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NASA’s WIND mission has been operating in a large amplitude Lissajous orbit in the 
vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular 
stationkeeping maneuvers are required to maintain the orbit due to the instability around 
the collinear libration points. Historically these stationkeeping maneuvers have been 
performed by applying an incremental change in velocity, or along the spacecraft-Sun
vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of 
libration point stationkeeping maneuvers can be minimized by applying the in the 
direction of the local stable manifold found using dynamical systems theory. This paper 
presents the analysis of this new maneuver strategy which shows that the magnitude of 
stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in 
the orbit where the maneuver is performed. The implementation of the optimized maneuver 
method into operations is discussed and results are presented for the first two optimized 
stationkeeping maneuvers executed by WIND.

Nomenclature
A(t) = partial derivative matrix of the CR3BP equations of motion with respect to the six element state
b = y-intercept for a line

= vector from larger primary, m1, to the spacecraft, m3
DF(X) = partial derivative matrix of the free variables, X, with respect to the constraints, F(X)
d = scalar distance from the larger primary, m1, to the spacecraft, m3

= nondimensional vector from the larger primary, m1, to the spacecraft, m3
D1 = distance from m1,m2 barycenter to larger primary, m1
D2 = distance from m1,m2 barycenter to smaller primary, m2
F(X) = constraint equations for fixed-time multiple shooting algorithm

= equations of motion for the spacecraft in the CR3BP
= dimensional gravitational constant

l* = characteristic length 
m* = characteristic mass 
m1 = mass of the larger primary
m2 = mass of the smaller primary
m3 = mass of the spacecraft (zero)
n = number of patch points

= dimensional position vector of m3 with respect to the system barycenter
= vector from smaller primary, m2, to the spacecraft, m3

r = scalar distance from the smaller primary, m2, to the spacecraft, m3
= nondimensional vector from the smaller primary, m2, to the spacecraft, m3

s = slope of a line
t = time 
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Figure 1. WIND Spacecraft and Instruments1.

t* = characteristic time 
U* = pseudo-potential function
X = free variables vector for fixed-time multiple shooting algorithm
x = x-component of position vector
xt = end points of an integrated state after time t
y = y-component of position vector
z = z-component of position vector

= maneuver direction
= maneuver magnitude
= orientation of rotating frame relative to inertial frame
= nondimensional mass ratio
= nondimensional position vector of m3 with respect to the system barycenter
= nondimensional time
= state transition matrix
= differentiation with respect to time

I. Introduction
HE Global Geospace Science WIND satellite is a heliophysics mission operated by NASA at the Goddard 
Space Flight Center in Greenbelt, Maryland. It was launched in 1994 to improve understanding of the physics of 

solar terrestrial relations as a member of the International Solar Terrestrial Physics program‡. After a decade spent in 
a series of exotic orbits, including 38 lunar swingbys and visits to the first and second libration points in the Sun-
Earth/Moon system (L1 and L2), in 2004 WIND was placed into orbit around L1 where it has remained since.

Trajectories in the vicinity of the collinear libration points are inherently unstable, and thus periodic 
stationkeeping maneuvers are required to maintain the large amplitude Lissajous trajectory. The WIND mission 
refers to stationkeeping maneuvers as mid-course corrections (MCC), to remain consistent with terminology used 
throughout the mission. Since insertion into the Lissajous orbit in 2004, MCCs have been executed about every three 
months, or twice per revolution about L1. Because L1 is the location where the gravitational attraction between the 
Sun and the Earth/Moon barycenter (EMB) are equal, any error introduced by unmodeled perturbations will grow 
exponentially as one of the gravitational forces begins to dominate.  Therefore MCCs are designed to counteract the 
effects of such perturbations, and the net has historically been directed either toward or 
away from the Sun1.

This maneuver design strategy has been intuitive, but as several previous studies have shown2-4, this is not the 
most efficient method for stationkeeping of libration point orbits (LPO) in terms of , and therefore fuel. This work 
will present the application of dynamical systems to compute the maneuver direction which minimizes for any 
position in WIND’s orbit, discuss the implementation of this new maneuver design process into operations, and 

show results for the first two MCCs which were performed
using this methodology.

