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ABSTRACT
Probabilistic software analysis seeks to quantify the likeli-
hood of reaching a target event under uncertain environ-
ments. Recent approaches compute probabilities of execu-
tion paths using symbolic execution, but do not support
nondeterminism. Nondeterminism arises naturally when no
suitable probabilistic model can capture a program behav-
ior, e.g., for multithreading or distributed systems.

In this work, we propose a technique, based on symbolic
execution, to synthesize schedulers that resolve nondeter-
minism to maximize the probability of reaching a target
event. To scale to large systems, we also introduce approxi-
mate algorithms to search for good schedulers, speeding up
established random sampling and reinforcement learning re-
sults through the quantification of path probabilities based
on symbolic execution.

We implemented the techniques in Symbolic PathFinder
and evaluated them on nondeterministic Java programs. We
show that our algorithms significantly improve upon a state-
of-the-art statistical model checking algorithm, originally
developed for Markov Decision Processes.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking, Reliability, Statistical methods

1. INTRODUCTION
Probabilistic software analysis aims to quantify the prob-

ability that a software system satisfies a required property,
under given probabilistic usage profiles. Recent applications
include cyber-physical systems, e.g., check that the proba-
bility of an unmanned aerial vehicle turning too fast is less
than 10−6, by analyzing the vehicle’s control software, un-
der suitable profiles built from the telemetry data of previ-
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ous versions or similar systems. Such critical systems are
usually checked through simulation only and probabilistic
software analysis can complement that, for increased assur-
ance. Other applications include program understanding
and debugging [18], computing software reliability [15, 6],
quantitative information flow analysis for security [32], etc.

Traditional formal approaches based on probabilistic model
checking [24, 2] require a high-level design or architectural
model of the software. However such models are difficult
to maintain and may abstract important details that im-
pact the chance of property satisfaction in the system. Our
goal is to perform probabilistic analysis directly on imple-
mentations, not on high-level models. Recent promising ap-
proaches, developed by us and others, have proposed to use
bounded symbolic execution [18, 15, 35, 6] to support prob-
abilistic analysis on the source code. The analyses in [18,
15] address programs with integer domains and linear con-
straints, with [15] also treating complex data structures as
inputs, while the analyses in [35, 6] address programs with
linear and complex floating-point computations, respectively.
However, none of these (with the exception of [15] discussed
below) treat the orthogonal but important issue of nondeter-
minism. Nondeterminism arises naturally when no suitable
probabilistic model can capture a program behavior, e.g.,
for multithreaded, distributed or component-based systems.

In this paper, we extend probabilistic symbolic execution
of programs to deal with nondeterminism. We aim to com-
pute a scheduler that resolves the nondeterminism to max-
imize the probability of property satisfaction, or conversely
that maximizes the probability of non-satisfaction. Inspec-
tion of the computed scheduler will then provide insights for
the design of the analyzed system, to debug or improve it.
In [15] we proposed to compute probabilities along linear
schedules (i.e. thread interleavings) and report the best/-
worst cases to the user. In this paper we examine tree-like
schedulers that can provide more precise information about
the best/worst cases as compared to linear schedulers (see
example in the next section).

We first describe a simple exact algorithm for comput-
ing a tree-like scheduler that resolves the nondeterminism
to maximize the probability of property satisfaction (or fail-
ure). The algorithm takes a bottom-up approach to propa-
gate computed values, and resembles the value-iteration for
Markov Decision Processes (MDPs) [38], but it works di-
rectly on the code (not on MDP models) and is tailored to ef-
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ficiently process the symbolic tree generated with a bounded
symbolic execution of the program. This algorithm forms
the basis of an approximate algorithm for the synthesis of
schedulers that we use for increased scalability.

The approximate algorithm uses Monte Carlo sampling
over program paths as dictated by the conditional probabil-
ities computed from the conditions in the code (using sym-
bolic execution). One well-known shortcoming of sampling-
based techniques [27] is that, unlike an exact probabilistic
analysis, they cannot be directly applied to systems fea-
turing nondeterminism, since it is not clear how to take
meaningful decisions for nondeterministic choices during the
Monte Carlo sampling. To address this problem, our algo-
rithm starts by assuming a uniform distribution over the
nondeterministic choices (i.e. assumes all nondeterminis-
tic choices are equally likely) and then iteratively uses re-
inforcement learning to provably improve the resolution of
nondeterminism with respect to the target event. A key
insight for our randomized algorithm is that the search for
the best scheduler can be accelerated by exploiting the full
probabilistic quantification of sampled symbolic paths. This
also enables state pruning to reduce the sampling space and
speed-up the technique.

To study the effectiveness of learning, we have also im-
plemented a baseline algorithm that simply uses a uniform
distribution for the nondeterministic choices (with no learn-
ing), but which can also benefit from the state pruning.

Both the learning-based and the baseline approximate al-
gorithms significantly improve upon a state-of-the-art sta-
tistical model checking algorithm, originally developed for
MDPs [20]. That algorithm also uses sampling and rein-
forcement learning, but it needs to sample multiple (possibly
many) times along the same path to obtain a good estimate
of the quality function used for reinforcement [37]. In our
case, it is sufficient to sample a path only once to gather the
full count of all the inputs associated with that path. De-
spite the potentially high cost of computing the full count,
the benefit over pure statistical estimation, which works with
counts incremented once per sample, leads to a significant
improvement in performance for our algorithms. Further-
more, our algorithms enable aggressive state pruning which
is not possible with classical statistical approaches.

Our approximate algorithms are true biased (meaning that
true results can always be trusted), can be made arbitrarily
correct (Theorem 1) and in the limit converge to the results
of the exact analysis (Theorem 3 and Proposition 2), making
them suitable for the analysis of critical software. In con-
trast, we show that the statistical approach from [20] does
not always converge (see the example in the next section).

We make our presentation in terms of Java bytecode anal-
ysis and the Symbolic Pathfinder (SPF) symbolic execution
tool [33]. However our algorithms are applicable in the con-
text of other languages for which symbolic execution tools
exists (e.g., Klee [8] for C). The contributions of our work
are: (1) an exact algorithm for probabilistic bounded sym-
bolic execution of nondeterministic programs; (2) approxi-
mate algorithms that exploit accelerated sampling of sym-
bolic paths, reinforcement learning and state-space pruning,
with theoretical guarantees; (3) the extension of SPF to im-
plement probabilistic symbolic execution of nondeterminis-
tic programs, and (4) evidence from applying the implemen-
tation to a collection of multithreaded Java programs that
our algorithms outperform existing methods.

public static void testMethod1(int x) {
if(Verify.getBoolean ()) {
if(Verify.getBoolean ()) {
if(x <= 60)
println("success");

else
assert false;

} else {
if(x <= 30)
println("success");

else
assert false;

}
} else {
if(x <= 55)
println("success");

else
assert false;

}
}

(a) Source snippet.
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Figure 1: Example 1

2. EXAMPLES
In this section, we provide examples that illustrate our

approach and facilitate comparison with [20, 15].

