
 
 

 
 
 
 
 

 
Journal of Hydrometeorology 

 

EARLY ONLINE RELEASE 
 

This is a preliminary PDF of the author-produced 
manuscript that has been peer-reviewed and 
accepted for publication. Since it is being posted 
so soon after acceptance, it has not yet been 
copyedited, formatted, or processed by AMS 
Publications. This preliminary version of the 
manuscript may be downloaded, distributed, and 
cited, but please be aware that there will be visual 
differences and possibly some content differences 
between this version and the final published version. 
 
The DOI for this manuscript is doi: 10.1175/JHM-D-13-063.1 
 
The final published version of this manuscript will replace the 
preliminary version at the above DOI once it is available. 
 
If you would like to cite this EOR in a separate work, please use the following full 
citation: 
 
Kala, J., M. Decker, J. Exbrayat, A. Pitman, C. Carouge, J. Evans, G. 
Abramowitz, and D. Mocko, 2013: Influence of leaf area index prescriptions on 
simulations of heat, moisture, and carbon fluxes. J. Hydrometeor. 
doi:10.1175/JHM-D-13-063.1, in press. 
 
© 2013 American Meteorological Society 

 
AMERICAN  
METEOROLOGICAL  

SOCIETY 

https://ntrs.nasa.gov/search.jsp?R=20140017822 2019-08-31T14:26:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42721278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Generated using version 3.2 of the official AMS LATEX template

Influence of leaf area index prescriptions on simulations of heat,1

moisture, and carbon fluxes2

Jatin Kala, ∗ Mark Decker, Jean-François Exbrayat, Andy J. Pitman,

Claire Carouge, Jason P. Evans, Gab Abramowitz

ARC Centre of Excellence for Climate Systems Science and Climate Change Research Centre, UNSW, Australia

3

David Mocko

SAIC at NASA Goddard Space Flight Centre, NASA, Greenbelt, MD, USA

4

∗Corresponding author address: Jatin Kala, Australian Research Council Centre of Excellence for Climate

Systems Science and Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052,

Australia.

E-mail: J.Kala@unsw.edu.au or Jatin.Kala.JK@gmail.com

1

�������	
���������������
����������	��

�
	��������������
�����������	
���������������
����������	��������� !"#$����



ABSTRACT5

Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a6

key component of land surface models. We investigate the influence of differing, plausible7

LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmo-8

sphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A9

15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and10

gridded observations of temperature and precipitation. Offline simulations lasting 29 years11

(1980-2008) are carried out at 25 km resolution with the composite monthly means from12

the MODIS LAI product (control simulation) and compared with simulations using each of13

the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in14

LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more15

strongly affected. Croplands showed the largest sensitivity in gross primary production with16

differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual17

variability, such as evergreen broadleaf trees, showed the least response to the different LAI18

prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such19

as croplands, were more sensitive. We show that reliance on a single LAI prescription may20

not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, es-21

pecially for PFTs with high inter-annual variability. Our study highlights that the accurate22

representation of LAI in land surface models is key to the simulation of the terrestrial carbon23

cycle. Hence this will become critical in quantifying the uncertainty in future changes in24

primary production.25
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1. Introduction26

Land Surface Models (LSMs) describe the exchange of heat, moisture, and carbon be-27

tween the land surface and the atmosphere. There are a wide variety of LSMs used in both28

regional and global climate models, and they can vary considerably in complexity (Pitman29

2003). One key aspect which differentiates LSMs is whether they include phenology, and if30

dynamic, whether it is prescribed or simulated. In most LSMs, phenology is represented by31

the leaf area index (LAI), the total one-sided surface area of leaf per ground surface area.32

LAI is critical in any LSM since it affects the albedo of the terrestrial surface, and hence,33

the amount of net radiation available to drive sensible and latent heat. LAI also affects34

the partitioning of net radiation between sensible and latent heat fluxes (Verstraete and35

Dickinson 1986) because it controls the surface area of vegetation in direct contact with the36

atmosphere and affects the efficiency by which water can be transferred from within the37

vegetation to the atmosphere. Similarly, LAI affects the terrestrial carbon balance since it38

affects the photosynthesis and net primary productivity of a canopy. Finally, LAI influences39

rainfall interception and thereby affects the partitioning of rainfall between evaporation,40

throughfall, and runoff.41

The implementation of LAI in LSMs within regional and global climate models varies42

widely. At one end of the spectrum, some LSMs are coupled to dynamic vegetation models43

(e.g., Bonan et al. 2003), whereby LAI is a prognostic variable and responds to surface climate44

variations. However, climate biases from the regional and global atmospheric models make45

the realistic simulation of LAI difficult (Liu et al. 2008). As a consequence, most LSMs do46

not include dynamic vegetation and instead prescribe LAI.47

LAI can be prescribed according to plant functional types (PFTs) from look-up tables.48

