er Planning

etadata, citation and similar papers at core.ac.uk

brought to you by TCORE

National Aeronautics and Space Administration

Preparing GMAT for Operational Mane of the Advanced Composition Explore

Rizwan H. Qureshi

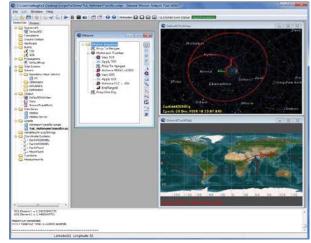
dynamics Specialist o, CA

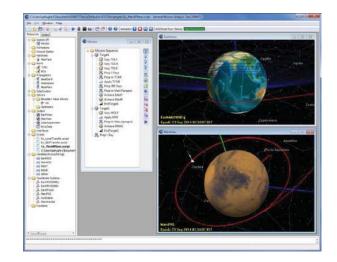
d Steven P. Hughes

www.nasa.gov

NAVIGATION & MISSION DESIGN BRANCH Code 5

Outline


- GMAT Overview
- ACE Mission Overview
- Operational Certification Cycle
- ACE Operations Overview
- Results/Analysis
- Conclusions/Impact/Benefits



What is GMAT?

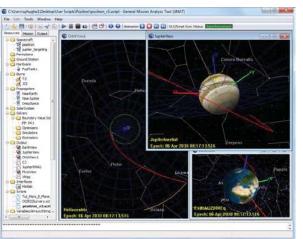
 GMAT is a mission design, analysis & trajectory optimization tool that is:

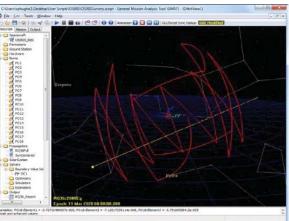
- In-house
- Open source
- High fidelity
- GMAT R2013a
 - Released April, 2013
 - 6th public release
 - 1st major non-beta release
- GMAT R2013b
 - Released August, 2013
 - Certification candidate
 - Meets ACE requirements

What is GMAT?... cont.

- GMAT can support flight regimes ranging from:
 - LEO
 - GEO
 - HEO
 - Libration
 - Lunar
 - Interplanetary & Deep space
- GMAT has supported
 - LCROSS
 - LRO
 - ARTEMIS
 - MAVEN
 - OSIRIS
 - TESS & more...

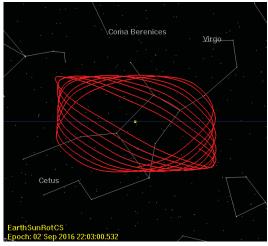
Download and find out more: gmatcentral.org

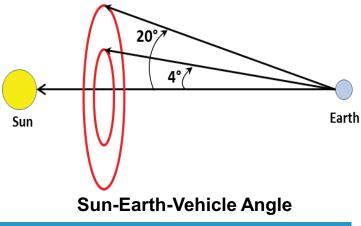

GMAT Development Team NASA GSFC


Optimal Lunar Flyby

Optimal Mars Trajectories

Outer Planet Transfers


Asteroid (RQ36) Survey

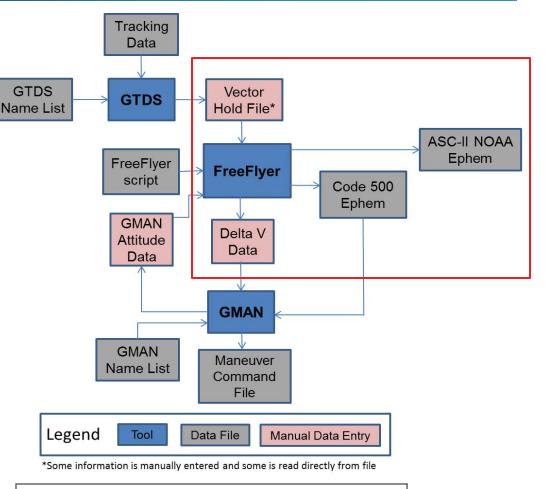


ACE Mission Overview

- Sun-Earth L1 Orbiter (Lissajous orbit)
 - Spin stabilized & launched in August, 1997
 - Design amplitudes are:
 - Ax = 81,755 km
 - Ay = 264,071 km
 - Az = 157,406 km
 - Sun-Earth-Vehicle (SEV) angle must be between
 4° & 20° nominal
- Station-keeping maneuvers:
 - 2-3 months apart
 - Nominal delta-V's averaging 0.33 m/sec
- Attitude Maneuvers:
 - Performed weekly
 - Perturb ACE orbit