Example 1 Figure 1 shows an example Java program
with nondeterministic code obtained by method Ver-

ify.getBoolean(), which nondeterministically returns true
or false in SPF. Assume that the input x ranges over [1..100]
– in practice, the input domain can be much larger.

The corresponding symbolic execution tree is also sketched
in the figure; it encodes all the paths taken during the sym-
bolic execution of the program. Shaded nodes represent
nondeterministic choices; white nodes represent probabilis-
tic choices. We also annotated tree edges with the conditions
on the inputs to reach that edge, i.e. the path conditions
computed with symbolic execution. The probabilities are
computed from the path conditions, using a quantification
procedure (as described in Section 4). For example, assum-
ing a uniform usage profile, the probability of taking the then
branch through the code corresponding to condition x ≤ 60
is 60/100 = 0.6, since there are 60 inputs that satisfy the
condition, out of 100 possible inputs. Similarly, the proba-
bility of taking the else branch corresponding to condition
x > 60 is 0.4 etc.
Our goal is to identify a scheduler that decides for each

nondeterministic choice the best alternative to select to max-
imize the probability of success. The execution tree can be
seen as an MDP and analyzed by probabilistic model check-
ing [38, 17]. The result can also be computed with our Exact
algorithm, yielding the scheduler that selects 0 → 1 → 3 in
the tree, with the maximum success probability 0.6.
We have also analyzed the example using our approximate

algorithms where we fixed the number of samples to 100 (de-
fault greediness and history parameters 0.5; see Section 5).
For the approximate algorithms, we pose a different verifica-
tion query: instead of asking for the maximum probability,
we ask if there exists a scheduler for which the probability of
success is greater or equal to an hypothesis (see Section 5 for
the existential/universal queries we can answer). In our case
the hypothesis is 0.6 corresponding to the maximum proba-
bility for success. The solution is found easily (no learning



public static void testMethod2(int x) {
if(x > 50)
x++;

if(Verify.getBoolean ()) {//T1

if(x > 61)
println("success");

else
assert false;

} else {//T2

if(x <= 81)
println("success");

else
assert false;

}
}

(a) Source snippet.
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Figure 2: Example 2

necessary). Pruning further accelerates the search for an op-
timal scheduler, as it prevents resampling the same paths.

We analyzed the same example using the statistical model
checking algorithm from [20]. For 100 samples (and same
default parameters), the algorithm first computes a sub-
optimal scheduler 0 → 2, with maximum probability of suc-
cess 0.55 and then it is not able to improve on it due to
the poor information obtained from sampling. Furthermore,
even assuming perfect information from sampling (e.g., by
increasing the number of samples to 10000, or by replac-
ing the statistical assessment with an exact computation)
the algorithm is still not able to stabilize towards the best
scheduler. The reason is that the approach reaches a point
where the quality measures for nodes 1 and 2 are the same
(0.55) and from that point on no progress can be made.

This example shows that the algorithm may fail to learn
the scheduler in the limit, even assuming perfect information
from sampling, thus contradicting the convergence results
from [20]. These findings were graciously confirmed by the
authors of [20]. In contrast, our algorithms are guaranteed
to find the correct answer, in the worst case after all the
paths have been explored at least once, though in practice
they may converge earlier.

Example 2 This example illustrates that tree-like sched-
ulers can obtain more precise information than linear sched-
ulers [15]. Figure 2 shows another nondeterministic Java
program. We have marked with T1 and T2 the tasks (i.e. the
code fragments) that can be performed nondeterministically
by the program, according to the choice prescribed by Ver-

ify.getBoolean(). Assume again that the input variable
x ranges over [1..100]. The corresponding symbolic execu-
tion tree is also sketched in the figure. We also annotated
tree edges with path conditions and the corresponding con-
ditional probabilities (Section 4). Each path through the
tree leads to either success or failure, with the correspond-
ing path probabilities also depicted in the figure. For ex-
ample, path 0 → 1 → 3 leads to success with probability
0.5 · 0.8 = 0.4.

If we take the approach from [15], we compute the proba-
bility of success along each linear schedule and then report
the maximum. For our simple example, we only have two
linear schedules, corresponding to choosing to perform ei-
ther task T1 or task T2. If the scheduler chooses T1, then
the probability of success is 0.4 (for path 0 → 1 → 3) while
if the scheduler chooses T2, the probability of success is the

sum of probabilities along paths 0 → 1 → 4 and 0 → 2 → 6,
respectively, yielding 0.3 plus 0.5 for a total of 0.8, which can
be deemed as the maximum value. However consider now a
tree-like scheduler that in state 1 decides to take T1 while in
state 2 decides to take T2. This yields probability of success
0.4 (path 0 → 1 → 3) plus 0.5 (path 0 → 2 → 6), yielding
0.9 which is larger than the probabilities computed along
linear schedules. In the rest of the paper, we will describe
exact and approximate algorithms for computing tree-like
schedulers.

3. PRELIMINARIES
In this section, we give background information for sym-

bolic execution and probabilistic analysis in the context of
sequential programs. We will extend these notions to pro-
grams with nondeterminism in Section 4.

Symbolic Execution Symbolic Execution [22, 11] is a pro-
gram analysis technique that executes programs on unspec-
ified inputs, by using symbolic inputs instead of concrete
data. The state of a symbolically executed program is de-
fined by the (symbolic) values of the program variables, a
path condition (pc), and a program counter. The path condi-
tion is a (quantifier-free) boolean formula over the symbolic
inputs; it accumulates constraints that concrete on the in-
puts to follow that path. The program counter defines the
next statement to be executed.

A symbolic execution tree characterizes the execution paths
followed during symbolic execution. The tree nodes repre-
sent program states and the arcs the transitions between
states due to the execution of program instructions. We
built our approach upon the symbolic execution tool Sym-
bolic Java PathFinder (SPF) [33], which has built-in support
for preconditions (used for encoding usage profiles).

Probabilistic Analysis The goal of the analysis is: (1) to
identify the symbolic constraints characterizing the inputs
that make the execution satisfy a given property, and then
(2) to quantify the probability of satisfying the constraints.
For simplicity, we assume the satisfaction of the target prop-
erty to be characterized by the occurrence of a target event
(e.g., successful termination or failure), but our work gener-
alizes to bounded LTL properties [40].