II. Mission Description
WIND has a cylindrical body, approximately 1.8 meters 

in height with a diameter of 2.4 meters. A series of booms 
and wires extend outward both radially and axially from the 
main body with sensors for some of the 8 science 
instruments onboard. The spacecraft is spin-stabilized about 
the +Z body axis, completing approximately 20 rotations per 
minute, and the spin axis is pointed within one degree of the 
direction of the South Ecliptic Pole. Figure 1 shows the 
spacecraft with the instrument locations denoted. Also 
depicted in Fig. 1 are the three different types of thrusters:
axial, radial, and spin adjust. There are four of each type of 
thruster, for a total of 12 thrusters in all, as depicted in Fig. 
2; all of the thrusters are draw from a blowdown hydrazine 

‡ For more information, refer to the project website at http://wind.nasa.gov/

T
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Figure 3. WIND Libration Point Orbit. WIND trajectory 
propagated for five years and represented in the RLP frame. The orbit 
of the Moon is shown in gray for scale.

Figure 2. WIND Thruster Diagram. Thrusters 
1,2,3,4 are axial; thrusters 5,6,7,8 are spin control; 
and thrusters 9,10,11,12 are radial.

propulsion system. Given the spin axis orientation towards 
the South Ecliptic Pole and the fact that the instability in 
the vicinity of the libration points lies primarily in the 
ecliptic plane, the radial thrusters are used for LPO 
stationkeeping maneuvers. The radial thrusters are fired in 
pairs to achieve the desired with each radial thuster 
providing 22 Newtons of force (beginning of life). Either 
thrusters 9 and 11 or thrusters 10 and 12 can be used to 
achieve the same net ; however due to an anomaly with 
thruster 10, that pair is no longer used, leaving thrusters 9 
and 11 to perform all radial maneuvers.

After launching on November 1, 1994, WIND spent a 
decade traversing the Earth/Moon system. The trajectory 
during this time included several double lunar swingbys to 

control the line of apsides, lunar backflip transfers in order to reorient the line of apsides, a series of distant prograde 
orbits, and 38 targeted lunar flybys5-8. Following the final lunar flyby in late 2002, WIND was sent on a single loop 
around L1 and then briefly returned to the Earth/Moon system before being flung out to L2. The spacecraft again 
completed a single loop around the libration point, fell back into the Earth/Moon system, and was flung out to the 
opposite libration point, L1, where it 
arrived in mid-2004. This time 
however, orbit insertion and 
stationkeeping maneuvers were 
performed to maintain the libration 
point orbit, and the trajectory has 
remained in the L1 region for the last 
decade.

Several factors were considered 
when selecting the parameters for 
WIND’s libration point orbit8. The 
Lissajous trajectory that was ultimately 
chosen allowed for minimum 
expenditure at orbit insertion, while 
also maximizing the orbit lifetime 
before the z amplitude collapses and
enters a 3 degree solar exclusion zone 
in the center of the orbit. Figure 3 
shows a five year propagation of the 
current trajectory represented in the 
rotating libration point (RLP) frame. 
The x-axis of this coordinate system 
points from the Sun to the EMB, the z-
axis is normal to the orbit plane of the 
EMB about the Sun, and the y-axis 
completes the right handed system.

III. Legacy Maneuver Design Strategy
Stationkeeping maneuvers are required for WIND approximately every three months due to the unstable nature 

of the collinear libration points. WIND does not have a reference trajectory, so the only requirement for 
maneuvering is to remain in orbit around L1 which greatly simplifies the maneuver planning process. A differential 
corrector is implemented to determine the directed along the WIND-Sun vector necessary to minimize the x-
component of velocity at the fourth crossing of the x-z plane in the rotating frame after the maneuver. An initial 
maneuver plan is calculated with the COTS software FreeFlyer® using an impulsive maneuver assuming the spin 
axis is aligned directly along the South Ecliptic Pole. As the maneuver date approaches, the Flight Operations Team 
(FOT) provides the most current estimate of the right ascension and declination of the spacecraft’s spin axis. A new 
impulsive is calculated based on the attitude update.
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Figure 4. Circular Restricted Three Body Problem (CR3BP). For this investigation, m1 and m2 represent 
the Sun and Earth/Moon system, respectively, while WIND is represented by the infinitesimally small third 
body, m3.