These values are usually based on field observations and either held constant in time or49

allowed to vary seasonally. This method does not allow for inter-annual variability or vari-50

ations within PFTs; the same PFTs at different latitudes use the same LAI. Since this is51

not realistic, several studies have investigated the use of satellite derived LAI and shown52
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improvements in the simulation of surface climatology (e.g., Pielke et al. 1997; Buermann53

et al. 2001). The main impediment to the use of satellite derived LAI is the limited tempo-54

ral availability of these data. There is also an inherent assumption of stationarity for future55

climate simulations; the assumption that the present spatial and seasonal variations in LAI56

are representative of the future, even though they are clearly climate-dependant.57

Since LAI interacts with radiation, water balance and carbon balance it is a key parameter58

connecting the core components of climate and ecological modeling (Parton et al. 1996). One59

of the key characteristics of LAI is how it varies spatially (Bonan et al. 1993) and temporally.60

While LAI affects the interactions between the atmosphere at a point or grid scale (Bonan61

et al. 1993) this scales up to continental scales (Pitman et al. 1999) in uncoupled simulations.62

There is additional evidence that LAI affects the atmosphere at larger scales (Chase et al.63

1996). Most recently, van den Hurk et al. (2003) demonstrated that using remotely sensed64

LAI in a weather forecasting system affected the surface evaporation when evaporation65

formed a large term in the surface energy balance. They concluded that improved estimates66

of LAI could be an important method for improving model estimates of evaporation.67

The relationship between LAI and the terrestrial carbon balance is well documented from68

observational studies. Barr et al. (2004) investigated the influence of LAI on net ecosystem69

production in a deciduous forest in Canada and found a tight coupling between the annual70

maximum LAI and production. Saigusa et al. (2008) used data from flux-towers and found71

that temperate deciduous forests showed the greatest positive net ecosystem production after72

leaf expansion (higher LAI) in early summer. Duursma et al. (2009) used measurements from73

coniferous stands in Europe and found that LAI was a significant influence on gross primary74

production (GPP). Finally, Keith et al. (2012) used measurements at a single flux-tower75

site in Australia and focused on the carbon budget during drought years. They found that76

reductions in LAI due to insect attacks, in addition to drought stresses, contributed to a77

26% reduction in GPP and 9% reduction in ecosystem respiration as compared to years with78

drought stresses alone.79
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Some modelling studies have investigated the influences of vegetation parameters on the80

simulation of the terrestrial carbon fluxes and season length (e.g., White and Nemani 2003;81

Piao et al. 2007), but few explicitly focus on the influence of LAI versus meteorological82

forcing. This was recently investigated by Puma et al. (2013) in an offline LSM at four83

North American sites. They found that variations in LAI had a dominant control on GPP, a84

smaller but comparable effect on transpiration, a weak influence on total evapotranspiration,85

and a negligible impact on runoff. Additionally, they found that the effect of LAI on GPP86

is greater in energy-limited regimes as compared to moisture-limited regimes, except when87

vegetation exhibits little inter-annual variations in LAI. Hence, they conclude that an accu-88

rate representation of LAI inter-annual variability in LSMs is critical to accurately simulate89

GPP.90

Overall, it is clear that the way a LSM treats LAI is central to accurately simulating the91

heat, moisture, and carbon fluxes at the land surface. This paper focuses on the Community92

Atmosphere Biosphere Land Exchange Model (CABLE) (Wang et al. 2011). CABLE does93

not include a dynamic vegetation model by default, and hence the spatial and temporal94

variation of LAI are prescribed (prognostic LAI is implemented in later versions but not95

currently widely used). While several studies have used CABLE to answer wide-ranging96

research questions (e.g., Abramowitz and Gupta 2008; Cruz et al. 2010; Zhang et al. 2011b;97

Pitman et al. 2011; Wang et al. 2012; Exbrayat et al. 2012), only few studies have examined98

the influence of LAI on heat, moisture and carbon fluxes in CABLE.99

Zhang et al. (2013) ran global offline simulations with CABLE and conducted a sensitivity100

analysis by varying several vegetation and soil parameters, including LAI, by ± 50, 30, and101

20 % of the default values. Comparison of their simulations with other models (Rodell102

et al. 2004; Dirmeyer et al. 2006; Jung et al. 2009) showed that the influence of LAI was103

most noticeable in the middle and high latitudes of the northern hemisphere where broadleaf104

forests are the dominant PFT. However, Zhang et al. (2013) also point out that their imposed105

LAI perturbation do not necessarily reflect realistic uncertainties in estimates of LAI, and106
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additionally, only focussed on evapotranspiration and run-off.107

Lu et al. (2013) conducted an extensive parameter sensitivity analysis of CABLE over108

a single year at the global scale. They found that the at the global scale, the most impor-109

tant parameter affecting GPP is the maximum carboxylation rate, followed by LAI. When110

analysing each PFT separately, they also found LAI to be the second most important pa-111

rameter influencing GPP, except for evergreen broadleaf forests, whereby the initial slope of112

the response curve of potential electron was the second most important factor, followed by113