Lissajous orbit Viewed from Earth

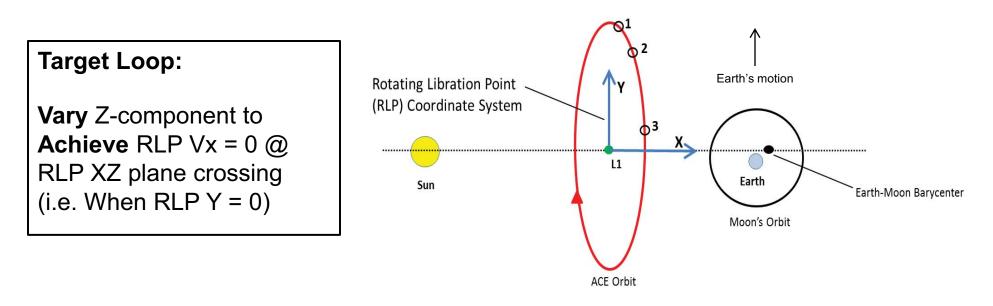
5


Flight Operational Certification Cycle

- Began on August 2012
- Milestones
 - Requirements gathering
 - Gaps analysis for ACE requirements
 - Development/Testing/Documentation of new ACE related features
 - Develop ACE maneuver planning/product generation scripts & validate output
 - Write/perform Operational Procedures & Test Plans documents
 - Provide training to ACE Maneuver Team
 - Test Readiness Review
 - Non-Interfering Shadow Ops
 - Operational Readiness Review

Current ACE Operations Overview

- OD performed via GTDS
- Impulsive targeting/trajectory propagation performed via FreeFlyer
- Initial targeting done in ACE Eng. Coord. sys. Final targeting done in Attitude coord. sys.
- Finite-burn modeling is performed using GMAN
- GMAN generates Maneuver Cmd. File
- FreeFlyer delivers 28 days long ephem to NOAA


We focused on tools/interfaces in red box

GMAT Development Team NASA GSFC

ACE Maneuver Targeting Strategy:

- 1. Get an updated OD state
- **2.** Prop to attitude re-orientation epoch & apply perturbations due to att. maneuver
- 3. Next: Prop to maneuver epoch & enter Target Loop:

Requirements Gathering

- Requirements for ACE maneuver Ops gathered by working with maneuver planning team (97 requirements)
- Requirements had to be verifiable & unambiguous
- After 3.5 months of validation, final ACE Requirements approved
- ACE requirements areas:
 - Coordinate System
 - Force Model
 - Maneuver Targeting
 - Orbit Propagation
 - Product Output (SK dV, Code 500 & NOAA ephems & Maneuver summary report)
 - Spacecraft model

Gaps Analysis

- Missing features:
 - 1. Parse through a vector hold file
 - 2. Write code-500 ephemeris file
 - 3. Develop new ACE Coordinate Sys. for maneuver targeting
 - 4. Report spacecraft acceleration
- 3 months of Development, Testing & Documentation efforts led to release of GMAT version R2013b (August, 2013)!
- R2013b is an internal release for Ops certification testing

Gaps Analysis...Cont.