The resultant impulsive is input into the GOTS software Goddard General Maneuver Program, more 
commonly referred to as GMAN. This program implements a detailed attitude model for the spacecraft in order to 
generate the finite maneuver plan which achieves the desired while minimizing the applied torque to the spin-
stabilized attitude. The resultant maneuver plan contains the number of pulses that the radial thrusters must perform,
the pulse width for each thruster, and the jet start angle for each thruster. The number of pulses indicates how many 
identical finite pulses are required to achieve the desired . The pulse width, measured in the spin plane, denotes 
the angle of rotation through which each thruster should fire per pulse. The jet start angle, also measured in the spin 
plane, is the angle where the pulse begins, and it is measured relative to the point where the sun sensor detects the 
Sun.

The pulse width for thruster 9 is fixed at 30 degrees, and GMAN computes the pulse width for thruster 11 which 
minimizes the resulting torque on the spin axis. The jet start angles for each thruster are both varied such that the net 

is in the user specified direction while also minimizing attitude perturbations. The spacecraft is only capable of 
performing an integer number of these 30 degree pulses, so only discrete values of are achievable. In general, 
these possible maneuver magnitudes will differ from the desired impulsive computed with FreeFlyer, so GMAN 
selects the number of pulses which minimizes the difference between the finite and impulsive values. This 
residual introduces an undesired velocity error into the orbit, and it can sometimes have a significant influence 
on the
30 degree pulse of the thrusters is about 0.75 cm/s. The number of pulses computed by GMAN can have an error of 
up to a half of a pulse, or 0.375 cm/s.  For MCCs with relatively large magnitudes the performance of the propulsion 
system will tend to dominate the post-maneuver velocity residual, but for smaller maneuvers the difference between 
the discrete and the desired can have significant effect.

IV. Optimized Maneuver Strategy using Dynamical Systems Theory
Previous studies have examined the optimization of stationkeeping for libration point orbits using dynamical

systems theory2-4. These optimization studies have shown that the magnitude of the can be minimized by 
maneuvering along the stable eigenvector of the state transition matrix, as expressed in the RLP frame, after 
propagating the state transition matrix for one full revolution around the libration point in the x-y projection. The 
legacy maneuver design strategy for WIND does not take advantage of this potential savings as the maneuver 
direction is always oriented along the projection of the spacecraft-Sun vector into the spacecraft spin plane.

A. CR3BP Formulation
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The first step towards the implementation of an optimized maneuver strategy using dynamical systems theory 
begins with a semi-analytical study using the well-established circular restricted three body problem (CR3BP) 
model9. The CR3BP model, shown in Fig. 4, is a rotating frame composed of three bodies, two primaries, m1 and 
m2, and an infinitesimally small third body, m3. For this application, m1 is the Sun, m2 is the Earth/Moon system, 
and m3 is the WIND spacecraft. The two primaries orbit about their shared barycenter at a constant angular rate. The 
x-axis of the frame is defined as the line passing through the two primaries, the z-axis is perpendicular to the plane 
of rotation, and the y-axis completes the right-handed triad. It is often useful to nondimensionalize the equations of 
motion based on a set of characteristic quantities. The characteristic values for length (l*), mass (m*), and time (t*),
are defined as

= + ,  = + , = , (1)

where D1 and D2 are the distances between the primaries and their barycenter, m1 and m2 are the masses of the 
primaries, and is the dimensional gravitational constant.

Using the characteristic quantities defined in Eqs. (1), the nondimensional time parameter, , and mass 
parameter, , can be defined as

= , = ,
and the nondimensional vectors describing the position of the spacecraft relative to the two primaries, and , and 
relative to the barycenter of the system, , are defined as

=  ,  = , = = + + .
The unit vectors , , and 

With the nondimensional quantities established, the equations of motion for the third body in the system can be 
written as follows:

2 = , + 2 = , = ,
(2)

where the dots represent differentiation with respect to nondimensional time. U* is the pseudo-potential function,

= 1 + + 12 ( + )
where d and r are scalar distances,

= ( + ) + + ,            = ( 1 + ) + + .