To deal with programs with loops, we perform a bounded
symbolic execution of the program. The result is a finite
set of symbolic paths, each with a path condition. Some
of these paths lead to failure, some of them to success (ter-
mination without failure) and some of them lead neither to
success nor failure (they were interrupted because of the
bounded exploration) – the latter are called grey paths.
The path conditions are therefore classified in three sets:
PC s = {pc s

1 , pc
s
2 , . . . , pc

s
m}, PC f = {pc f

1 , pc
f
2 , . . . , pc

f
p } and

PC g = {pc g
1 , pc

g
2 , . . . , pc

g
q }. The path conditions define dis-

joint input sets and they cover the whole input domain.

Usage Profiles The constraints generated with symbolic
execution are analyzed to quantify the likelihood of an input
to satisfy them, where the inputs are distributed according
to given usage profiles [15]. The usage profile is a prob-
abilistic characterization of the software interactions with
the external world, e.g., the users or the physical execution
environment. It assigns to each valid combination of inputs
its probability to occur during execution. Usage profiles can
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Figure 3: Usage profiles for the Daisy Chain Controller [15].

come from monitoring the usage of actual or similar systems
or expert and domain knowledge (physical phenomena). In
this paper, we assume that the usage profile is given and we
direct the reader to the literature on usage and operational
profiles for further details on their specification, automatic
inference, and advanced applications (e.g., [29, 30, 19]).

We can handle arbitrarily complex probability distribu-
tions for usage profiles by discretizing them up to the re-
quired accuracy. The discretized distribution partitions the
inputs in as many (non-empty) sets as needed and assigns to
each of them a probability p, represented by a rational num-
ber with arbitrary precision. In [15] we provide an extensive
treatment of usage profiles and show how they are used after
the symbolic execution of the program is performed to com-
pute the desired probabilities. Here we take a different (but
equivalent) approach, and encode the constraints that de-
fine the usage profile as preconditions for the analyzed code.
Handling the usage profiles in this way is necessary to sup-
port the Monte Carlo simulation, which requires a forward
computation of the probability of each branch to drive the
symbolic execution. More general usage profiles, given as
e.g., Markov Chains, could be encoded similarly (as “state-
ful” assumptions); we leave this for future work.

Figure 3 illustrates two non-uniform wind-effect usage pro-
files. We will show in Section 6 how we encode them for the
probabilistic analysis of a Daisy Chain Controller.

Probability of Target Event The probability of success
is then defined as the probability of executing the program
(extended with the preconditions) P with an input satisfying
any of the successful path conditions: Pr s(P ) =

∑
i Pr(pc

s
i ).

An analogous definition is provided for the probability of
failure, Pr f (P ), and the probability of grey, Pr g(P ). Note
that Pr s(P ) + Pr f (P ) + Pr g(P ) = 1.

Pr g(P ) can be used to define the confidence we can put on
probability estimation, under current exploration bound [15].

Quantification Procedure To compute the probabilities
of path conditions, we use a quantification procedure for the
generated constraints. In [18, 15] we used model counting
techniques, i.e. LattE [14], to estimate (algorithmically) the
exact number of points of a bounded (possibly very large)
discrete domain that satisfy linear constraints. The work
in [15] was extended to handle arbitrary complex floating-
point constraints in [6], using QCoral, an approximate quan-
tification procedure.

For simplicity, we use here LattE [14], but our work can
also accommodate QCoral [6]. However, the approximate
nature of QCoral would complicate the presentation of the
approximate treatment of nondeterminism (we just note briefly
that Proposition 2 would hold when using QCoral too).

For a finite (possibly very large, nonempty) integer do-
main D and a given constraint c, LattE computes the num-

ber of elements of D that satisfy c, denoted as �(c). Pr(c) is
then defined as �(c)/�(D) (where �(D) is the size of D).
The success probability (or failure or grey probability) can

then be computed as Pr s(P ) =
∑

i Pr(pc
s
i ) =

∑
i �(pc s

i )

�(D)

4. PROBABILISTIC ANALYSIS FOR NON-
DETERMINISTIC PROGRAMS

We consider now the problem of probabilistic analysis for
nondeterministic programs. Without making any assump-
tion on the way the nondeterministic choices are resolved
(i.e. without assuming a-priori a next-choice distribution
nor a specific scheduling policy) we want to identify the best
possible choices from each state, i.e., the choices that lead
to the highest probability of success; conversely, we may
want to identify the worst possible choices which lead to the
lowest probability of success.

Symbolic Execution First, we extend the definition of
symbolic execution provided in Section 3 to account for non-
deterministic choices. We extend the symbolic execution
tree with a new kind of node corresponding to nondeter-
ministic choices in the program. Thus, the symbolic execu-
tion tree of a nondeterministic program has three kinds of
nodes (or states): i) PC: path condition choice; ii) NC:
nondeterministic choice; iii) other: all the other nodes (i.e.
assignments, method invocations, returns, etc.)

A PC choice is introduced whenever a conditional state-
ment is executed in the program. The evaluation of the
statement (on condition c) introduces two new transitions.
The first one leads to the execution of the then block in the
code and the path condition is updated as pcthen = c ∧ pc.
The second leads to the execution of the else block and the
path condition is updated with pcelse = ¬c∧ pc. If the path
condition for a branch is not satisfiable, symbolic execution
will not follow the branch.

A NC choice is introduced whenever nondeterminism is
present in the analyzed application; this may be due to han-
dling of multithreading or to explicit nondeterministic in-
structions in the code (e.g., Verify.getBoolean()).
A symbolic execution tree is then denoted as T = 〈S, s0,→

, SNC , SPC〉, where S is the set of nodes, s0 is the initial
state, →⊆ S × S is the transition relation, SNC ⊆ S is the
set of NC nodes and SPC ⊆ S is the set of PC nodes (SNC

and SPC are disjoint by construction). Let child(s) denote
the children nodes of s and let parent(s) denote the parent
of s. Note that both NC and PC nodes can have more than
one child, while all the other nodes can have at most one.

Branch probabilities for PC nodes For a PC node, we
define branch probabilities as the probability of taking the
then or the else branch from the given PC node. These
branch probabilities can be computed using model counting
as was done in [18]. Let pcs be the path condition at the
current PC node s, and let c be the branching condition at
that state. We can then compute the branch probabilities
as follows.

pthen = Pr(c|pcs) = �(c ∧ pcs)

�(pcs)

pelse = Pr(¬c|pcs) = �(¬c ∧ pcs)

�(pcs)

Note that �(pcthen)+ �(pcelse) = �(pcs), thus pthen + pelse =
1.