LAI. They carried out a similar analysis for latent heat, and found LAI to be the third most114

important factor globally, but results varied for each PFT. Namely, LAI was the most im-115

portant for deciduous needleleaf trees, second most important for evergreen needleleaf trees,116

third most important for evergreen broadleaf trees, deciduous broadleaf trees, and deciduous117

needleleaf trees, fourth most important for crops, and fifth most important for shrublands.118

Whilst the work of Zhang et al. (2013) and Lu et al. (2013) provide valuable insight into119

the sensitivity of CABLE to LAI, and it’s importance relative to other model parameters,120

the influence of realistic inter-annual variations in LAI on the surface energy and carbon121

balance remains un-known. This study provides a method of generating LAI ensembles,122

based on the MODIS LAI and the observed climatology, to address this knowledge gap. The123

next section describes the model set-up and the generation of the LAI ensemble. This is124

followed by an analysis of the influence of different monthly-varying LAI prescriptions on125

CABLE simulated surface energy and carbon fluxes.126

2. Methods127

a. Model Description128

CABLE is a LSM designed to simulate fluxes of energy, water and carbon at the land129

surface and can be run as an offline-model with prescribed meteorology (e.g., Wang et al.130

2011) or fully coupled to an atmospheric model within a global or regional climate model131
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(e.g., Mao et al. 2011). CABLE is a key part of the Australian Community Climate Earth132

System Simulator (ACCESS, see http://www.accessimulator.org.au), a fully coupled133

earth system science model, currently being used as part of the fifth assessment report of134

the International Panel on Climate Change. The version used in this study is CABLEv1.4b.135

In CABLEv1.4b, the one-layered, two-leaf canopy radiation module of Wang and Leuning136

(1998) is used for sunlit and shaded leaves and the canopy micro-meteorology module of137

Raupach (1994) is used for computing surface roughness length, zero-plane displacement138

height, and aerodynamic resistance. The model also consists of a surface flux module to139

compute the sensible and latent heat flux from the canopy and soil, the ground heat flux, as140

well as net photosynthesis. A soil module is used for the transfer of heat and water within141

the soil and snow, and an ecosystem carbon module based on Dickinson et al. (1998) is used142

for the terrestrial carbon cycle. A detailed description of each of the modules can be found143

in Kowalczyk et al. (2006) and Wang et al. (2011).144

LAI in CABLE is used to compute the roughness length of vegetation and the standard145

deviation of vertical velocities, which are used for the formulation of the aerodynamic resis-146

tances, and hence influence surface energy balance calculations. It is also used to compute147

the total flux density of radiation for sunlit and shaded leaves within the plant canopy radi-148

ation transfer model. This influences simulations of photosynthesis, stomatal conductance,149

leaf temperature, and energy and carbon fluxes as CABLE performs separate calculations150

for sunlit versus shaded leaves (Kowalczyk et al. 2006). Finally, LAI is used in the ecosys-151

tem carbon module where it directly influences GPP and autotrophic respiration (AR).152

Heterotrophic respiration (HR) is not directly driven by LAI, but by soil moisture and tem-153

perature.154

b. Model set-up155

CABLEv1.4b was used within the NASA Land Information System (LIS-6.1) (Kumar156

et al. 2006, 2008), a flexible software platform designed as a land surface modelling and157
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hydrological data assimilation system. A grid resolution of 0.25 × 0.25 degrees was utilised,158

covering continental Australia. The model was forced with the Modern Era Retrospective-159

analysis for Research and Applications (MERRA) reanalysis (Rienecker et al. 2011) at 3-160

hourly intervals and integrated from 1980-2008 and initialised from a previous 30-year spin-161

up. The forcing variables included incoming long-wave and short-wave radiation, air tem-162

perature, specific humidity, surface pressure, wind speed and precipitation. The MERRA163

reanalysis was bias-corrected for precipitation using the Australian Bureau of Meteorology164

Australian Water Availability gridded precipitation dataset (Jones et al. 2009), following165

Decker et al. (2012). Monthly ambient carbon-dioxide concentrations were prescribed using166

measurements from Baring Head, New Zealand (Keeling et al. 2005).167

In CABLEv1.4b, the background snow-free and vegetation-free soil albedo has to be168

prescribed. We used the MODIS derived snow-free background soil albedo data from Hould-169

croft et al. (2009). Bare soil regions, as defined by the IGBP land-use classification map170

(used in CABLE), are assigned the mean albedo over the data period (October 2002 to171

December 2006), whilst partially vegetated pixels are assigned a soil albedo derived from a172

linear relationship between albedo and the Normalised Difference Vegetation Index (NDVI).173

A linear regression model is then used to estimate the background soil albedo corresponding174

to zero green LAI (Houldcroft et al. 2009). The IGBP land-use classification was used, and175

radiative properties, including the leaf transmittance and reflectance values in the visible,176

near infra-red, and thermal regions were prescribed for each vegetation type following Avila177

et al. (2012). These values were obtained by adjusting estimates from Dorman and Sellers178

