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Computational fluid dynamics was used to analyze a three-stream nozzle parametric 
design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet 
operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes 
(RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in 
the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center 
(GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code 
JeNo to screen the design concepts. A two-stream versus three-stream computation based on 
equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the 
three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic 
emission. Additional three-stream solutions were analyzed for salient flowfield features 
expected to impact farfield noise. As tertiary power settings were increased there was a 
corresponding near nozzle increase in shear rate that resulted in an increase in high 
frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased 
the tertiary potential core elongated and the peak TKE was reduced. The most noticeable 
change occurred as secondary-to-core area ratio was increased thickening the secondary 
potential core, elongating the primary potential core and reducing peak TKE. As forward 
flight Mach number was increased the jet plume region decreased and reduced peak TKE. 

 

Nomenclature x,z = axial and radial dimensions 
M∞ = freestream Mach number 
T∞ = freestream static temperature 
Ac = core nozzle exit area  
Ab = bypass nozzle exit area  
At = tertiary nozzle exit area  
NPRc = core stagnation pressure to freestream total pressure ratio 
NPRb = bypass stagnation pressure to freestream total pressure ratio 
NPRt = tertiary stagnation pressure to freestream total pressure ratio 
NTRc = core stagnation temperature to freestream total temperature ratio 
NTRb = bypass stagnation temperature to freestream total temperature ratio 
NTRt = tertiary stagnation temperature to freestream total temperature ratio 
U = axial jet velocity 
Ujet = core jet axial peak velocity 
TKE = turbulent kinetic energy 
Dcore = effective core exit area diameter 
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I. Introduction 
UTURE turbine-engine architectures are beginning to focus on providing a third exhaust stream for noise-
reduction potential.  Introducing the third stream as an additional bypass stream allows for the reduction of the 