The optimal maneuver direction is located along the stable eigenvector of the monodromy matrix10; to calculate 
this matrix, the state transition matrix, , associated with the CR3BP equations of motion, Eqs. (2), must be 
numerically integrated for one period about the libration point. The first order differential equation governing the 
state transition matrix is
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( , ) = ( ) ( , ),
where A(t) is the Jacobian matrix that is composed of the partial derivatives of the equations of motion, , with 
respect to each of the six states, ,

( ) = =
0 0 0 1 0 00 0 0 0 1 00 0 0 0 0 10 2 02 0 00 0 0

=
B. Creating a Reference LPO

In order to create a reference trajectory in the CR3BP model necessary to generate the eigenvectors, a single 
revolution of the orbit from the operational stationkeeping software, FreeFlyer, was generated and discretized into 
multiple patch points. The patch points were nondimensionalized and imported into MATLAB®. A fixed-time 
multiple shooting algorithm is implemented using the CR3BP model in MATLAB.  A detailed overview of 
differential correcting algorithms can be found in Ref. 9. Below is a brief overview and description of the iterative
fixed-time multiple shooting algorithm implemented for this investigation.

The multiple shooting algorithm is formulated as a series of constraints and free variables. The reference 
trajectory is discretized into a series of patch points that are stacked to generate a vector of length n free variables,

= .

The vector X is 6n x 1 in size, where each element xi is a six element position and velocity state. For a fixed-time 
algorithm, each patch point has an associated integration time. The patch points are integrated simultaneously for 
their fixed integration time. This integration creates a series of segments that are subjected to a series of constraints. 
For trajectory design, the constraints F(X), a vector of length 6(n-1), are used to establish position and velocity 
continuity between the initial and end points of the integrated segments,

( ) = = 0.

After propagation, the constraint equation is checked to determine if a desirable continuation tolerance has been met. 
Initially, there will be discontinuities between the integration segments. An update equation is necessary to 
determine the modifications necessary to the free variables for the next step in the iteration process. For this 
algorithm, a minimum norm solution is used

= ( )  [ ( ) ( ) ]  ( ),
where DF(Xj) is the Jacobian matrix that relates the partial derivatives of the constraints with respect to the free 
variables. The state transition matrix can be used to evaluate the partial derivatives of the 6(n-1) x 6n Jacobian 
matrix numerically. Blank entries denote a 6x6 sub matrix of zeroes.
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Figure 5. Stable and Unstable Eigenvectors. Directions of the eigenvectors vary throughout the orbit. Both 
angles are measured relative to the RLP +x-axis.

( ) = ( ) = ( , ) ( , )
The update equation sets the initial conditions for the next iteration. The sequence continues until the constraint 
equation satisfies a tolerance near zero (for example 1E-12). The reference orbit in the CR3BP problem is 
established once the continuity constraints have been satisfied.

C. Determining Local Stability
The reference orbit is then decomposed into multiple discrete points. Each of these points, along with the state 

transition matrix, is propagated for a single period in order to generate the monodromy matrix. Each discrete point 
from the reference trajectory now has an associated monodromy matrix and, therefore, a set of eigenvalues and 
eigenvectors that describes the stability characteristics of that point. Stability analysis involving the monodromy 
matrix uses 1 as the boundary; eigenvalues with magnitudes greater than 1 are unstable while magnitudes less than 1 
are stable11. For this system, we are only concerned with the two eigenvalues that have no imaginary component, 
one stable and one unstable. The optimal maneuver direction is found by calculating the angle generated by the x-
and y-component of the eigenvector corresponding to the stable eigenvalue. The z-component of the eigenvector is 

spin plane, which is assumed to be parallel to the ecliptic plane since the spin axis is pointing toward the south 
ecliptic pole.

In order to organize the optimal maneuver directions, each discrete point in the reference orbit is classified by the 
angle between the position projection in the x-y plane and the +x-axis, measured counter clockwise. This 
classification creates a unique orbit angle, or maneuver location, for each discrete point in the reference trajectory.
Figures 5 and 6 show two representations of the eigenvectors: Fig. 5 shows the vectors at various locations 
throughout the orbit, and Fig. 6 contains the angle created by the x- and y- components of the stable and unstable 
eigenvector as a function of the orbit angle in the x-y plane. The z-components of the eigenvectors are neglected as 
they are significantly smaller than the x- and y-components, and because we are only considering maneuvers in 
WIND’s spin plane, which is parallel to the ecliptic plane. In both figures, the red lines correspond to the unstable 
eigenvector while the blue lines correspond to the stable eigenvector and optimal maneuver direction.
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Figure 7. The maneuver 
magnitude varies as the maneuver direction is rotated 
through the quadrant of the RLP x-y plane containing the 
stable eigenvector.