Resources Output		😨 EphemerisFile - EphemerisFile1	😵 New Coordinate System
Spacecraft Spacecraft Spacecraft Softenetics Formations Ground Station Hardware Brins SolarSystem SolarSystem Solvers Solvers Output	Mission	Options Spacecraft DefaultSC Coordinate System EarthMJ2000Eq Write Ephemeris File Settings File Format CCSDS-OEM File Name CCSDS-OEM Interpolator Order 7	Coordinate System Name Origin Earth Axes Type LocalAlignedConstrained AlignmentVector AlignmentVectorX 1.0 ReferenceObject Luna
Cordinate Systems Coordinate Sy	P→ mission Sector nce Set1 Rcopegste1 P→ P→ P→ P→ P→ P→ P→ P→ P→ P→	Step Size IntegratorSteps sec Output Format PC Epoch Epoch InitialSpacecraftEpoch InitialEpoch InitialSpacecraftEpoch FinalEpoch FinalSpacecraftEpoch OK Apply Cancel Help	AlignmentVector2 0.0 Constraint Vectors Constraint Coord. Sys. EarthMJ2000Eq ConstraintVectorY 0.0 Constraint Ref. VectorX 0.0 Constraint Ref. VectorY 0.0 Constraint Ref. VectorY 0.0 Constraint Ref. VectorZ 1.0 OK Cancel Help

FileInterface resource and Set command

Code 500 ephemeris Format

Spacecraft.ForceModel.Acceleration Spacecraft.ForceModel.AccelerationX Spacecraft.ForceModel.AccelerationY Spacecraft.ForceModel.AccelerationZ

LocalAlignedConstrained Coord. Axis Type

Pre-Shadow Operations

- There are two FreeFlyer scripts used for maneuver planning & product generation:
 - ACE_impulsive_vec###.MissionPlan
 - Generates weekly ΔV necessary to predict future SK maneuvers
 - Used for both initial and final impulsive ΔV targeting
 - ACE_impulsive_NOAA28day_vec###.MissionPlan
 - Generates 28 days long ephem. delivered to NOAA
- GMAT scripts were written using similar design philosophy:
 - ACE impulsive vec###.script
 - ACE impulsive NOAA28day vec###.script

Local Operating Procedures (LOP) Development

- ACE Maneuver team uses LOP document for End-to-End Ops support using FreeFlyer scripts
- Wrote detailed 45 page long LOP that instructs how to use GMAT scripts for ACE Ops:
 - Procedures for obtaining weekly ACE ΔV for Future Station-keeping Maneuver
 - Procedures for ACE Maneuver planning one week prior to the maneuver
 - Procedures for ACE Maneuver planning one day prior to maneuver
 - Procedures for final SK Maneuver planning (Post-Attitude Maneuver)
 - Procedures for generating NOAA 28-day Ephemeris
 - Procedures for delivering products via DataViewer
- Our LOP doc has been reviewed & approved by maneuver planning team

Test Plans Development

- Wrote test plans for 97 requirements sub-divided in 6 areas:
 - Coordinate System
 - Force Model
 - Maneuver Targeting
 - Orbit Propagation
 - Product Output
 - Spacecraft model
- Each test plan:
 - Has detailed test procedures to test & verify each requirement
 - References separate GMAT ACE scripts to test each requirement
- ACE team implemented test plans & GMAT passes all test plans & meets all requirements!

Requirements to Test Traceability

Test Plans for Maneuver Targeting area:

REQID 🔽	Object Text 🔽	Test Plans
	The ground system must be capable of ingesting the state vector from the TCOPS Vector Hold	Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT01	Files without user input.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.
	The ground system must be capable of ingesting the epoch from the TCOPS Vector Hold Files	Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT02	without user input.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.
	The ground system must be capable of ingesting C_r from the TCOPS Vector Hold Files	Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT03	without user input.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.
		Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT04	The ground system shall use a user-input maneuver epoch for impulsive targeting.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.
	The ground system shall support varying the delta-V along the spacecraft body Z-axis during	Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT05	differential correction of impulsive maneuver targeting.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.
	Ground system shall propagate spacecraft to a user-specified number of XZ plane crossings	
	in the Rotating Libration Point (RLP) frame during differential correction of impulsive	Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT06	maneuver targeting.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.
	The differential corrector shall compute a delta-V vector which achieves an accuracy better	
	than 0.00000 ± 0.000001 km/s along X component of the velocity in the RLP frame (e.g., the	Follow procedure in FDSS-FORM-0015 Maneuver targeting Test
MT07	Earth-Sun line) on the fourth X-Z plane crossing.	Plan.docx and use ACE_impulsive_Burn_450.script GMAT script.

