schemes in order to obtain a very reasonable agreement with
the quantum data.

II. THEORY

A. General expressions

As is well known, within the binary collision and impact
approximations, the spectral density can be written as1

F (ω) = 1

π
Im

∑
k,l

dl〈l| 1

ω − L0 − iW
|k〉dkρk, (1)

where ρk = (2j i
k+1)
Z

e−βEi
k is the population of the initial level

of the transition k ≡ i → f, dk is the reduced matrix element
of the tensor coupling matter and light (assumed to be real),
and L0 is the diagonal matrix of transition frequencies.
Equation (1) which was used in the quantum study pre-
sented in Ref. 16 is based on the Gordon’s convention4

since the population ρk appears in that equation. Con-
versely, the formalism developed in Ref. 14 is based
on the Ben-Reuven’s convention17 and uses, for ex-
ample, the matrix element of the density operator,
exclusive of the degeneracy factor ρ̃k = e−βEi

k /Z. Moreover,
in the following, we will consider a symmetrized version
of the formalism previously developed in Ref. 14. With a
symmetrization of the density matrix,18 Eq. (1) can also be
written as

F (ω) = 1

π
Im

∑
k,l

d̃l

√
ρ̃l〈l| 1

ω − L0 − iW̃
|k〉

√
ρ̃kd̃k. (2)

The correspondence between the two conventions may be
quickly retrieved as shown in Appendix A. In the following,
numerical calculations will be made starting from Eq. (2),
W̃l,k matrix elements will be then transformed into Wl,k el-
ements in order to compare with the quantum results of
Ref. 16.

We have shown in Ref. 14 that a correct way of applying
the cumulant expansion, based on a new choice of the implied
average, allows line coupling effects to be taken into account.
Following Ben-Reuven17 we define a basic vector of the line
space by

|k〉 ≡ |f i, JMJ 〉〉
=

∑
mimf

(−1)ji−mi C(jf jiJ,mf − miMJ )|f mf imi〉〉. (3)

Then, a matrix element of the relaxation matrix W̃ may
be expressed in terms of the average of the Liouville scat-
tering operator Ŝ over the internal degrees of the bath

molecule:

W̃f ′i ′,f i ≡ W̃l,k

= nbv̄

2πc

1

(kBT )2

∞∫
0

dEkinEkine
−βEkin

×
+∞∫

rc,min

2π

(
b

db

drc

)

× drc{δi ′iδf ′f − 〈〈f ′i ′, JMJ |〈Ŝ〉|f i, JMJ 〉〉}.
(4)

As detailed in Appendices A and B of Ref. 14, 〈Ŝ〉 is
expressed via a second order cumulant expansion and a re-
fined definition of the average 〈. . . 〉. This definition must be
adapted to the symmetrized version of the formalism. We give
this in Appendix B together with some elements allowing to
build the symmetrized formalism by following the procedures
detailed in Ref. 14.

B. Application to the autoperturbed N2 isotropic
Raman Q branch

Recently, we have reported a quantum calculation of the
corresponding W matrix based on the potential energy sur-
face (PES) of Ref. 19. Using the same potential, we can check
the accuracy of the new formalism by comparing our results
with those of Ref. 16. Since the PES of Ref. 19 does not con-
tain any vibrational dependences, S1 disappears. Moreover for
isotropic Raman Q branches (labelled here by a single quan-
tum number since ji = jf ≡ j1), within the rigid rotor approx-
imation, S2 is purely real, so that a matrix element of W̃ may
be simply written as

W̃ (j ′
1, j1; T ) ≡ 〈Q(j ′

1)|W̃ |Q(j1)〉 ≡ 〈j ′
1|W̃ |j1〉

≡ n2v̄

2πc
σ̃ (j ′

1, j1; T ), (5)

where the cross-section σ̃ (j ′
1, j1; T ) includes a Boltzmann av-

erage over the initial relative kinetic energy:

σ̃ (j ′
1, j1; T )

= 1

(kBT )2

∫ ∞

0
σ̃ (j ′

1, j1;Ekin) exp(−Ekin/kBT )EkindEkin.

(6)

Cross-sections were calculated over a large grid of kinetic en-
ergies, Ekin/kB : 50, 100, 150, 200, 250, 296, 300, 350, 400,
450, 500, 600, 800, 1000, 1200, 2080, and 2400 K.