Figure 6. Stable and Unstable Eigenvectors. Directions of the eigenvectors vary throughout the orbit. Both 
angles are measured relative to the RLP +x-axis.

V. Validation Using a Full Ephemeris Model
A simulation was conducted in FreeFlyer in order to validate the results derived using dynamical systems theory.

A ray scan was performed by varying the over the entire quadrant of the spin phase which contains the stable 
eigenvector, from the +x-axis to the +y-axis. The was varied at 1 degree intervals, and for each possible 

maneuver direction, the magnitude was 
computed using the operational differential 
correction algorithm to determine the maneuver 
size required achieve a perpendicular crossing after 
four x-z plane crossings. Maneuvers which resulted 
in a negative corresponded to solutions in the 
third quadrant rather than the first. Figure 6 shows 
the results for one of the maneuvers that was 
examined, MCC-47. The angle in Fig. 7 represents 
the direction of the relative to the RLP +x-axis 
as rotated about the RLP +z-axis, measured in 
degrees. The magnitude is measured radially in 
units of meters per second, and the blue line shows 
the variation in maneuver size as the direction of 
the is rotated in the ecliptic plane. The red 
vector shows the maneuver which was actually 
executed, and it was computed using the legacy 
maneuver scheme. The blue vector represents the 
minimum solution, and the blue line represents 
the magnitudes computed for each of the directions 
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Table 1. Validation Results
Maneuver Date

(cm/s)
Optimized v

(cm/s)
v Angle from 

RLP +x (deg)
Difference from 

DST (deg)
Savings

(%)

MCC-41 Jan. 31, 2012 7.4098 6.1604 219 0.5 16.7

MCC-42 May 2, 2012 22.387 21.151 19 0.3 5.52

MCC-43 Jul. 31, 2012 4.9684 3.8877 219 -0.9 21.8

MCC-44 Nov. 7, 2012 25.975 22.935 197 0.2 11.7

MCC-45 Jan. 24, 2013 52.850 40.304 40 -0.3 23.7

MCC-46 Apr. 23, 2013 90.857 86.103 199 0.6 5.23

MCC-47 Jul. 11, 2013 47.924 38.299 34 -0.7 20.1

MCC-48 Aug. 28, 2013 23.618 18.334 220 0.2 22.4

MCC-49 Oct. 24, 2013 15.659 14.885 18 0.3 4.94

MCC-50 Jan. 9, 2014 33.553 26.604 37 0.5 20.7

analyzed.
It is interesting to note that the possible solutions form a straight line in this representation. The ray scan was 

repeated for every MCC from January 2012 through January 2014, a total of 10 maneuvers, and it was found that 
each of the data sets exactly fit a straight line. This implies that regardless of maneuver direction, the component of 
the in the minimum direction is required to maintain the orbit. This behavior will be revisited in order to find the 

Table 1 shows the results for each of these maneuvers. The legacy is the maneuver magnitude that was 
actually performed, and it was computed using the method described previously. The optimized is the minimum 

found from the ray scan, and the angle from RLP +x is the direction where the minimum was found. The 
column “Difference from DST” shows the difference between the angle found in the previous column, and the angle 
computed for that maneuver location using dynamical systems theory. Finally, the savings shown in the last column 
is the relative decrease in that could have been achieved by directing the maneuver along the stable eigenvector. 
The minimum for each of the 10 maneuvers was found to be within 1 degree of the expected value, and this margin 
of error was expected given the 1 degree resolution of the ray scan. Depending on the location of the maneuver in 
the libration point orbit, the magnitude of the MCCs can be decreased by 5 to 25 percent. This variation in 
efficiency is primarily the result of the angle between the stable eigenvector and the WIND-Sun vector.

VI. Operational Implementation

A. Computation of the Stable Eigenvector
After observing strong agreement between the semi-analytical study using the CR3BP model and a full 

ephemeris model in FreeFlyer, the maneuver planning team implemented this optimized strategy into the 
stationkeeping planning process. A polynomial curve fit of the optimal maneuver direction as a function of 
maneuver location in the x-y plane, shown in Figure 6, was generated and added to the impulsive maneuver 
planning script. At the maneuver epoch, the spacecraft location in the ecliptic plane is found and input into the 
polynomial curve fit. The direction of the impulsive is adjusted based on the value obtained from the polynomial. 
Once the maneuver direction is established, the maneuver planning process continues as usual. The impulsive 
from the FreeFlyer script is input into GMAN and a finite maneuver plan containing the number of finite pulses, the 
pulse width, and the jet start angle is generated. 