Test Readiness Review (TRR)

- On 09/10/2013: Presented TRR to ACE Ops Team
- Verify environment & tools are ready for shadow operations
- GMAT passed TRR!

FDF Training

- Although GMAT ACE LOP document serves as training & instructions manual to support ACE Ops, extra hands-on training was provided
- On 09/16/2013, gave training to maneuver team & demonstrated how to use:
 - GMAT's ACE_impulsive_vec###.script
 - ACE_impulsive_NOAA28day_vec###.script
- Maneuver team now fully trained to use GMAT ACE maneuver planning & product generation scripts

Results/Analysis

- Delta-V comparisons
- Propagation comparisons
- Shadow Ops
- Operational Readiness Review

AV Comparisons

SK ΔV validated against FreeFlyer using historical OD solutions

 ΔV diff. (perturbations from attitude re-orientation maneuver **not** modeled):

TVHF file	Maneuver Epoch [UTCG]	GMAT SK ΔV [cm/sec]	ΔV diff. [mm/sec]
Vec424.txt	15 Jan 2013 17:30:00.000	15.01	0.024
Vec433.txt	15 Apr 2013 16:00:00.000	22.75	0.017
Vec440.txt	19 Mar 2013 16:00:00.000	12.53	0.018
Vec456.txt	25 Jun 2013 19:15:00.000	27.98	0.016

ΔV difference must be < 0.05 mm/sec

19

ΔV Comparisons...Cont.

 ΔV diff. (perturbations from attitude maneuver modeled):

TVHF file	Att. Re-orientation Epoch [UTCG]	Maneuver Epoch [UTCG]	GMAT SK ΔV [cm/sec]	ΔV diff. [mm/sec]
Vec420	19 Nov 2012 15:59:50.000	19 Nov 201217:30:00.000	29.65	0.021
Vec430	15 Jan 2013 16:03:08.000	15 Jan 201317:30:00.000	19.97	0.015
Vec450	02 Apr 2013 17:49:36.899	02 Apr 2013 19:15:00.000	19.47	0.018
Vec472	09 Jul 2013 16:42:37.000	09 Jul 2013 17:40:00.000	15.30	0.012

ΔV difference must be < 0.05 mm/sec

20

Propagation Comparisons

Propagation compares using OD solutions from 4 TVHF files

Short & Long term propagation comparison between GMAT & FreeFlyer:

TVHF file used	RSS position error after 28 days in EarthMJ2000Eq [mm]	RSS position error after 180 days in EarthMJ2000Eq [meters]
Vec433.txt	0.50	2.72
Vec440.txt	2.9	3.04
Vec450.txt	6.1	2.62
Vec456.txt	1.6	4.73

RSS pos. error (28 Days) must be < 10 mm RSS pos. error (180 Days) must be < 5 meters

GMAT Development Team NASA GSFC

Non-Interfering Shadow Ops

On 09/23/2013, ACE maneuver team used GMAT & performed shadow operations during ACE SK maneuver:

- Delivery products from GMAT verified against FreeFlyer

 ΔV diff. (perturbations from attitude re-orientation maneuver modeled):

TVHF file used	Initial State Epoch [UTCG]	ΔV diff. [mm/sec]	RSS position error after 28 days in EarthMJ2000Eq [mm]
Vec493.txt	23 Sep 2013 00:00:00.000	0.015	1.83

ΔV difference must be < 0.05 mm/s RSS pos. error (28 Days) must be < 10 mm

GMAT Development Team NASA GSFC

22

Operational Readiness Review (ORR)

- On 11/19/2013: Presented ORR to ACE Maneuver Team
- Presented results from shadow Ops & test plans:
 - GMAT meets all requirements & passes all tests for ACE Maneuver Planning
- GMAT was deemed Flight Certified to support operational maneuver planning for ACE!