For a given kinetic energy, the cross-section contains an
average over all collisional trajectories labelled by the dis-
tances of closest approach rc :

σ̃ (j ′
1, j1;Ekin) = 2π

∞∫
rc,min

drc

(
b

db

drc

)

× {
δj ′

1j1
− 〈j ′

1|e−S2(rc,Ekin)|j1〉
}
. (7)

As detailed in the previous paper,14 after all the matrix ele-
ments of e−S2 within the line space are available, it is easy
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TABLE I. Matrix elements σ̃ (j ′
1, j1;Ekin) for Ekin/kB = 377 K (in Å2) and even j’s.

86.44 11.05 − 4.55 − 3.11 − 2.41 − 1.84 − 1.34 − 0.92 − 0.57 − 0.32 − 0.15 − 0.06 − 0.02
− 11.06 71.59 − 12.51 − 7.38 − 5.59 − 4.24 − 3.09 − 2.11 − 1.32 − 0.74 − 0.35 − 0.13 − 0.04
− 4.55 − 12.51 66.12 − 12.05 − 8.19 − 6.07 − 4.39 − 3.01 − 1.90 − 1.07 − 0.52 − 0.20 − 0.06
− 3.12 − 7.38 − 12.05 62.91 − 12.56 − 8.27 − 5.85 − 3.99 − 2.53 − 1.44 − 0.71 − 0.29 − 0.09
− 2.41 − 5.59 − 8.19 − 12.56 61.32 − 12.71 − 7.95 − 5.30 − 3.37 − 1.95 − 0.98 − 0.41 − 0.13
− 1.84 − 4.24 − 6.07 − 8.27 − 12.71 59.74 − 12.67 − 7.47 − 4.66 − 2.72 − 1.41 − 0.61 − 0.21
− 1.35 − 3.09 − 4.40 − 5.85 − 7.95 − 12.67 57.78 − 12.62 − 6.99 − 4.02 − 2.11 − 0.95 − 0.34
− 0.92 − 2.11 − 3.01 − 3.99 − 5.30 − 7.48 − 12.62 55.29 − 12.59 − 6.50 − 3.39 − 1.56 − 0.58
− 0.58 − 1.32 − 1.90 − 2.53 − 3.37 − 4.66 − 6.99 − 12.59 52.19 − 12.56 − 5.97 − 2.75 − 1.07
− 0.32 − 0.74 − 1.07 − 1.44 − 1.95 − 2.72 − 4.02 − 6.50 − 12.56 48.46 − 12.48 − 5.34 − 2.12
− 0.15 − 0.35 − 0.52 − 0.72 − 0.99 − 1.41 − 2.11 − 3.39 − 5.97 − 12.48 44.18 − 12.23 − 4.59
− 0.06 − 0.14 − 0.20 − 0.29 − 0.41 − 0.61 − 0.95 − 1.56 − 2.75 − 5.34 − 12.23 39.43 − 11.75
− 0.02 − 0.04 − 0.06 − 0.09 − 0.13 − 0.21 − 0.34 − 0.58 − 1.07 − 2.12 − 4.59 − 11.75 34.37

to calculate the whole relaxation matrix. The intermolecular
potential, and consequently e−S2 do not allow interconversion
between ortho and para species. As a result one can divide
the whole line space into two independent subspaces corre-
sponding, respectively, to even and odd j1 lines. By setting
their limits, respectively, to j1 = 30 and j1 = 31 we have cal-
culated two 16× 16 sub-matrices of W̃ . Here we only present
matrices corresponding to ortho-N2. Table I gives the matrix
elements σ̃ (j ′

1, j1;Ekin) for a given kinetic energy.
As expected the matrix is symmetric. Consequently, af-

ter averaging over the kinetic energy (cf. Eq. (6)), the non-
diagonal elements will verify the detailed balance relation
(Eq. (A10) in the symmetrized form). As may be shown by
comparing with the initial (unsymmetrized) version of the
model,14 this is a consequence of the use of a symmetrized
formalism, which automatically provides a matrix verifying
the detailed balance principle.