Probabilistic Analysis In our setting, the symbolic execu-
tion trees computed with the probabilistic symbolic execu-
tion described above can be seen as a tree-shaped MDP [17].
MDPs are a popular choice to model discrete state transition
systems that are both probabilistic and nondeterministic.
Schedulers are functions used to resolve the nondetermin-
ism in MDPs. An MDP in which nondeterminism has been
resolved becomes a fully probabilistic system known as a
Markov Chain. In our case, the NC nodes in the symbolic
execution tree have only outgoing nondeterministic transi-
tions, while the PC nodes only have probabilistic transitions.

Without going into much detail about MDPs, we can bor-
row from the literature on MDPs and define a memoryless
scheduler σ for a symbolic execution tree which resolves
the nondeterminism in each NC node. Note that in gen-
eral memoryless schedulers are insufficient for achieving the
maximal probability for bounded properties; schedulers that
maintain historic information may be more powerful. How-
ever, similar to previous approaches [20] we study here mem-
oryless schedulers, that are simpler and can be computed
efficiently. We will study history-dependent schedulers in
future work.

We first define a probabilistic (memoryless) scheduler, which
provides a distribution over the set of children of that NC
node [20] (we will use this later in our approximate algo-
rithms).

Let SNCchildren denote all the children of NC nodes, i.e.
SNCchildren = {s ∈ S | parent(s) ∈ SNC}.
Definition 1. A memoryless scheduler σ for a symbolic ex-
ecution tree T is a function σ : SNCchildren → [0, 1] s.t.
∀s ∈ SNC : Σs′∈child(s)σ(s

′) = 1.

A scheduler for which either σ(s) is 0 or 1 for all s ∈
SNCchildren is called deterministic. Similar to [20], we con-
sider here only memoryless schedulers.

The goal is to identify the best possible deterministic
scheduler, that is the one that leads to the highest proba-
bility of success. Let us first note that a (nondeterministic)
program P and a deterministic scheduler σ, induce what
amounts to a sequential program Pσ, with all the nonde-
terminism resolved according to σ. The symbolic execution
tree of this program is the same as P ’s but with transition
relation → −{(n, c) | n ∈ SNC ∧ σ(c) = 0} (i.e. we remove
from → all transitions (n, c) for which σ(c) = 0). For Pσ one
can then compute Pr s(Pσ) as described in Section 3. For a
nondeterministic program one can then define the maximum
probability of success as:

Pr s(P ) = max
σ

Pr s(Pσ)

where σ is deterministic. Similar definitions apply for Pr f (P )
and Pr g(P ). Below we describe a procedure for computing
Pr t(P ), where t ∈ {s, f, g}; the procedure forms the basis of
the approximate algorithms described in the next section.

Exact Analysis The procedure is depicted in Algorithm 1:
it takes as input a nondeterministic program P and a tar-
get event t. The procedure performs a bounded symbolic
execution of the program (in depth-first search order). For
each explored path π, it checks whether it reaches the target
event, in which case it computes the count associated with
the path condition (�(pcπ)). This count is then propagated
up along the path, to record how many inputs reach the tar-
get event. For this purpose, the procedure maintains a count

s+ for each state s. For NC nodes, s+ is updated with the
maximum value among the children, while for all the other
nodes s+ is the sum of the counters for their children.

Algorithm 1 Exact analysis.

1: function Exact(Program P , target event t)
2: Perform bounded SE of P
3: for each π = s0s1...sk do
4: if π yielded event t then
5: s+k ← �(pcπ)
6: for i = k − 1, ..., 0 do
7: if si ∈ SNC then
8: s+i ← max

s∈child(si)
(s+)

9: else
10: s+i ← Σs∈child(si)(s

+)
11: end if
12: if s+i unchanged then
13: Break
14: end if
15: end for
16: end if
17: end for
18: return Prt(P ) = s+0 /�(D)
19: end function

Algorithm 2 Optimal scheduler.

1: function OptScheduler(State s)
2: if s has no children then
3: return
4: end if
5: if s is PC then
6: for ∀sc ∈ child(s) do
7: OptScheduler(sc)
8: end for
9: else if s is NC then
10: s∗c ← arg max

sc∈child(s)
s+c

11: mark(s∗c)
12: OptScheduler(s∗c)
13: end if
14: end function

After exploring all paths, the maximum probability for
the target event (Prt(P ), shorthand for Prt(s0)) is given by
s+0 /�(D), where s0 is the root of the symbolic tree and D is
the input domain. The optimal scheduler is simply defined
by selecting for each NC node the child with the maximum
value of s+. See Algorithm 2, which recursively visits the
children of a state, s, and marks the nodes belonging to the
optimal scheduler. In case of a tie for maximum value, we
pick the first choice.

The intuition for the exact analysis is captured by the fol-
lowing proposition; let Prt(s) be the maximum probability
that a path crossing state s leads to the target event.

Proposition 1. For every state s, the maximum probability
of reaching the target event is Prt(s) = s+/�(pcs).

Proof. By induction on the structure of the symbolic tree.
For leaves and NC nodes it is straightforward. For PC nodes
s: Prt(s) = pthen · Prt(sthen) + pelse · Prt(selse). From in-
duction hypothesis this is equal to �(c∧pc)/�(pc)·s+then/�(c∧



pc)+�(¬c∧pc)/�(pc)·s+else/�(¬c∧pc) = (s+then+s+else)/�(pc) =
s+/�(pc).

It follows that the value returned at Line 18 of Algo-
rithm 1: s+0 /�(D) = s+0 /�(pcs0) is indeed the probability
of reaching the target event in the program. The procedure
terminates in k · n steps, where k is the bound of symbolic
execution and n is the number of symbolic paths.

Discussion In practice, we work with an abstraction of the
symbolic execution tree, that only keeps the NC and PC
nodes, and merges together all the other nodes. A node in
the tree is uniquely characterized by the sequence of choices
that lead to that node. We use this sequence as an efficient
encoding of a state.

Note also that the grey case can also be interpreted pes-
simistically or optimistically, meaning that grey will be re-
garded as failure or success, respectively.

Finally, we mention that in practice we perform an op-
timized computation for the Exact procedure. Instead of
recomputing the maximum count for the target event, s+,
for state s by performing the max operation of the counts of
the children i.e. s+ = maxsc∈child(s)(s

+
c ), we perform an ef-

ficient algorithm that based on the current count for the tar-
get event, c+, and a count update, Δc+, updates the count
for state s incrementally. We presented the un-optimized
version here for clarity.

5. APPROXIMATE ANALYSIS
We describe here two approximate algorithms, Max and

Random, which use randomized sampling of symbolic paths
to compute approximate solutions to the scheduler synthesis
problem. Random uses a uniform distribution for the nonde-
terministic choices while Max uses Reinforcement Learning
to iteratively improve resolutions of nondeterminism. We
start with a statement of the verification queries that can
be answered with our algorithms. We build upon and use
the terminology from [20].