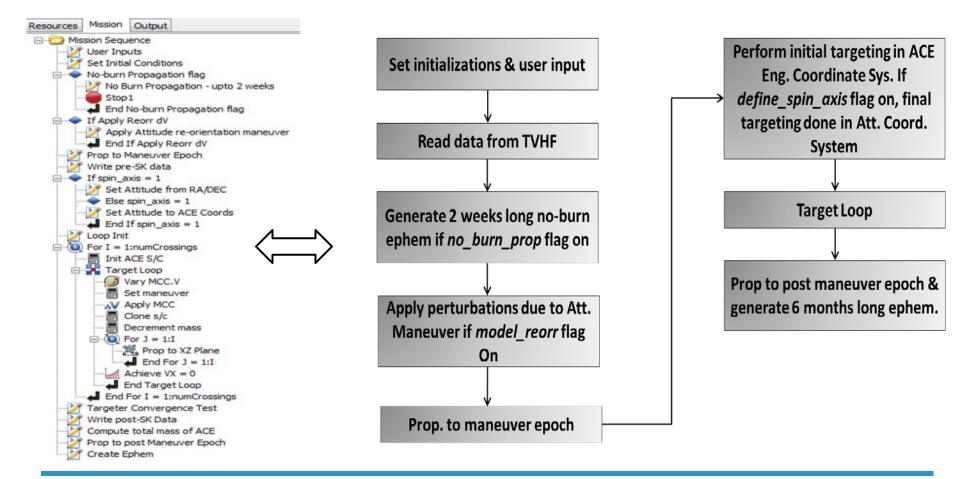
Conclusions/Impact/Benefits

- Demonstrated GMAT is flight quality software & is now Ops certified for ACE
- Laid groundwork for broad adoption of GMAT as an Ops tool for other GSFC missions
- Goddard's GMAT R2013b and recently R2014a:
 - Robust trajectory optimization tool available to all!
 - Provided a tool that Goddard controls to meet its unique and strategic needs
 - Provided a system for development of new mission design and nav. technology
 - In-house tool that complements other tools like FreeFlyer and STK

Backup Slides

GMAT Development Team NASA GSFC

25


Software Development History/Status

- Requirements Gathering, 2001
- Architectural design, 2002
- Implementation of System Core, 2003
- First Beta Release, 2007
- Second Beta Release, 2008
- Decision to use as Primary Operational Software, 2010
- R2011a Release, 2011
- R2012a Release, 2012
- R2013a Release, April 2013 (Production Release)
- R2013b Release, Aug 2013 (Ready for Ops Testing)
- Sep. 2013: NPR/GPR 7150.2 compliant
- R2014a Release, May 2014

Pre-Shadow Ops...Cont.

Basic Design methodology for GMAT's ACE_impulsive_vec###.script :

GMAT Development Team NASA GSFC

27

ACE Station-keeping & Attitude Maneuver Context

- Initial Maneuver targeting is performed in ACE Engineering CS defined as follows:
 - Z-axis: Defined by Earth center to ACE radial vector
 - X-axis: up orthogonal to z-axis, in plane formed by z-axis & North Ecliptic Pole (NEP)
 - Y-axis: Z cross X
- Final maneuver targeting is performed using Spin-axis Attitude CS once spin axis attitude is known prior to maneuver
 - Z-axis: Defined by spin-axis attitude expressed in mean J2000 RA/DEC
 - X-axis: Up orthogonal to z-axis, in plane formed by z-axis & NEP
 - Y-axis: Z cross X
- Weekly spin-axis attitude re-orientation maneuvers perturb ACE orbit & perturbations modeled using Local Vertical Local Horizontal (LVLH) CS