We present in Fig. 1 a comparison between some semi-
classical off-diagonal cross-sections and the CC/CS results of
Ref. 16 for some given values of j1. Note here that Eq. (A7)
which gives the correspondence between the conventions of
Gordon and Ben Reuven has to be written within the semi-
classical approximation. Indeed, our semi-classical formalism
is a “classical path” formalism where the rotational degrees of
freedom are treated quantum mechanically while translation
is treated classically, neglecting any exchange of energy be-
tween translation and rotation, by assuming that

|Ej ′
1
− Ej1 | � kBT ⇔ ρ̃(j ′

1)

ρ̃(j1)
≈ 1. (8)

Inserting Eq. (8) into Eq. (A7) gives

σSC(j
′
1, j1; T ) =

√
(2j ′

1 + 1)

(2j1 + 1)
σ̃ (j ′

1, j1; T ). (9)

From Fig. 1, it appears that even if the rotational distribution
is reproduced reasonably well, the agreement is not so good,
particularly for upward cross-sections (j′1 > j1), which cor-
respond precisely to the greater inelasticity. They contribute
mainly to the overestimation of the linewidths. For such up-
ward transitions, the cross-sections must vanish if the inelas-
ticity is greater than the available kinetic energy, and as is
known, an obvious failure of the semi-classical scheme is the

prediction of non-zero value for such processes. Moreover,
as recalled above, the semi-classical formalism neglects any
exchange of energy between translation and rotation. As ex-
pected, such an approximation fails for high inelasticity, lead-
ing to important deviations in the calculation of the corre-
sponding cross-sections.

We now consider the sum rule (Eqs. (A9) or (A12)). In
the particular case of isotropic Raman spectra and when the
collision dynamics do not depend on vibrational motion, this
rule holds.16 Starting from Table I, one can easily establish
that the semi-classical cross-sections verify the following sum
rule:

σ̃ (j1, j1;Ekin) = −
∑
j ′
1 �=j1

√
(2j ′

1 + 1)

(2j1 + 1)
σ̃ (j ′

1, j1;Ekin)

≡ −
∑
j ′
1 �=j1

σSC(j
′
1, j1;Ekin). (10)

After averaging over Ekin, one obtains

σ̃ (j1, j1; T ) = −
∑
j ′
1 �=j1

√
(2j ′

1 + 1)

(2j1 + 1)
σ̃ (j ′

1, j1; T ), (11)

which must be compared to Eq. (A12). This result was not un-
expected since it is also a consequence of the semi-classical
approximation (Eq. (8)). In other words, the semi-classical W
matrix elements verify the semi-classical approximation of
the exact quantum sum rule, since instead of Eq. (A12) one
has

W̃kk ≡ γk = −
∑
l �=k

√
(2jl + 1)

(2jk + 1)
W̃lk. (12)

This is also a clear indication of one of the weaknesses re-
maining in our refined formalism, even after including line
coupling effects. Indeed, our semi-classical formalism still
overestimates the halfwidths, although by a smaller amount
than the former Robert-Bonamy formalism. Our results (black
squares) are plotted in Fig. 2 and compared with the CC/CS
results (blue triangles).

From the present analysis, it appears that part of the
remaining differences may be a consequence of the semi-
classical approximation. Indeed, since the half-width is con-
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FIG. 1. Comparison of the present semi-classical calculations with the quan-
tum data of Ref. 16 for selected off-diagonal matrix elements (in 10−3 cm−1
atm−1) at T = 298 K; j1 = 4 (a), 6 (b), and 8 (c). (J stands for j1 and J′ stands
for j′1).

nected to the off-diagonal elements via the sum rule, an
overestimation of the amplitude of these off-diagonal ele-
ments (which are negative) leads automatically to an overes-
timation of the linewidth.

It will be therefore of interest to try to overcome this
limit, i.e., to take into account, at least in a simple way, the

FIG. 2. Comparison between calculated halfwidths (in 10−3 cm−1 atm−1)
for N2-N2 at T = 298 K; semi-classical diagonal elements of Table I (black
squares), SC diagonal elements making use of Eqs. (15) and (A12) (red disks)
and CC/CS results (blue triangles).

exchange of energy between translation and rotation during
inelastic processes. This is the goal of the following sections
which present possible directions of improvement, following
previous works on this topic.