Verification Query Instead of computing the maximum
probability of reaching t (t ∈ {s, f, g}), as in Exact, we pose
the following query: given t and a hypothesis θ ∈ [0, 1], we
try to decide whether ∃σ : Prt(P ) op θ, where op ∈ {>,≥}.
Such queries can be used both for verification and scheduler
synthesis. For example, for verification, assume we want to
check that ∀σ : Prs(P ) ≥ 90%. This can be decided by
the query ∃σ : Prf (P ) > 10%. On the other hand, for
scheduler synthesis, we check directly the existential query:
∃σ : Prs(P ) ≥ 90%. In both cases, if the existential formula-
tion of the query is true, a scheduler is produced. Through-
out this section, we assume for simplicity that grey paths
are treated pessimistically.

Approximate Algorithms Both Max and Random follow
the overall algorithm depicted in Algorithm 3, with the dif-
ference that Random does not perform scheduler improve-
ment (Line 10). At a high level, the goal of each run of
the algorithm (Lines 3-11) is to compute information about
the best choices with respect to the target event. The algo-
rithm maintains a probabilistic scheduler σ, initialized with
a uniform candidate (Line 4). Each run iterates over two
procedures (for-loop at Line 5 with parameter L): scheduler
evaluation (Line 6), which uses sampling to compute the

counts s+ and scheduler improvement (Line 10), which uses
the computed information to improve on σ.

Algorithm 3 Approximate analysis.

1: function Approximate(T restarts, L optimizations, N
samples, History parameter 0 < h < 1, Greediness pa-
rameter 0 < ε < 1, operator op, hypothesis θ, target
event t)

2: for i = 1, ..., T do
3: ∀s, s

+ ← 0
4: ∀s∈SNC∀s′∈child(s), σ(s

′) ←1/|child(s)|
5: for i = 1, ..., L do
6: Q ← SchEvaluation(σ,N,t)
7: if s+0 /�(D) op θ then
8: return True
9: end if
10: σ ← SchImprovement(σ,h,ε,Q)
11: end for
12: end for
13: return Probably False
14: end function

Algorithm 4 Scheduler evaluation.

1: function SchEvaluation(Scheduler σ, N samples, tar-
get event t)

2: ∀s ∈ SNCchildren: Q(s) ← σ(s)
3: for i = 1, ..., N do
4: Sample π = s0s1...sk
5: if π yielded event t then
6: s+k ← �(pcπ)
7: for i = k − 1, ..., 0 do
8: if si ∈ SNC then
9: s+i ← max

s∈child(si)
(s+)

10: else
11: s+i ← Σs∈child(si)(s

+)
12: end if
13: if s+i unchanged then
14: Break
15: end if
16: end for
17: end if
18: end for
19: for s ∈ SNCchildren, s.t. s

+ was updated above do
20: Q(s) ← s+/�(pcs)
21: end for
22: return Q
23: end function

After each scheduler evaluation, we check if the verifica-
tion query is true (Line 7). Note that the scheduler evalua-
tion has the side effect that the values for each count s+ are
updated. Note also that while the probabilistic scheduler
σ is used to guide the sampling (in scheduler evaluation),
it does not participate in the query checking. If the query
is true, the answer is returned to the user; the determinis-
tic scheduler that confirms it is built similarly to the exact
analysis. Our algorithm is a true-biased Monte Carlo algo-
rithm [7], meaning that it is guaranteed to be correct when it
confirms the hypothesis. If it can not, we restart the search
(for-loop at Line 2 with parameter T ); if it fails again, then



the confidence about the unsatisfiability of the hypothesis
becomes higher.

Scheduler Evaluation Scheduler evaluation (Algorithm 4)
performs N Monte Carlo samplings of symbolic paths, ac-
cording to the branch probabilities for PC nodes and the
probabilistic scheduler σ for the NC nodes. From each sam-
ple, it collects information s+ for each state s, in a manner
similar to the exact algorithm (Lines 5–17 are identical to
Exact). In addition, s+ is used to compute the quality Q for
each choice (child of an NC node) that occurs due to nonde-
terminism (Line 20). The quality is used for reinforcement,
i.e. scheduler improvement, and is ignored by Random. The
quality is defined as Q(s) = s+/�(pcs) and is an estimate for
the maximum probability of reaching t from state s, Prt(s)
(see Proposition 1).

In the absence of new information from sampling (i.e. if it
happens to re-sample the same paths), the counts s+ remain
unchanged and consequently also the values for Q. Note
also that we do not reset the counts s+ at the beginning of
each scheduler evaluation. This explains why even Random
(with no learning) can be very effective in finding an optimal
scheduler, because it keeps accumulating information about
the counts the more it samples.

Scheduler Improvement Scheduler improvement (Algo-
rithm 5) uses quality Q to compute how likely it is for each
choice to lead to success (Line 4); it also updates σ by rein-
forcing the actions that are more promising (Lines 5-6). The
procedure is identical to the scheduler improvement in [20]
(we show it here for completeness). As in [20], we use a
greediness parameter (1 − ε) that controls the probability
we assign to the most promising choice. Combining the new
greedy choices with the previous scheduler, according to his-
tory parameter h, ensures that no choice is ever blocked as
long as the initial scheduler does not block any actions.

Algorithm 5 Scheduler improvement [20].

1: function SchImprovement(Scheduler σ, History pa-
rameter 0 < h < 1, Greediness parameter 0 < ε < 1,
Quality function Q)

2: σ′ ← σ
3: for ∀s of type NC do
4: s∗ ← argmaxs′∈child(s){Q(s′)}
5: ∀s′∈child(s), p(s

′) ← I{s′ = s∗}(1 − ε) +
ε(Q(s′)/Σs′′∈child(s)Q(s′′))

6: ∀s′∈child(s), σ
′(s′) ← hσ(s′) + (1− h)p(s′)

7: end for
8: return σ′

9: end function

Correctness and Convergence As mentioned, our ap-
proximate algorithms are true-biased algorithms, for which
the following result holds (See [7, p. 266]). This general
result refers to true-biased p-correct algorithms (i.e. algo-
rithms for which the probability that it outputs a correct
solution is at least p) and it is only of theoretical impor-
tance, as in practice it is difficult to quantify p.

Theorem 1 (Bounding Theorem). For a true-biased p-
correct Monte Carlo algorithm (with 0 < p < 1) to achieve
a correctness level of (1− η) it is sufficient to run the algo-
rithm a number of times: T = log2η/log2(1 − p). Random
and Max are true-biased and p-correct.

We also state here the correctness of our approximate al-
gorithms, meaning that the probabilities computed with our
approximate algorithms converge to the maximum one, and
the deterministic schedulers converge to the optimal one,
with respect to the target event.