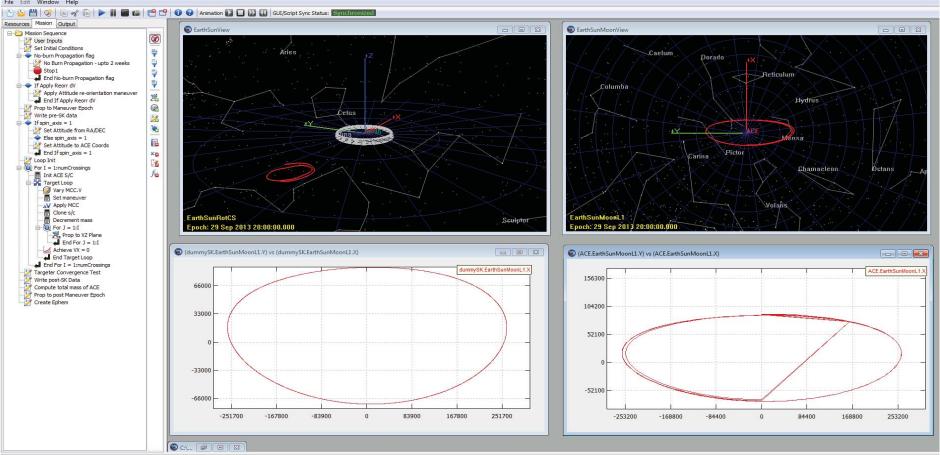
GMAT ACE_impulsive_vec###.script "User Inputs" ScriptEvent

C:\Users\rqureshi\Desktop\ACE LOP Final Scipts\ACE_impulsive_450 - Copy.script - General Mission Analysis Tool (GMAT)
 File Edit Window Help

sion Output	© User Inputs
r Inputs	Comments
nitial Conditions urn Propagation flag	
Burn Propagation - upto 2 weeks	imaaizatons and user inputs
op1	
pply Attitude re-orientation maneuver nd If Apply Reorr dV	1 % Input state
to Maneuver Epoch gre-SK data	
avis = 1	
et Attitude from RA/DEC	
se spin_axis = 1	6 GMAT X = 156666.7313825359;
d If spin_axis = 1 x	
nit = 1:numCrossings	$10 \text{cMat} \mathbf{v}_{\mathbf{x}} = -0.01337265523292;$
	1 GMA γ of 0.074297160328779;
t ACE S/C 🧷	12 GMAT Cr = 1.541788385;
Vary MCC.V	13
Set maneuver	14 % Attitude Reorientation
Apply MCC	15 GMAT model_reorr = 1; % 1 = model reorr, 0 = no reorr
Clone s/c	16 GMAT reorr_epoch = '02 Apr 2013 17:49:36.899'; %midpoint of reorr burn
Decrement mass	17 GMAT reorr_radial = -0.000005; %km/s
For J = 1:I	18 GMAT reorr_tangential = 0.00006; %km/s 19 GMAT reorr normal = 0.00000; %km/s
	20 GNAT FEOL INFINIT = 0.000007, skm/s
Achieve VX = 0	21
End Target Loop	22 % Maneuver
nd For I = 1:numCrossings	23 GMAT maneuver epoch = '02 Apr 2013 19:15:00.000';
ter Convergence Test	24 GMAT maneuver_seed = 0.00019467808017750504; % initial dv guess, km/s
post-SK Data	25 GMAT target_crossing = 4; % Nth crossing of XZ plane, where achieve condition is to be met
ute total mass of ACE	26 GMAT tank mass = 115.3644*0.45359237; % kg, total fuel remaining in all tanks
to post Maneuver Epoch	27 GMAT sk_fuel_used = 0.0602; %kg (should be positive) 28 GMAT define prin axis = 1; % 1 = supply RA and Dec. 0 = build attitude based on radial vector
e Ephem	28 GMAT define spin axis = 1; % 1 = supply RA and Dec, 0 = build attitude based on radial vector 29 GMAT 2 RA = 15.90; % deg
	30 GMAI Z Dec = -6.50 /s deg
	31
	32 % Post maneuver epoch
	33 GMAT postmaneuver_epoch = '02 Apr 2013 20:00:00.000';
	34 GMAT NumDays_after_maneuver = 180; % Enter # of days for which post maneuver ephemeris needs to be generated for. Variable is used in 'Create Ephem' ScriptEvent.
	35
	36 %Remaining variable definitions
	37 GMAT drymass = ACE.DryMass; 38 GMAT ACE.FuelTankI.FuelMass = tank mass;
	39
	55 40 % Variable used for Targeter Convergence test
	4 GMAT targetTol = 0.000001; % Targeter shall compute dV vector with accuracy better than 0.000001 km/s along RLP Vx component on LAST X-2 plane crossing.
	EndScript
	CARCEL CARCEL