(1989) until the simulated albedo from CABLE closely approximated the MODIS observed179

broadband albedo.180

c. Simulations181

When running CABLE at a single site, LAI can be prescribed from observations at the182

site (e.g., Abramowitz and Gupta 2008; Wang et al. 2011; Li et al. 2012). When running183

7



CABLE over a grid domain, LAI values are by default taken from a literature-based estimate184

for each PFT, and are fixed in time (e.g., Zhang et al. 2011a) or vary seasonally (Avila185

et al. 2012). For IPCC AR5 global climate simulations, the MODIS LAI product is used in186

CABLE within the ACCESS global circulation model. Since the aim of this paper is better187

inform the sensitivity of CABLE to LAI, we use the same MODIS LAI product (Yuan et al.188

2011) for our control simulation (1980-2008). This is carried out by prescribing monthly189

mean climatological LAI at each grid cell, based on monthly averages over the period of190

availability of the MODIS LAI data (2000-2008).191

To investigate the influence of LAI, a 15-member monthly-varying (1980-2008) LAI en-192

semble was generated using the MODIS LAI and gridded observations of maximum (Tmax)193

and minimum (Tmin) temperatures and precipitation from the Bureau of Meteorology Aus-194

tralian Water Availability Project (BAWAP) (Jones et al. 2009). The goal of reconstructing195

the LAI was to explore the model response to reasonable estimates of LAI variability and196

therefore, an ensemble approach based on simple linear regression between the MODIS LAI197

and the BAWAP data was used.198

The 8-day MODIS LAI was spatially aggregated from its original 0.05 by 0.05 degree grid199

to the BWAP 0.25 by 0.25 degree grid, by weighting each 0.05 cell by the area, summing200

the twenty-five 0.05 degree grid cells within each 0.25 cell, and finally normalizing by the201

total area within the course grid cell. This simple method avoids introducing unnecessary202

complexities that arise when the LAI is interpolated using subgrid scale plant functional type203

distributions. The 8-day, 0.25 degree fields where finally averaged to the monthly means by204

weighting each 8-day period according to the number of days from that time-span that fell205

within a given month.206

The 15-ensemble members were generated by linearly regressing the anomalous (found207

by removing the mean annual cycle) monthly MODIS LAI against Tmax, Tmin, and pre-208

cipitation from BAWAP at each 0.25o grid cell. The regressions were performed using data209

from the period 2000-2008, as this period is coincident with availability of the MODIS LAI.210
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The regressions were first performed separately for each variable and subsequently using all211

three variables to isolate the influence of each of Tmax, Tmin, and precipitation. Due to212

the lag between precipitation and vegetation greenness metrics in Southeastern Australia213

(Decker et al. 2012) we use a centered 5-point linear regression, although similar results are214

obtained when only three points are included. The different sets of spatially distributed215

regression coefficients were calculated by randomly removing 25% of the data from each of216

the 15 regressions.217

Data was withheld as the data training period (2000-2008) occurs during a long-term,218

large scale drought in Australia. Limiting the temporal data in each of the regressions allows219

for uncertainty due to the training period selection and creates a larger spread among the220

final ensemble members. The 15 ensemble estimates of anomalous LAI were created by221

applying each of these 15 different, spatially explicit regression coefficients for the period222

1980-2008. A random Gaussian noise component with the mean and standard deviation223

given by the mean and standard deviation of the regression errors from each fitting was224

added during the construction of the LAI estimates. The added noise ensures that the errors225

associated with the fitting propagates to the final estimates, increases the spread between226

each of the ensemble members, and is consistent with the assumption that errors in LAI227

follow a Gaussian distribution (McColl et al. 2011). Finally these estimates of the LAI228

anomalies (constructed using all three data sources) were added to the mean annual cycle of229

the MODIS LAI to create the final LAI ensemble members. The spatially averaged ensemble230

spread of the anomalous LAI, relative to (i.e. divided by) the spatially averaged ensemble231

mean anomaly was 19.1% for the median, 22.9 % for the mean, 0.1 % for the minimum,232

and 133.6 % for the maximum. Whilst this range of LAI is smaller as compared to the233

range of LAI imposed by other studies, it suits the purpose of testing the influence of a234

climatologically driven LAI ensemble which is the aim of this study.235

Figure 1 shows the relationship between the MODIS LAI and the mean of the 15 member236

ensemble LAI reconstructions using only precipitation (Figure 1a), Tmax (Figure 1b), Tmin237
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(Figure 1c), and the combination of all three (Figure 1d). The root mean square errors238

(RMSE) of the single variable regressions are 0.190, 0.194, and 0.200 respectively, while239

using all three variables results in a slightly better fitting (with an RMSE of 0.188). Figure240

1 demonstrates that while precipitation, Tmax, and Tmin, can be used to reconstruct the241

LAI, the slope of the fittings are less than one (0.982, 0.981, and 0.980, respectively). The242

combination of the three (Figure 1d) yield a slope of 0.987, which is statistically larger243

than the slopes of the regressions using a single variable but still less than one. Due to244

the slightly better agreement with the MODIS observations for the period 2000-2008, the245