Because the maneuver direction is being varied within the spin plane, the modifications to the maneuver 
planning process are effectively transparent to the FOT. Two of the three parameters delivered as part of the finite 
maneuver plan change: the number of finite pulses will decrease due to the efficiency gain, and the jet start angles
will also decrease because the maneuver direction is earlier in the spin phase than the Sun-spacecraft vector. Neither
of these changes have any impact on the sequence of commands sent to the spacecraft during a maneuver, only the 
values are changed. In fact, these parameters are varied slightly for all maneuvers even using the legacy maneuver 
planning strategy; the magnitude of the burns is of course different each time, and the jet start angles vary slightly 
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Figure 8. Adjusting the Finite 
Direction. Varying the maneuver direction 
around the ideal direction allows for 

plans to be eliminated.

for different locations in the orbit as the WIND-Sun vector changes. The fact that WIND’s spin axis is aligned with 
the south ecliptic pole is a strong reason why this maneuver optimization strategy was straight forward to 
implement. The ability to change the maneuver direction in the x-y plane in order to match the optimized direction 
along the stable eigenvector is a simple alteration to the jet start angle such that each pulse is centered about the 
stable eigenvector instead of the spacecraft-Sun vector.

B. Adjustment of the Jet Start Angles to Minimize Residual 
With the maneuver optimization implemented in the FreeFlyer script used to compute the impulsive , the 

corresponding finite maneuver plan can be generated in GMAN by simply inputting the optimized impulsive 
vector. As discussed previously, the finite maneuver plan results in a discrete based on the number of fixed-width 
pulses. In general, the output from the finite maneuver plan contains a residual when compared against the 
impulsive . This residual is equivalent to as much as a half of a pulse in either direction. If the overall maneuver
size is large this error can be insignificant, however, for very small maneuvers it can represent a significant 
percentage of the total maneuver.

The maneuver error, or residual , defines the following station keeping maneuver. As a quick approximation 
technique derived from operational experience, the maneuver magnitude for the next stationkeeping maneuver is the 
residual from the previous maneuver and is doubled every 16 days1. As a simple example, a stationkeeping 
maneuver with 1 cm/s residual error will require a 2 cm/s maneuver if performed 16 days later, a 4 cm/s
maneuver if performance 32 days later, and so on.

Using the legacy maneuver planning process the residual error resulting from the difference between the 
impulsive model and finite model was simply accepted as a limitation of the system. By using the tools developed to 
optimize the maneuver direction it is now possible to eliminate residual by adjusting the jet start angle away 
from the optimal direction such that the from the impulsive maneuver plan matches the from the finite 
maneuver plan generated in GMAN. Any remaining residual will then be purely a function of the propulsion 
system performance, and not a bias in the expected .

Figure 8 shows an example of this process. The blue line is 

extends just beyond
GMAN, and the dashed green arc shows that maneuver 
magnitude swept through the entire quadrant. To eliminate any 

that results from the discrete number of pulses, the 
maneuver direction must be adjusted to one of the two points 
where the blue line and the green arc intersect. The yellow and 
magenta vectors represent the two maneuvers in the directions of 
these solutions, and they are equidistant from the optimized 

The ray scan is computationally intensive, so it is desirable to 
solve for the relationship between maneuver direction and 
magnitude using an analytical technique if possible. The linearity 
in the as a function of maneuver direction noted previously 
makes this possible. By definition, the vector from the origin to 
the minimum location will be perpendicular to the line of data 
points generated by the ray scan. Once the direction and 
magnitude of the minimum have been found using the 
impulsive targeting script, the relationship between the maneuver 
direction and magnitude can be found by solving for the line that 
is perpendicular to the minimum vector.