📀 🖸 🚞 🤌 💫 🥠 🔛 🚱 🧭 🖻

GMAT Development Team NASA GSFC



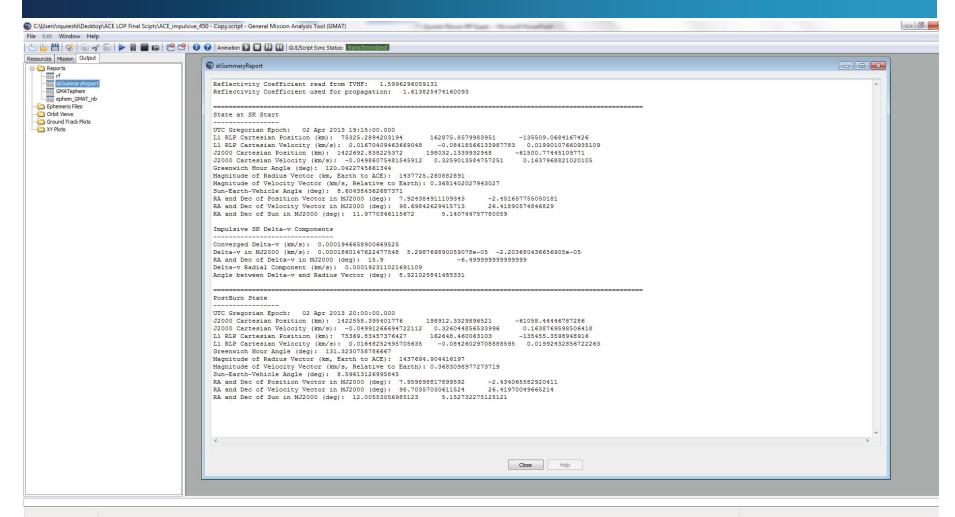
29

▲ 🕨 🛱 📶 ♦) 😽 1:35 PM 9/29/2013

GMAT ACE Graphics

C:\Users\rqureshi\Desktop\ACE LOP Final Scipts\ACE_impulsive_450 - Copy.script - General Mission Analysis Tool (GMAT)
 File Edit Window Help

🥹 🖸 📋 🥭 🌻 🦦 🚾 🖪 😣 🧭

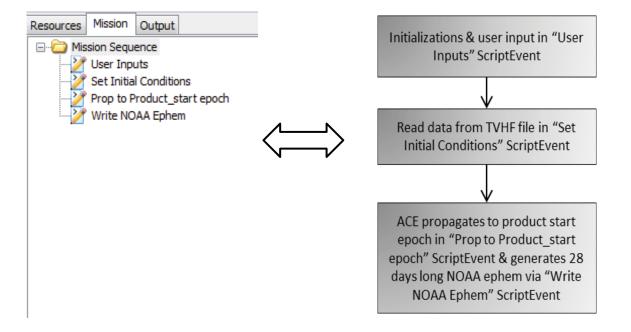

▲ 📭 🔐 ...II 🕪 😽 1:08 PM 9/29/2013

- 0 -

GMAT Development Team NASA GSFC

GMAT ACE SK Maneuver Report

🚱 🖸 📋 ⋵ 🧿 ⊌ 🤸 🚾 🖪 🚱 🧭


GMAT Development Team NASA GSFC

▲ 📭 🙀 ...II 🕪 🗱 1:18 PT

Pre-Shadow Ops...Cont.

Basic Design methodology for GMAT's ACE_impulsive_NOAA28day_vec###.script :