LAI reconstructed using all three variables was used for the model simulations. Overall the246

mean of the ensemble members reconstructs the LAI variability for the period 2000-2008247

with R2 values typically 0.3-0.6, with some individual ensemble members better matching248

the observed LAI variability over this period.249

15 simulations were performed over this period using these monthly-varying LAI recon-250

structions. We note here that several studies on the influence of LAI on surface climatology251

use time-varying versus fixed LAI (e.g., van den Hurk et al. 2003) or apply a fixed fac-252

tor (e.g., double or half LAI, (Parton et al. 1996)). Since it is well established that the253

seasonal variation of LAI is not negligible (e.g., over croplands), and the use of remotely254

sensed LAI in LSMs generally improves surface climatology (Pielke et al. 1997; Buermann255

et al. 2001), we focus here on one of the most widely adopted remotely-sensed LAI prod-256

ucts, MODIS, and examine the sensitivity of CABLE to a MODIS-derived monthly varying257

ensemble LAI product, which is representative of the climatology. In summary, both the258

control and experiments are run over the same time-period, except that the control simula-259

tion has no inter-annual variation in LAI while the ensemble members are designed to reflect260

the climatology.261
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d. Data analysis262

The heat, moisture, and carbon fluxes were analysed separately for each dominant PFT,263

defined as PFTs with coverage greater than 1% of land points as shown in Figure 2. This was264

to avoid compensating effects between PFTs, as these have distinct seasonal signals as well265

as absolute magnitudes. For example, croplands, being a human-managed PFT, have higher266

seasonal variability than native vegetation. Additionally, the dense forested areas (evergreen267

broadleaf trees), have the highest absolute LAI, while most of inland Australia is sparsely268

vegetated with open shrublands with lower absolute LAI. Since the imposed changes in LAI269

are on the monthly time-scale, we compute monthly means and standard deviations of the270

fluxes and plot time series of the difference between the control and ensemble mean, with the271

standard deviation used to provide a measure of spread. Since the variations in the imposed272

LAI vary with time (monthly) and reflect the inter-annual variability in climatology inherent273

in the BAWAP gridded precipitation and temperature data-set, we perform a time-series274

rather than seasonal analysis (e.g., mean summer fluxes over the whole period). Additionally,275

we compute zero-lag cross-correlations between LAI and the fluxes to better quantify the276

response to changes in LAI.277

3. Results278

Figure 3 shows a monthly time-series of (a) the absolute (control-ensemble mean), and279

(b), percentage difference ((absolute difference/control)×100) in LAI, heat, moisture, and280

carbon fluxes for open shrublands between 1980-2008. The zero-lag cross correlations with281

LAI are summarised in Table 1. The difference in LAI for open shrublands varies approxi-282

mately between -0.2 to 0.1, which represents a percentage change of -90 to 30 %. As expected,283

increases in LAI lead to a increase in vegetation transpiration (EV) and an decrease in soil284

evaporation (ES) as shown by the strong positive cross-correlation between LAI and EV and285

negative correlation with ES (Table 1). Although the absolute changes in EV are smaller286
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than ES, when expressed as a percentage change, they are larger by a factor of ∼ 2-3. This287

is expected as the amount of leaf respiration is a direct function of LAI, whereas LAI only288

acts to partially inhibit soil evaporation.289

The effects of LAI on the absolute changes in mean monthly sensible (Qh) and latent290

(Qle) heat fluxes are small (< 1W m−2), with percentage changes between -4 to 6 % only,291

and the correlations with LAI are lower as compared to EV and ES. These small changes in292

Qh and Qle corresponded with equally small changes in net radiation and surface albedo (not293

shown). Overall surface albedo in CABLE is a function of the vegetation albedo, background294

snow-free soil albedo, and snow albedo. The area covered by open shrublands is not densely295

vegetated, and hence it is the background soil albedo which largely determines the overall296

surface albedo. Thus, the relatively small perturbation in LAI imposed did not alter the297

overall surface albedo to a large extent and hence, the partitioning between Qh and Qle was298

not generally affected.299

The changes in the terrestrial carbon fluxes, on the other hand, showed a much stronger300

response to LAI. A decrease in LAI led to a decrease in autotrophic respiration (AR), and in-301

crease in heterotrophic respiration (HR), with strong positive cross-correlation between LAI302

and AR and weaker negative correlation with HR (Table 1).When expressed as a percentage303

change, the differences in AR were up to 3-4 times larger than HR. This was expected, since304

HR is driven by below-canopy and soil processes, whilst AR is a direct function of LAI.305

Similarly, GPP was strongly positively correlated with LAI (we note that by convention in306

CABLE, downwards fluxes (i.e., GPP) are negative, but shown as positive here to remain307

consistent with the literature), as it is also a direct function of LAI, with percentage dif-308

ferences between -40 to 20 % (the same order of magnitude as the percentage change in309