Denoting the direction and magnitude of the minimized as min and min, respectively, these values can be 
converted to Cartesian coordinates to find xmin and ymin. The slope of the line, s, perpendicular to the minimum 
solution vector is the negative inverse of the slope of the vector from the origin to the point (xmin, ymin). The y-
intercept, b, can then be found using the standard equation for a Cartesian line. Converting the line back to polar 
coordinates results in the following relationship between the maneuver direction, , and the maneuver magnitude, 

:
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Table 2. MCC-51 Maneuver Plan
Sun-Pointing Method Adjusted Pulses

Maneuver Location (deg) 195.434 195.434 195.434

Maneuver Direction (deg) 0.1591 19.4207 10.7523

48.9059 46.1710 46.7007

Pulses 65 62 62

Jet Start Angles (deg) 99.300 / 101.874 80.040 / 82.614 88.680 / 91.254

49.1408 46.7045 46.7045

Table 3. MCC-52 Maneuver Plan
Sun-Pointing Method Adjusted Pulses

Maneuver Location (deg) 55.0637 55.0637 55.0637

Maneuver Direction (deg) 0.3597 23.5043 14.8531

17.1503 15.7446 15.9258

Pulses 25 23 23

Jet Start Angles (deg) 99.240 / 101.816 75.960 / 78.536 84.600 / 87.176

17.4208 15.9258 15.9258

= sin cos +
This transcendental equation is then solved iteratively using Newton’s method, where is the magnitude of the 
MCC generated from the finite maneuver plan in GMAN.

The above process assumes that the GMAN finite is larger than the impulsive from FreeFlyer.  If the 
finite is smaller than the impulsive value then the above method will not work; obviously it is not possible to 
adjust the angle to achieve smaller than the already-computed minimum. To put it another way, the green arc in 
Fig. 7 will lie entirely inside the blue line, and the two curves never intersect. In this situation, the impulsive 
which is input to GMAN must be increased slightly. Each pulse imparts a of roughly 0.75 cm/s, so by increasing 
the magnitude by that value, the resulting finite plan will have an additional thruster pulse. This results in a finite 
larger than the impulsive , and then it is possible to find and adjust the maneuver direction in order to eliminate 
the residual .

C. Results
The new maneuver planning process of optimizing the and then adjusting the maneuver direction to eliminate 

the undesirable residual has been applied successfully to two maneuvers, MCC-51 and MCC-52. MCC-51 was 
executed on April 10, 2014, and Table 2 shows the results of maneuver planning for the three different methods.

The optimized method for MCC-51 reduced the impulsive required by 5.59% by changing the direction by 
19.260 degrees. Using the finite burn modeling, the savings decreased slightly to 4.96% due to the discrete 
resolution provided by the integer number of pulses.  However, this finite plan resulted in a residual of 0.5335 
cm/s, or 1.16% higher than required. To counteract this, the jet start angles were adjusted by 8.64 degrees relative to 
the optimized maneuver direction. This resulted in an offset of 10.62 degrees from the sun-pointing method, and 
increased the required impulsive slightly to match the finite from GMAN to within 0.0038 cm/s, or 0.01%.

The actual observed during MCC-51 was 45.4815 cm/s, or 2.61% less than the predicted finite value, which 
is well within the range of past maneuver performance. The total velocity error in the orbit immediately after the 
maneuver is the difference between the observed and the impulsive for the adjusted maneuver direction, 
which was 1.2192 cm/s for this maneuver. This velocity error grows exponentially, and the magnitude of the next 
maneuver can be quickly estimating by assuming that cost to correct the error doubles every 16 days. MCC-52 was 
scheduled for June 10, 2014, so knowing that the residual would double roughly 3.8 times, the to 
be roughly 17 cm/s.  This was confirmed when impulsive and finite maneuver planning for MCC-52 yielded the 
results shown in Table 3.
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-pointing method was very near the estimate of 17 cm/s, and 
the magnitude by 8.19% at an angle of 23.145 degrees. The finite maneuver 

to eliminate the 

VII. Conclusion
Results from previous studies which showed that stationkeeping of libration point orbits can be optimized by 

maneuvering along the stable eigenvector of the state transition matrix were successfully applied to operations for 
ost can be decreased by 

5 to 25 percent, depending on the location in the orbit where the MCC is performed. As a result of WIND’s spin axis 
orientation, the maneuver direction can easily be varied by changing the phase in the spin period when the radial 
thrusters are pulsed. However, maneuvers using the radial thrusters must perform a whole number of fixed-width 

itude as a function of maneuver direction in the spin plane was used to develop a 

adjusting the maneuver direction to eliminate the residual velocity has been successfully applied to two MCCs, 
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