III. HOW TO IMPROVE THE SEMI-CLASSICAL
FORMALISM

In the semi-classical scheme of the RB formalism, the
single classical trajectory is driven by the isotropic part of the
potential, and consequently the kinetic energy is conserved
(and not the total energy). Therefore, following Billing,20 we
will consider that the constant kinetic energy U which drives
the trajectory is some average kinetic energy and not the ini-
tial one. We assume that it can be defined in terms of an effec-
tive velocity veff = v+v′

2 equal to the arithmetic mean of the
relative velocities before (v) and after (v′) the inelastic colli-
sion:

Ekin + E(j1) = 1

2
μv′2 + E(j ′

1), (13a)

so that

U ≡ 1

2
μv2eff = 1

4

{√
Ekin +

√
Ekin + E(j1)− E(j ′

1)

}2
(13b)

(μ is the reduced mass of the colliding pair). Equation (7) then
becomes

σ̃ (j ′
1, j1;Ekin) = 2π

∞∫
rc,min

drc

(
b

db

drc

)

× {
δj ′

1j1
− 〈j ′

1|e−S2(rc,U )|j1〉
}
, (14a)

and, in order to work within the Gordon’s convention, one
also introduces

σ (j ′
1, j1;Ekin) =

√
(2j ′

1 + 1)

(2j1 + 1)
σ̃ (j ′

1, j1;Ekin). (14b)
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As is known,20 this has the advantage of forcing σ (j′1,
j1; Ekin) to zero below the threshold of excitation. But it is
therefore necessary to re-establish the microscopic reversibil-
ity (and consequently the detailed balance after averaging
over the kinetic energy). Following Davis and Boggs21 and
McCann and Flannery,22 an additional correction has been
added, interpreted in Ref. 22 as a “counting of trajectories”.
Instead of Eq. (14a), we use therefore

σ̃ (j ′
1, j1;Ekin)

= 2π

√
(Ekin + E(j1)− E(j ′

1))

Ekin

×
∞∫

rc,min

drc

(
b

db

drc

){
δj ′

1j1
− 〈j ′

1|e−S2(rc,U )|j1〉
}
. (15)

Finally, the T dependent cross-sections are obtained from the
average over the Boltzmann distribution of kinetic energies.
Some results are given in Fig. 3 and compared with the CC/CS
results of Ref. 16.

Comparing Figs. 1 and 3, it appears that these new
results are, on the average, in better agreement with the
fully quantum results, particularly for the upward transitions
(j′1 > j1) but not for the downward ones at low j1 (see for in-
stance j1 = 4). As a consequence the sum rule, when evaluated
with the new off-diagonal elements leads to halfwidths which
still strongly differ both from the (unchanged) semi-classical
diagonal elements and from the CC/CS data, as seen in
Fig. 2 (red dots). If the agreement with the benchmark data is
better for high j1, the halfwidths are conversely smaller than
the CC/CS references at low j1.

At this stage, it appears that the semi-classical scheme,
while leading to a reasonable description of the relaxation
matrix elements with off diagonal elements verifying the de-
tailed balance, still fails to provide, via the sum rule, diago-
nal elements in good agreement with the CC/CS references.
It is clear that further work is needed in order to introduce
exchange of translation and rotation energies and angular mo-
mentum in a more accurate way in the formalism since the
very simple method introduced here, while going into the
right direction, appears to be too crude.

In some sense, this situation is similar to that encountered
in the application of the ECS formalism to the calculation of
the relaxation matrix.1, 23 In this method, any non-diagonal el-
ement ofW may be expressed in terms of a set of “fundamen-
tal” basic cross-sections σ (L, 0; T) and an adjustable scaling
length lc. This set and lc are then obtained from the observed
line widths by a least square fit based on the sum rule. Of
course, with such a procedure, residuals subsist between ob-
served and ECS optimized widths (generally around 15%),
which may lead to important errors in the calculation of the
spectral line shape in regions extremely sensitive to the accu-
racy of the sum rule (for instance the wings; see Ref. 23). To
overcome this difficulty, Niro et al.23 have proposed a renor-
malization procedure, forcing the off-diagonal elements to re-
produce exactly the observed widths via the sum rule, while
still satisfying the detailed balance. Such a method can be also
applied here.
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FIG. 3. Comparison of room temperature selected off-diagonal elements
(in 10−3 cm−1 atm−1) corrected from both inelasticity and microscopic re-
versibility with the quantum data of Ref. 16; j1 = 4 (a), 6 (b), and 8 (c). (J
stands for j1 and J′ stands for j′1.)