LAI).310

For croplands (Figure 4), the absolute change in LAI varies between -0.6 and 0.6, cor-311

responding to a percentage change of approximately -160 to 40 %. This is larger when312

compared to open shrublands and all the other PFTs. Croplands, being a human-managed313
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PFT, have the highest seasonal and inter-annual variation in LAI (∼ 0.3-1.8) as compared314

to open shrublands (∼ 0.3-0.5) and the other PFTs, and hence the strongest response to315

monthly changes in precipitation, Tmax, and Tmin, which were used to generate the en-316

semble. The absolute changes in the heat and evaporative fluxes are an order of magnitude317

higher as compared to open shrublands (Figure 3), and the corresponding percentage changes318

are about double. Although the absolute changes in Qh and Qle are larger as compared to319

open shrublands, this change on a monthly time-scale is relatively small (the large percentage320

changes in Qh of up to 600 % still represent a small absolute change). The small absolute321

LAI of croplands is such that even large percentage changes did not change the surface322

albedo to a large enough extent to significantly alter net radiation. The absolute changes in323

AR, HR, and GPP are also an order of magnitude larger as compared to open shrublands,324

and the percentage changes are comparable to the imposed change in LAI.325

The changes for the other PFTs (woody savannas, savannas, and grasslands) showed326

similar trends (not shown), most noticeable in the carbon, rather than the turbulent heat327

fluxes. Evergreen broadleaf trees (Figure 5) had the smallest percentage change in LAI,328

since they have the largest absolute LAI values, and low inter-annual variability (∼ 2.8-3.4).329

Hence, this PFT had the smallest response in the carbon fluxes (-4 to 6 %), with lower cross-330

corrrelations to LAI as compared to the other PFTs (Table 1). Evergreen broadleaf trees331

also showed a small positive correlation to HR of 0.46 (Table 1), whilst all other PFTs had332

a negative correlation, showing that a dense canopy can enhance HR. Another noticeable333

result for Evergreen broadleaf trees was that soil evaporation had a larger response to LAI334

as compared to vegetation transpiration in both absolute and percentage terms. This was335

a counter-intuitive result, as dense forested canopies would be expected to have a larger336

response of vegetation evaporation to LAI as compared to soil evaporation. To further337

investigate this, we conduced two extra simulations with large perturbations to the control338

LAI of ± 50 %.339

Figure 6 shows the seasonal difference in LAI imposed between the two experiments340
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(+50% minus -50%) and the subsequent changes to vegetation and soil evaporation (we341

show contours rather than time-series as the imposed LAI for these simulations has no inter-342

annual variability). As expected, a doubling of LAI results in an overall increase in vegetation343

transpiration and decrease in soil evaporation. However, the decrease in soil evaporation is344

almost twice as large as in the increase in vegetation transpiration, especially along the345

east coast where most Evergreen broadleaf trees are found. This is further demonstrated in346

Figure 7, showing the fraction of vegetation transpiration as a function of evapotranspiration347

(vegetation + soil) for both experiments. Over a semi-arid continent, changes in LAI result348

in a stronger response of soil evaporation as compared to vegetation transpiration.349

Whilst there are clear differences in the month-to-month variation of the heat, moisture,350

and carbon fluxes, increases in one period may be cancelled by a decrease later on. Addition-351

ally, we have not considered any spatial patterns in the changes in LAI and carbon fluxes.352

This is illustrated in Figure 8, showing the gridded cumulative monthly mean difference in353

LAI on carbon fluxes (cumulative changes in LAI < 5 have been masked out to highlight354

the largest changes). Clearly, the largest changes in LAI and carbon fluxes are restricted355

to the southeastern, rather than southwestern croplands (see Figure 2). This is due to the356

imposed change in LAI being almost twice as high for the southeastern as compared to the357

southwestern croplands, as illustrated in Figures 9a and 9b respectively. The larger response358

to LAI in southeast is due to the larger inter-annual variation in precipitation in this region,359

which was used to generate the LAI ensemble.360

4. Discussion361

The literature clearly suggests that the prescription of LAI in LSMs has a strong influence362

on the surface heat, moisture, and carbon fluxes. Hence we conducted a series of experiments363

to examine the influence of LAI variability in CABLE, as it is a widely used LSM in the364

Australian climate community and this sensitivity has not been previously tested.365
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Our results show relatively small impacts on the partitioning of available energy into the366

sensible and latent heat fluxes. Other studies have found much larger impacts, however, these367

were confined to regions of much larger changes in LAI compared to the changes imposed in368

this study. For example, Pitman et al. (1999) found large changes in total evaporative fluxes,369

but these were confined to regions where the absolute change in LAI was up to 3. Similarly,370

Bonan et al. (1993) found that LAI had a strong influence on the surface energy balance, but371

focussed on western US Conifer forests, the LAI of which varies from approximately 5 to 13.372

The imposed changes in LAI were much smaller in magnitude, but realistic and plausible373

, i.e., related to the climatology. Even when the LAI was doubled, the magnitude of the374

change was less than 1 for most of the continent (Fig. 6 (a)). Hence, the relatively small375

response of the evaporative fluxes is due to a small (but realistic) perturbation in LAI.376