Theorem 2 (Scheduler Improvement). Let c and c′ be the
counters computed in s+ for a state s in consecutive Sched-
uler Evaluation phases, then c/�(pcs) ≤ c′/�(pcs) ≤ Prt(s).

Proof. s+ for leaves is constant and ≥ 0. For a newly sam-
pled path π, the counters s+ are updated with values ≥ 0.
Since both max and

∑
are used in computing s+, it can

only increase when considering additional positive elements,
and since �(pcs) > 0 for each state, c/�(pcs) ≤ c′/�(pcs)
follows. When all the execution paths have been sampled,
the values of s+ cannot be further increased and their value
corresponds to Prt(s) as a consequence of Proposition 1.

We also need to make sure that Random and Max will not
get stuck in a local optimum.

Theorem 3 (Asymptotic convergence). In the limit (for
large N or L) the probability of sampling the optimal alter-
native converges to 1.

Proof. Consider Max. For each NC node s, the proba-
bility p(s′) of taking a transition to s′ ∈ child(s) is ini-
tialized to 1/|child(s)| > 0. When a successful path is
sampled, p(s′) becomes ε(Q(s′)/Σs′′∈child(s)Q(s′′)), where

Q(s′) = s′+/�(pcs′) ≥ 1/�(pcs′) ≥ 1/�(D). Furthermore∑
s′′∈child(s) Q(s′′) ≤ |child(s)| (since ∀s′′ : 0 < Q(s′′) ≤ 1).

It follows that p(s′) ≥ ε/(�(D) · |child(s)|) > 0 – in other
words, p(s′) is guaranteed to be greater than a positive
constant (h does not change the lower bound). Hence, by
Borel’s Law of Large Numbers [31, p. 304], it follows that
when the number of samples tends to infinity, each possible
transition, including the optimal one, will almost surely be
eventually sampled. For Random, p(s′) ≥ 1/|child(s)| > 0,
and similar considerations apply.

Pruning Our techniques collect the full count (�(pcπ)) for
each explored symbolic path (π). Therefore subsequent ex-
plorations of those paths do not yield more information and
we can remove those paths from being explored again to
speed up the analyses and achieve memory savings. After
sampling a path, we mark the leaf in the symbolic execu-
tion tree as “explored” and then go up in the tree along the
path to mark as“explored”all the nodes for which all of their
children have been marked“explored”. Sampling is then per-
formed only from nodes that were not marked as “explored”.
When the root is marked“explored”, we are guaranteed that
the tree has been fully explored.

Proposition 2 (Termination of Max and Random with
pruning). If pruning is applied, the optimal alternative for
each nondeterministic choice will be sampled within n itera-
tions, where n is the total number of symbolic paths.

Comparison with [20] We provide here a brief compar-
ison with the statistical algorithm for MDPs from [20]; let
us denote it as Sum1. Max uses as quality Q the expected
maximum probability of reaching the target from the current
state (irrespective of current σ, which is only used to drive
sampling). In contrast, Sum1 uses as quality Q the expected



Listing 1: “Rare” example.

void testMethod(int x) { // domain of x is [0..100]
if (Verify.getBoolean ()) {
if (x < 2) {
... println("success"); return;

} else {
if (Verify.getBoolean ())
if (Verify.getBoolean ())
... // repeat 500 times
if (x > 5) {
... println("success"); return;

} } }
assert false;

}

probability of reaching the target from current the state, un-
der the current probabilistic scheduler σ (i.e. the probabili-
ties from σ contribute to Q). Therefore Max does not need
to reset the computed s+ with each new σ and keeps im-
proving while Sum1 needs to reset its estimates before each
scheduler evaluation. Max and Random consider the full
count of the sampled paths, instead of counting sample by
sample as done in Sum1. Furthermore, Sum1 needs to sam-
ple many times along the same paths to obtain good quality
estimates; this makes pruning inapplicable to Sum1. Fi-
nally, Sum1 needs a determinization step and another round
of evaluation for the induced Markov Chain, which are not
needed in Max and Random, because they directly estimate
the maximum probabilities.

6. IMPLEMENTATION AND EXPERIMENTS
We have implemented Exact, Max and Random (with

and without pruning) together with the statistical proce-
dure from [20], denoted Sum1, within a generic framework
on top of SPF. The framework can be easily extended with
other algorithms for approximate analysis; we plan to make
the tool available as open-source. Notable in the tool is the
implementation for Monte Carlo sampling. Each sample is
performed by one symbolic execution run, as guided by a
JPF listener. The listener monitors for choices made dur-
ing execution. Whenever a path-condition choice is encoun-
tered, the decision of exploring the then or the else branch
is determined by generating a random number, x ∈ [0, 1],
which is then compared with the computed conditional prob-
abilities for the branches. A similar approach is taken for
non-deterministic choices; for Random, the likelihood of se-
lecting the choices is uniformly distributed whereas for Max,
the probabilities are set according to the learning.

Case Studies We evaluated our implementation on the fol-
lowing multithreaded Java programs. Windy: An example
from the reinforcement learning literature; a robot, affected
by wind, moves in a grid with start and target positions.
We use two versions: simple (5× 4 grid) and complex (9× 6
grid). Daisy Chain Controller: An example from previ-
ous work [15]: two threads run the actuation procedures for
the flap controllers of an aircraft; it also includes a safety
check. A wind effect hampers the operation by pushing on
the flap’s head or tail. MER Arbiter: An example derived
from a flight component for the Mars Exploration Rover de-
veloped at NASA JPL; it contains an arbiter and two user
threads competing for shared resources. Parallel Quick
Sort (PQS): Three threads sort an array with six elements.
It uses complex facilities from java.util.concurrent (e.g.,

Semaphore and ThreadPoolExecutor). We analyzed two
versions based on the granularity with which data is bundled
up and passed to the threads (complex and simple). Air-
line: Reservation system controlled by five threads with a
bug based on data and thread choices. Rare: This is a
“pathological” case for approximate analysis (see the code
in Listing 1). We provide the source code at: http://

people.cs.aau.dk/~luckow/probabilistic/. The exper-
iments were run on a machine with an Intel Xeon E5-2670
2.60GHz and 64GB of memory.

Results Table 1 shows the results of a first set of exper-
iments, where we compared all the techniques, for a fixed
budget of scheduler samples. The best results are marked
with bold. We have set the hypothesis θ according to the
best probability obtained with Exact. We used default greed-
iness ε = 0.5 and history h = 0.5 as these were the best
values suggested in [20]. We set restarts T = 1, we used
a uniform usage profile, and grey paths were treated pes-
simistically. For each configuration, we conducted five trials
and we picked the best result, i.e. the result with the lowest
number of scheduler evaluations for verifying the hypothe-
sis, or, if the hypothesis was not verified, the result with the
probability closest to θ.