IV. RENORMALIZATION PROCEDURE

The reader will find in Ref. 23 a detailed description of
the renormalization procedure. Here we impose the diagonal
elements to be equal to the CC/CS data. Then we renormal-
ize results of Sec. III according to the method of Ref. 23.
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FIG. 4. Comparison of room temperature selected renormalized semi-
classical off-diagonal elements (in 10−3 cm−1 atm−1) with the quantum data
of Ref. 16; j1 = 4 (a), 6 (b), and 8 (c). (J stands for j1 and J′ stands for j′1.)

Comparisons between “renormalized” and CC/CS off-
diagonal elements are illustrated in Fig. 4, showing that, in
most cases, differences are now small.

Although empirical, this procedure offers the possibil-
ity of applying the improved Robert-Bonamy formalism to
practical situations encountered in various fields (atmospheric
physics, combustion diagnostic, etc.) where one has to calcu-

late a “realistic” relaxation matrix for complex molecular sys-
tems. By “realistic” we mean here that the W relaxation ma-
trix, as calculated by the refined RB method, can be normal-
ized to observed widths as given for instance in spectroscopic
data bank.

V. CONCLUSION

This study has demonstrated that the refined RB formal-
ism can provide semi-quantitative information on the relax-
ation matrix for complex molecular systems. The approach
includes rotational levels of the perturber (which we do
not assume to be an effective atomic perturber), and conse-
quently resonance effects that may modify the intensity of the
coupling.

Of course, the refined RB method remains a semi-
classical formalism in which energy exchange between trans-
lation and rotation is neglected. Consequently the relaxation
matrix elements cannot verify at the same time both detailed
balance and the sum rule. Following Davis and Boggs,21 we
have tried to introduce such exchanges into the formalism
in a very simple way. However, these corrections, while go-
ing in the right direction, were too approximate to provide
linewidths via the sum rule in good agreement with the CC/CS
references. In our opinion, attention should now focus on the
development of techniques for taking into account more ac-
curately the exchange of rotational and translational energies
and angular momentum during the collisions.

Meanwhile, we have proposed a method to circumvent
this difficulty, forcing the off-diagonal elements of the RB-
refined formalism to exactly reproduce a given set of line
widths. This procedure, when applied to the isotropic Ra-
man spectra of N2, gives good results. It may be also applied
to more complex molecular systems encountered in various
fields of applications. Some such systems were discussed in
the conclusion of Ref. 14. In a forthcoming paper, we will
consider another test case: the infrared spectra of C2H2 per-
turbed by N2 for which a new model potential has recently
become available.26 One could apply the present method to
calculate the relaxation matrix W of this system and to ana-
lyze the intrabranch (R-R; P-P) as well as interbranch (R-P)
coupling.
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APPENDIX A: COMPARISON BETWEEN DIFFERENT
CONVENTIONS

In Gordon’s convention,4 which is used by Thibault
et al.,16 the spectral density is written as

F (ω) = 1

π
Im

∑
k,l

ρkdkdl〈l| 1

ω − L0 − iW
|k〉, (A1)
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where

ρk =
(
2j i

k + 1
)

Z
e−βEi

k = (
2j i

k + 1
)
ρ̃k, (A2)

with

ρ̃k = 1

Z
e−βEi

k . (A3)

ρk is the population of the initial level of the kth transition,
while ρ̃k is the population exclusive of the degeneracy factor
(for simplicity, we omit here all spin factors).

Here, however, we use a different convention derived
from Ben Reuven’s one17 writing the spectral density in a
symmetrized form as

F (ω) = 1

π
Im

∑
k,l

√
ρ̃l d̃l〈l| 1

ω − L0 − iW̃
|k〉

√
ρ̃kd̃k. (A4)

We recall here how to retrieve quickly the correspondence.
Property 1: The intensity of an isolated line is constant

and does not depend on the convention used:

ρ̃kd̃
2
k = ρkd

2
k so that

d̃k ≡
√
(2jk + 1)dk. (A5)

Property 2: In the wing, the profile is given by

∑
k,l

√
ρ̃k

√
ρ̃l d̃kd̃l

W̃lk

(ω − ωk)(ω − ωl)

≡
∑
k,l

ρkdkdl

Wlk

(ω − ωk)(ω − ωl)
. (A6)

Identifying term by term and using the previous results, one
obtains

Wlk =
√

ρl

ρk

W̃lk. (A7)