The experiments with ± 50 % of the control LAI showed that doubling LAI resulted in a377

decrease in soil evaporation, which is twice as large as the increase in vegetation transpiration.378

This result is consistent with other studies which have shown that over half of the water lost379

through evapotranspiration over the Australian continent is through soil evaporation and by-380

passes plants almost entirely (Haverd et al. 2013). Similar results have been found elsewhere.381

Namely, van den Hurk et al. (2003) showed that in relatively dry (moisture limited) areas,382

where LAI values are relatively low, changes in LAI cannot result in large changes in surface383

heat and moisture fluxes as the land surface is already constrained by available soil water.384

In other words, variations in LAI cause the stronger response where surface evaporation uses385

a large proportion of the available energy.386

van den Hurk et al. (2003) did not allow for changes in LAI to alter the surface albedo,387

and hence, omitted a feedback important to our results. In our simulations, the variations388

in LAI imposed resulted in small changes in surface albedo, and subsequently small changes389

in net radiation. The small change in albedo is due to the relatively small perturbation in390

LAI imposed and because Australia is sparsely vegetated over large regions. It is therefore391

the background soil albedo, rather than the vegetation albedo, which has a large influence392
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on overall surface albedo in these regions.393

We found larger impacts on the terrestrial carbon balance, with LAI strongly positively394

correlated to GPP and AR, and negatively correlated with HR, consistent with both obser-395

vational (Barr et al. 2004; Saigusa et al. 2008; Duursma et al. 2009; Keith et al. 2012) and396

modelling (Puma et al. 2013) studies which report a tight coupling between LAI and primary397

production. This tight coupling is not unexpected as LAI is a key variable in the parameteri-398

sation of the carbon cycle. It determines not only the area of leaf that is potentially available399

to absorb light (and fix carbon via primary production, i.e., GPP), but also the amount of400

light attenuated and precipitation intercepted by the canopy. This in turn influences soil401

temperature, moisture, and evaporation, which drive heterotrophic respiration. However, of402

greater interest is the net ecosystem exchange (NEE) of carbon, i.e., the difference between403

GPP and the sum of HR and AR. If NEE in negative, then the land surface is a net source404

of carbon and a sink when positive. In all our simulations, NEE was always positive for both405

the control and the ensemble mean, and hence, the changes in LAI did not change the land406

surface to a source of carbon.407

The largest impacts were found for croplands, which have the highest inter-annual vari-408

ability in LAI. The changes were mostly restricted to the southeast, rather than southwest409

croplands, as the imposed changed in LAI was almost double in the former compared to the410

latter region. The southeast of Australia experiences higher inter-annual rainfall variability411

as compared to the southwest due to large-scale teleconnections (Risbey et al. 2009), and412

this signal was reflected in the LAI ensemble produced, as it is derived using gridded, sta-413

tion based precipitation and temperature data. The least impact was found for evergreen414

broadleaf trees, which had highest absolute LAI and lowest inter-annual variability. These415

results are consistent with Guillevic et al. (2002) and Puma et al. (2013), namely, that the416

impact of LAI variability is less for denser vegetation and moisture limited regions (low417

evaporative fraction).418

Whilst our results are broadly consistent with existing literature, they are constrained419
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by several caveats inherent of the study design. The model grid domain was restricted to420

Australia, due to the spatial extent of the BAWAP precipitation and temperature data used421

for generating the LAI ensemble, as well as bias correcting the forcing data. Hence our results422

are largely applicable to arid and/or semi-arid regions. Nonetheless, the results presented423

here should help inform the design of a broad range of future climate simulations whereby LAI424

is prescribed, especially when the focus is on the terrestrial carbon cycle. Our results are also425

limited to one particular LSM driven offline with a particular atmospheric forcing. Thus, our426

results would results would be worth extending via a multi-model evaluation of the sensitivity427

of LAI in LSMs that simulate the terrestrial carbon cycle. Despite inevitable caveats, our428

results highlight that the sensitivity testing of LSMs to LAI should be extended to include429

the terrestrial carbon cycle (rather than just heat and moisture fluxes). Additionally, the430

sensitivity of crop biomes to LAI highlights a need for the better representation of crop431

phenology in LSMs. This however remains a difficult challenge as crops, in contrast to other432

PFTs, are strongly and directly influenced by human intervention.433

5. Conclusions434

LAI is a critical component of any LSM. In this study, we performed a sensitivity anal-435

ysis of heat and carbon fluxes to perturbations in LAI using the CABLE LSM over the436

Australian continent on a monthly time-scale. We showed that whilst the influences of LAI437

perturbations on the heat and moisture fluxes were low, the impact on the terrestrial carbon438

balance was large, especially for croplands. Our results are consistent with earlier studies439

which have shown that PFTs with high inter-annual variability are the most sensitive to440

LAI perturbations, whilst dense vegetation is less sensitive, especially in moisture limited441

regimes. A key conclusion is therefore that care should be taken in accurately prescribing442