The results indicate that Sum1 performs poorly both in
terms of analysis result and performance: the former is a re-
sult of each sample not carrying the full count information
as is the case for the other techniques. Performance is a con-
sequence of the required determinization step. While exact
analysis is tractable for this set of examples, the sampling-
based techniques are consistently faster while still finding the
optimal scheduler when the state space becomes sufficiently
large (Daisy Depth 18 and PQS Simple). For the smaller
examples, Random is slightly better than Max. From our
results, it is difficult to conclude on good values of N and L.
Analysis of the larger examples indicates that N < L seem
to both verify the hypothesis in less scheduler evaluations or
yield a better result regardless of whether pruning is used
or not. The effect of pruning is evident; it is consistently
better to use pruning for Random and Max.

For Rare, the maximum probability of reaching success
is easily computed with Exact but very difficult with Max
and Random. This is not surprising since it is known that
purely statistical methods are typically ill-suited for “rare”
events [39]. Our pruning techniques partially address the
problem: in worst case both Maxp and Randomp explore all
program paths (but not more – Proposition 2) and in general
may finish much earlier. For Rare, both Maxp and Randomp

confirmed the hypothesis (close to worst case), with Maxp
slightly better.

Table 2 shows the results for a second set of experiments,
where we run all the techniques to determine the budget
required to verify a hypothesis with fixed θ. Here we use
larger examples for which the exact analysis is intractable
and only show results for the best techniques, namely Max
and Random with pruning. To determine the θ values we
first ran experiments with approx 40K samples and θ = 1.0.
The best probability obtained was used as θ in the table.

Both Max and Random enable increasing the bound of
symbolic execution far beyond what can be analyzed with
Exact; increasing the bound naturally reveals more informa-
tion about the paths. For example, for Daisy Chain Con-
troller at depth limit 20, we can find a scheduler with a



Table 1 Exact vs. Max, Random and Sum1; “P” denotes pruning. If θ was not verified, values in parentheses after Samples
show number of scheduler evaluations to establish the best result. Percentage of experiments where hypothesis was verified is
shown next to Results.

Example

Exact Analysis

Result,

Time, [ms],

# of paths

Approx.

Analysis
N L Result Samples

Time,

[ms]

MER

Prs = 0.5

Prf = 0.5

4,593

28

Random 1,000 – 0.5 (100%) 13 26,085

RandomP 1,000 – 0.5 (100%) 10 22,324

Max 10 100 0.5 (100%) 17 30,212

MaxP 10 100 0.5 (100%) 13 23,684

Sum1 10 100 0.5 (100%) 1,300 1,440,643

Max 100 10 0.5 (100%) 21 33,369

MaxP 100 10 0.5 (100%) 13 23,921

Sum1 100 10 0.5 (100%) 1,300 1,428,632

Windy

Simple

Prs = 0.71

Prf = 1.0

3,807

614

Random 1,000 – 0.71 (100%) 31 10,382

RandomP 1,000 – 0.71 (100%) 14 6,209

Max 10 100 0.0 (0%) 1,000 147,040

MaxP 10 100 0.71 (100%) 100 22,283

Sum1 10 100 0.71 (80%) 1,300 187,631

Max 100 10 0.71 (100%) 15 6,433

MaxP 100 10 0.71 (100%) 35 11,048

Sum1 100 10 0.71 (100%) 1,300 186,787

Daisy

Depth 13

Prs = 0.026860

Prf = 1.0

48,886

20,248

Random 1,000 – 0.023919 (0%) 1,000(103) 154,864

RandomP 1,000 – 0.026860 (100%) 141 35,616

Max 10 100 0.023919 (0%) 1,000(21) 163,387

MaxP 10 100 0.026860 (100%) 97 27,629

Sum1 10 100 0.026860 (20%) 1,500 230,914

Max 100 10 0.023919 (0%) 1,000(125) 166,545

MaxP 100 10 0.026860 (100%) 143 36,621

Sum1 100 10 0.025684 (0%) 1,500 228,734

Daisy

Depth 18

Prs = 0.028625

Prf = 1.0

1,971,108

755,244

Random 1,000 – 0.024507 (0%) 1,000(77) 160,669

RandomP 1,000 – 0.028625 (100%) 190 47,322

Max 10 100 0.027448 (0%) 1,000(583) 165,903

MaxP 10 100 0.028625 (60%) 97 30,970

Sum1 10 100 0.025978 (0%) 1,500 240,876

Max 100 10 0.025684 (0%) 1,000(441) 166,915

MaxP 100 10 0.028625 (100%) 125 36,278

Sum1 100 10 0.027448 (0%) 1,500 241,522

Rare

Prs = 0.96

Prf = 1.0

4,800

504

Random 1,000 – 0.01 (0%) 1,000(22) 214,225

RandomP 1,000 – 0.96 (100%) 501 117,696

Max 10 100 0.01 (0%) 1,000(27) 153,853

MaxP 10 100 0.96 (100%) 500 102,462

Sum1 10 100 0.01 (0%) 1,500 227,018

Max 100 10 0.01 (0%) 1,000(47) 155,425

MaxP 100 10 0.96 (100%) 496 145,140

Sum1 100 10 0.01 (0%) 1,500 224,441

PQS

Simple

Prs = 1.0

Prf = 0.0

1,360,578

391,536

Random 1,000 – 0.59179 (0%) 1,000(999) 374,351

RandomP 1,000 – 0.89498 (0%) 1,000(1,000) 418,761

Max 10 100 0.64467 (0%) 1,000(1,000) 426,958

MaxP 10 100 0.99476 (0%) 1,000(994) 410,824

Sum1 10 100 0.43527 (0%) 1,500 638,972

Max 100 10 0.60508 (0%) 1,000(1000) 451,734

MaxP 100 10 0.97803 (0%) 1,000(999) 436,525

Sum1 100 10 0.43945 (0%) 1,500 625,670

Random 10,000 – 0.97179 (0%) 10,000(9,878) 3,445,703

RandomP 10,000 – 1.0 (100%) 1,421 620,681

Max 10 1,000 0.98888 (0%) 10,000(9,755) 3,505,138

MaxP 10 1,000 1.0 (100%) 989 417,425

Sum1 10 1,000 0.42793 (0%) 10,500 3,331,941

Max 1,000 10 0.98181 (0%) 10,000(9,922) 3,020,768

MaxP 1,000 10 1.0 (100%) 1,331 533,125

Sum1 1,000 10 0.45450 (0%) 10,500 3,098,937



Table 2 Random vs. Max (w/ pruning); Exact runs out of
memory.