1. About the detailed balance and the sum rule

In Gordon’s convention:

Wlkρk = Wklρl (A8)
and ∑

l

dlWlk = 0. (A9)

With our convention, Eq. (A8) becomes

W̃lk = W̃kl, (A10)

and the sum rule becomes∑
l
dl

√
ρlW̃lk = 0, which can be alsowritten as∑

l

dl

√
ρlW̃kl = 0. (A11)

Equation (A11) corresponds, within that convention, to the
double sum rule defined by Filippov and Tonkov24 or
Kouzov.25

2. Case of isotropic Raman spectra

In that case, dk is constant and Eq. (A11) may be also
written as

W̃kk ≡ γk = −
∑
l �=k

√
ρl

ρk

W̃lk = −
∑
l �=k

√
(2jl + 1)

(2jk + 1)

√
ρ̃l

ρ̃k

W̃lk.

(A12)
It should be remembered that W̃lk means W̃lk(T ) and contains

an average over a Boltzmann distribution of kinetic energy
(cf. Eq. (4)).

APPENDIX B: HOW TO DERIVE THE SYMMETRIZED
VERSION OF THE REFINED ROBERT-BONAMY
FORMALISM

The symmetrized formalism may be easily built by fol-
lowing the procedures detailed in Ref. 14. We first introduce
a symmetrized density vector |√ρ̃b〉〉 in the line space of the
bath molecule defined by

|
√

ρ̃b〉〉 =
∑
i2m2

√
ρ̃i2 |i2m2i2m2〉〉. (B1)

In terms of this vector, the average 〈 〉 defined in applying the
cumulant expansion is now defined as

〈Ô〉 = 〈〈
√

ρ̃b|Ô|
√

ρ̃b〉〉, (B2)

where Ô is a Liouville operator of interest. It is obvious that
the normalization condition 〈Îb〉 = 1 is satisfied. Then, using
Eq. (B2) a matrix element of 〈Ô〉 can be explicitly written
as

〈〈f ′i ′, JMJ |〈Ô〉|f i, JMJ 〉〉 = 〈〈f ′i ′, JMJ ;
√

ρ̃b|Ô|f i, JMJ ;
√

ρ̃b〉〉

= 1

2J + 1

∑
i2m2

∑
i ′2m

′
2

√
ρ̃i2

√
ρ̃i ′2

∑
(m)

(−1)ji−mi+j ′
i −m′

i C(j ′
f j ′

i J,m′
f − m′

iMJ )

×C(jf jiJ,mf − miMJ )〈〈f ′m′
f i ′m′

i , i
′
2m

′
2i

′
2m

′
2|Ô|f mf imi, i2m2i2m2〉〉, (B3)

where a summary notation (m) means summations over all magnetic quantum numbers associated with the absorber molecule
and a summation overMJ as well. Then, by following the procedures of Ref. 14, one is able to obtain all corresponding formulas
in the current symmetrized version. For example, expressions for the diagonal and off-diagonal matrix elements of S2,middle are
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given by

S
f i,f i

2,middle(rc) =
√
2π (2ji + 1)(2jf + 1)

×
∑
L1L2

{(−1)1+J+L1W (jijf jijf ; JL1) C(jijiL1, 000)C(jf jf L1, 000)}

×
∑
i2i

′
2

(2i2 + 1)(2i ′2 + 1)
√

ρ̃i2

√
ρ̃i ′2C

2(i2i
′
2 L2, 000)HL1L2 (ωi ′2i2 ), (B4)

and

S
f ′i ′,f i

2,middle(rc) =
√
2π (−1)ji+j ′

i

√
(2j ′

i + 1)(2j ′
f + 1)(2ji + 1)(2jf + 1)

×
∑
L1L2

{(−1)1+J+L1W (j ′
i j

′
f jijf ; JL1) C(j ′

f jf L1, 000)C(j
′
i jiL1, 000)}

×
∑
i2i

′
2

(2i2 + 1)(2i ′2 + 1)
√

ρ̃i2

√
ρ̃i ′2C

2(i2i
′
2L2, 000)HL1L2 (ωi ′i + ωi ′2i2 ), (B5)

respectively. Recall that Eq. (B5) is applicable only for Q lines since one has used the relation ωi′i = ωf′f to simplify the
expression.
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