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A new semi-empirical model is proposed for extracting the quality A schematic of the device under test is shown below. Baseline removal + A semi-empirical model was developed to calibrate the
(Q) factors of arrays of superconducting microwave kinetic I L 1 1. The complex baseline was reproduced through a fit of a 4-term Fourier series to transmission response of MKIDs at cryogenic temperatures. The
inductance detectors (MKIDs). The determination of the total, Cable = 1m the measured data: | ey model executes the following steps:
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the inductance is combined with a capacitor [1].

Nb feediine resonator were then computed from the calibrated data.
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Figure 2. The device package was cooled down to ~330 mK This functional form allows a realizable, i i ing i

in a Helium-3 bath. It consists of two molybdenum nitride causal transmission-line representation and detailed reflections occurring in the system.
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where Z, is the transmission line characteristic impedance and 7 =./€,;4,; s Fupr::lcml