Example Hypothesis
Approx.

Samples
Time

Analysis [ms]

Windy

Complex
Prs(P ) ≥

0.71

MaxP 214 51,711

RandomP 23 8,688

Daisy

Depth 20
Prs(P ) ≥
0.028723

MaxP 136 38,261

RandomP 224 56,948

Daisy

Depth 30
Prs(P ) ≥
0.029409

MaxP 129 43,347

RandomP 349 84,694

PQS

Complex
Prs(P ) ≥

1.0

MaxP 3,675 1,273,642

RandomP 12,047 3,914,474

Airline
Prs(P ) ≥

1.0

MaxP 169 40,851

RandomP 1,843 287,456

better probability for success than what the exact analysis
found at depth limit 18 as shown in Table 1. These re-
sults furthermore demonstrate the benefits of reinforcement
learning as compared to Random when the state space is
large (see all cases except Windy Complex).

Our approximate algorithms are well suited for exploring
systems with large state spaces but that are well structured,
i.e. they may have multiple components running the same or
similar algorithms and have few interactions points between
components (e.g., MER, Daisy, Windy). Common examples
include planning and scheduling for robots, control software
for aircrafts and many critical applications of interest. How-
ever, for unstructured systems (e.g., Rare) the approximate
algorithms require scheduling decisions to be made on all
states, thus defeating their purpose. This is confirmed by
the related literature [39, 20] and more research is needed
to address the issue.

Non-Uniform Usage Profiles To see how our approach
applies for non-uniform usage profiles, let us revisit the Daisy
Chain Controller and consider two different scenarios where
the wind effect is weak (UPw) and strong (UPs), respectively
(see Figure 3). In particular, the weak and strong wind us-
age profiles are defined as the case where respectively 5%
and 15% of the input values yield wind > 10. We would
expect that under the conditions of UPw, the flap controller
is more likely to operate successfully because the flap is less
likely to exceed the goal position. We use a symbolic vari-
able, up, constrained such that 1 ≤ up ≤ 100, for controlling
the distribution of the input values for the wind variable.

Listing 2: UPw

if(up <=5){
assume(wind < -10);

}else if(up <=15){
assume(wind >=-10 &&

wind <=-5);
}else if(up <=85){
assume(wind >-5 &&

wind <5);
}else if(up <=95){
assume(wind >=5 &&

wind <=10);
}else{
assume(wind >10);

}
// rest of the code

Listing 3: UPs

if(up <=15){
assume(wind <-10);

}else if(up <=35){
assume(wind >=-10 &&

wind <=-5);
}else if(up <=65){
assume(wind >-5 &&

wind <5);
}else if(up <=85){
assume(wind >=5 &&

wind <=10);
}else{
assume(wind >10);

}
// rest of the code

Listing 2 and Listing 3 show how UPw and UPs are en-
coded as preconditions, i.e. assume statements in the code.
The assume statements are implemented using the built-in
Debug.assume() method from SPF. With the usage profiles,
we ran Exact and obtained PrsUPw

= 0.048387 which is in-
deed better than PrsUPs

= 0.024037.

7. RELATED WORK
In previous work [15] we defined the probabilistic sym-

bolic analysis for Java programs that forms the basis of our
work here. However in [15] we only discuss exact algorithms
and multithreading is treated by computing probabilities
along linear schedules. We study here more general tree-
like schedules. In recent work we have investigated approx-
imate procedures for the probabilistic analysis of floating-
point programs [6] and for the scalable probabilistic sym-
bolic execution of sequential code [16]. However none of
these approaches address sampling for nondeterministic pro-
grams and hence the challenge of computing (near)optimal
schedulers.

Other related work includes probabilistic abstract inter-
pretation [28, 12], probabilistic static analysis [1, 10, 9] and
probabilistic model checking [3, 17, 2]. In particular the
program analysis from [9] is relevant here as it performs
aggressive pruning, but not for symbolic execution. Again
none of these works address sampling in the presence of non-
determinism which is one of the main contributions here.

Statistical verification techniques [27, 25, 36, 13] perform
sampling over the analyzed state spaces, but aside from the
work in [20], there are very few other approaches that study
nondeterminism, e.g., [26, 5]. In [26] random sampling is ex-
ploited to search for a near-optimal scheduler, whose quality
is again evaluated by a statistical approach. However, the it-
erated use of the conservative Chernoff-Hoeffding bound [21]
to determine the necessary number of samples might require
an impractically large number of them. The work in [4]
studies partial order reductions for MDPs to reduce nonde-
terminism, and thus it is orthogonal to ours. Our work is
also generally related to planning for MDPs [23, 34, 37]. In
the future we plan to investigate whether our techniques are
applicable to planning as well.

8. CONCLUSIONS AND FUTURE WORK
We presented exact and approximate symbolic execution

techniques for the probabilistic analysis of nondeterministic
programs. We implemented and evaluated them showing
improvement over established techniques.

In the future we plan to investigate replacing the exact
model counting with approximate quantification (e.g., QCo-
ral [6] for floating-point constraints). We would need to re-
vise our theoretical results but we note that one of our main
results (Proposition 2) would (trivially) hold in that case
too. We further plan to study schedulers that use more in-
formation from the program execution (history and/or cur-
rent path condition) to compute more accurate information
about the maximum probability.

The sampling process is highly parallelizable. We imple-
mented a parallel prototype and results show improvement
in performance, even though some overhead due to thread
contention is inevitable; e.g., distributing the workload to
two clients for Example 1, reduces the analysis runtime by
30%. More experimentation is planned for the future.
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and W. Visser. Compositional solution space
quantification for probabilistic software analysis. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’14, pages 123–132, New York,
NY, USA, 2014. ACM.

[7] G. Brassard and P. Bratley. Algorithmics: theory and
practice. Prentice Hall, 1988.

[8] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted
and automatic generation of high-coverage tests for
complex systems programs. In OSDI, pages 209—224,
2008.

[9] A. T. Chaganty, A. V. Nori, and S. K. Rajamani.
Efficiently sampling probabilistic programs via
program analysis. In AISTATS’13: Artificial
Intelligence and Statistics, 2013.

[10] G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon,
and J. Borgström. Bayesian inference using data flow
analysis. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE
2013, pages 92–102, New York, NY, USA, 2013. ACM.

[11] L. A. Clarke. A system to generate test data and
symbolically execute programs. IEEE TSE,
2(3):215–222, 1976.

[12] P. Cousot and M. Monerau. Probabilistic abstract
interpretation. In H. Seidl, editor, Programming
Languages and Systems, volume 7211 of Lecture Notes
in Computer Science, pages 169–193. Springer, 2012.

[13] A. David, K. G. Larsen, A. Legay, M. Mikučionis,
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