LAI, particularly when simulating the carbon cycle. Clearly, assigning fixed LAI to PFTs443

and/or using climatological means from remote sensing products, will not accurately reflect444
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the interannual variability of LAI which can have a large impact on the cumulative carbon445

fluxes.446

While our results focus on Australia, they provide several useful conclusions to the447

broader LSM community. First, using an ensemble of LAI products in simulations can448

be a very useful and straightforward method in establishing one element of uncertainty and449

the method used to generate the LAI ensemble here can be adapted to other regions and/or450

globally. Second, there is a clear need to assess the influence of LAI on the terrestrial carbon451

cycle at the global scale. To our knowledge, no studies have systematically addressed this452

issue, and this would provide a means to better quantify the uncertainty in future changes453

in the global terrestrial carbon cycle. Third, the sensitivities we find to LAI, particularly454

in respect of terrestrial carbon, points to the urgent need to resolve the parameterization455

of LAI more systematically in LSMs. Ideally, this is not through better prescriptions of456

LAI, rather it is via the addition of leaf phenology modules to LSMs. This highlights an457

important area of development in CABLE, as well as other LSMs which have no explicit458

dynamical representation of LAI. Finally, we also note that for a more complete assessment459

of the influence of LAI in LSMs, both the representation of vegetation through PFT maps460

and LAI variability should be analysed parallel to each other.461
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Table 1: Zero-lag cross-correlations between differences in leaf area index (LAI) and differ-
ences in: vegetation transpiration (EV), soil evaporation (ES), sensible heat (Qh), latent
heat (Qle), autotrophic respiration (AR), heterotrophic respiration (HR), and gross primary
production (GPP) for the major PFT shown in Figure 2.

PFTs EV ES Qh Qle AR HR GPP

Open shrublands 0.94 -0.90 -0.63 0.39 0.91 -0.76 0.99
Croplands 0.88 -0.90 0.20 -0.29 0.87 -0.56 0.95
Woody savannas 0.97 -0.88 0.31 -0.64 0.95 -0.40 0.99
Evergreen broadleaf trees 0.80 -0.88 0.63 -0.76 0.79 0.46 0.87
Savannas 0.93 -0.88 0.46 -0.65 0.91 -0.48 0.97
Grasslands 0.90 -0.80 -0.29 0.01 0.85 -0.66 0.98
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the control simulation and the ensemble mean for open shrublands (72.6 % of660

land points). The shaded region represents one standard deviation. 32661
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9 Time series of monthly mean absolute differences in LAI, autotrophic respi-675

ration (AR), heterotrophic respiration (HR), and gross primary production676

(GPP) between the control simulation and the ensemble mean for (a) south-677

western (SW) croplands, and (b) southeastern (SE) croplands (next page). 41678
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Figure 1: Scatter plot of the ensemble mean of the constructed LAI (m2 m−2) versus the
MODIS LAI (m2 m−2) for each grid cell for the period 2000-2008 obtained using (a) precip-
itation, (b) minimum temperature, (c) maximum temperature, and (d) precipitation, and
minimum and maximum temperature.
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Figure 2: Dominant plant functional types (PFTs), defined as greater than 1% of land points
(masked inland regions in white are PFTs less than 1% of land points).

32



Figure 3: Time series of (a) monthly mean absolute differences, and (b) percentage differences
(next page), in LAI, vegetation transpiration (EV), soil evaporation (ES), sensible heat (Qh),
latent heat (Qle), autotrophic respiration (AR), heterotrophic respiration (HR), and gross
primary production (GPP) between the control simulation and the ensemble mean for open
shrublands (72.6 % of land points). The shaded region represents one standard deviation.
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Figure 3: Continued
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Figure 4: Same as in Figure 3 but for for croplands (7.5 % of land points).
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Figure 4: Continued
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Figure 5: Same as in Figure 3 but for for evergreen broadleaf trees (4.9 % of land points).
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Figure 5: Continued

38



Figure 6: Differences in (a) LAI, (b) vegetation evaporation (EV) (mm day−1), and (c)
soil evaporation (ES) (mm day−1) between the experiment with +50% and -50% of the
control LAI (the masked inland areas are regions where the gridded precipitation data used
to generate the LAI ensemble was missing, and hence these points were excluded from all
analysis for consistency).
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Figure 7: Ratio of vegetation evaporation to total evapotranspiration (i.e., EV/(ES+EV))
for the experiments with (a) +50% of the control LAI, and (b) -50 % of the control LAI.
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Figure 8: Gridded cumulative difference in monthly mean LAI and carbon fluxes
(Gg month−1) between the control simulation and the ensemble mean (cumulative changes
in LAI < 5 have been masked out to highlight the largest changes).
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Figure 9: Time series of monthly mean absolute differences in LAI, autotrophic respiration
(AR), heterotrophic respiration (HR), and gross primary production (GPP) between the
control simulation and the ensemble mean for (a) southwestern (SW) croplands, and (b)
southeastern (SE) croplands (next page).
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Figure 9: Continued
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