velocity shear rate between the outer jet stream and the ambient air (thus modifying turbulent kinetic energy) and 
alters the length of the secondary potential core, both effects having a possible impact on the radiated noise.  
Additionally, a third stream provides flexibility that can assist in balancing the requirements of thrust and noise 
reduction.  However, the flow and noise characteristics of three-stream jets are not well known. Some previous 
investigations focused on the use of a third-stream to improve shock and shock-noise characteristics of multi-stream 
jets or investigated mixing noise characteristics for subsonic jets over a very narrow range of jet area ratios1,2.  The 
current study investigates the flow-field and predicted jet noise of three-stream jets over a range of nozzle area ratios 
using Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) flow solutions and RANS-
based noise prediction tools.  The computational results presented here have been used to pre-screen designs for a 
follow-on experimental investigation.  The intent of the overall research effort is the development of a three-stream 
jet-noise prediction tool for future system studies. 
    Significant investigations into dual-stream jet noise have been conducted by several researchers contributing to an 
improved understanding3-6. Bogey and Bailly3 investigated subsonic jets focusing on cross-correlations of radiated 
sound pressure and turbulence signals along the jet axis and shear layer. They found the maximum correlation was 
on the jet axis just at the end of the potential core and signals tended to fall off at large emission angles. Their results 
suggest a noise generation mechanism near the end of the potential core on the jet centerline was important but 
diminishes in the sideline direction. In addition, the signals of turbulence at the end of the jet core show that the 
source of noise is characterized by a dominant low-Strouhal-number over a large axial distance with periodic and 
intermittent vortical structures into the jet core that was expected to be the turbulent phenomenon in noise 
generation.  Viswanathan, Czech and Lee4 performed experimental investigations into dual-stream jet noise focusing 
on varying both primary and secondary area ratios and flight conditions.  Several key findings were obtained starting 
with varying secondary to primary bypass area ratios (BPR) at different power settings. They point out that the 
results for noise comparisons were not at constant thrust due to the differing area ratios. They conclude as the BPR 
increases with increased area ratio (by reducing the core exit area) there is a reduction in peak noise level in the aft 
quadrant and the high frequency portion of the spectra was generated by the secondary shear layer (note an opposite 
effect would be found if core area exit was fixed and bypass was increased). Next they analyzed varying jet 
operating conditions by varying secondary nozzle pressure ratio (NPR), again not on an equal thrust basis. They 
found three distinct trends in the aft angles of sound spectra, progressively increasing sound pressure levels at lower 
frequencies with increasing mixed jet velocity, progressively increasing sound levels at higher frequencies with 
increasing secondary jet velocity and finally a reduction in sound pressure levels of mid-frequencies due to 
cancellation effects from the different sources as NPR was increased. An important finding observing spectral 
characteristics at lower angles was there appeared to be no change in spectral shape regardless of jet conditions or 
geometric parameters. They suggest the properties of fine-scale random turbulence are universal for similar jet flows 
and the noise generated by this source should also be universal. Finally they analyzed the effects of forward flight 
and concluded the results lead to a near-uniform reduction in sound level at all frequencies at low polar angles for 
increasing Mach number5. Saxena and Morris6 investigated numerical results for single and dual-stream jets in flight 
using a variety of computational methods. They found for the dual-stream nozzle the fan flow reduces the growth of 
the primary shear layer and elongated the primary potential core. Jet mixing noise was produced primarily at the end 
of the potential core hence noise sources were pushed further downstream in the dual-stream as compared to the 
single stream jet. The addition of a third-stream configuration could additionally impact the secondary-primary 
potential core in a similar fashion.    
     The purpose of the current computational analysis is to screen designs for a follow-on experimental investigation 
that will focus on the acquisition of a comprehensive three-stream flowfield and noise database and the development 
of associated noise prediction models. Computational results were used to screen designs for unwanted shocks and 
separations within the nozzles as well as identify design features impacting peak turbulent kinetic energy levels and 
potential core length. The computational results will also be used for as input for of acoustic-analogy type noise 
prediction codes that will be used in future system studies.  
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II. Computational Procedure 
    The Reynolds-Averaged Navier-Stokes (RANS) code OVERFLOW 2.2e, was used to create and analyze point-
matched overset7 structured grids for three-stream nozzle flows. The computations employed the Menter shear stress 
transport (SST) turbulence model along with a Roe8 upwind scheme with an ARC3D flux split Jacobian algorithm.  
Given symmetry conditions, the grid topology was chosen to be two-dimensional to save computational time and 
expense. Figure 1 shows the range of geometric parameters. In Figure 1, the nozzle exit area is designated by A and 
the subscripts c, b, and t indicate the core, bypass, and tertiary streams, respectively.  Figure 2 shows the nozzle 
system used in the study.  The parameter selection was based on results from previous system studies conducted for 
future supersonic commercial aircraft (NASA’s N+2 configurations)2.  The nozzle system includes three externally-
mixed-convergent nozzles and an external plug.  
     The flow conditions used in the investigation are shown in Table 1. The nozzle pressure ratio (NPR) is the ratio 
of the jet-stagnation pressure to the ambient pressure.  The nozzle-temperature ratio (NTR) is the ratio of the jet-
stagnation temperature to the ambient temperature.  For all simulations, NTRb = NTRt = 1.25 and NTRc = 3.2. 
Conditions with velocity inversion on the tertiary stream (NPRt  > NPRb) were included in the investigation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 

 Table 1  Jet Conditions 
Flow Parameter Low Level High Level

NPRb,c 1.5 1.8
NPRt 1.3 2.4
NTRc 1 3.2
BPRtot 2.5 5.5

Core Stream 

Tertiary Stream 

Bypass Stream 

Figure 2.  A schematic of the three-stream 
nozzle system.  

Figure 1.  A plot of the geometric design 
space used in the three-stream study. The 
blue symbol indicates the hardware 
configuration used in previous studies2. 
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A. Computational Grid and Boundary Conditions 
The computational grid used for area ratios Ab/Ac = 1.75 and At/Ac = 1.00 is shown in Figure 3. The final grid 

formation was point matched and overset to account for two level grid sequencing. The two-dimensional planar 
mesh consisted of 330,000 grid points or 1 million in the full 2-D domain. The overall domain stretched 65Dcore 
streamwise and 20Dcore stream-normal.  All solid surfaces were treated as viscous and integrated to the wall with an 
off body spacing to yield y+ < 1 values. Figure 4 shows the blocking topology which consisted of seven zones: 1) 
primary nozzle, 2) secondary nozzle, 3) tertiary nozzle, 4) ambient inflow, 5) tertiary exit, 6) secondary exit and 7) 
primary exit with plume region. The boundary condition for primary, secondary and tertiary zones 1-3 was nozzle 
inflow with a set NPR and NTR. The ambient inflow zone 4 used a freestream inflow boundary condition setting 
Mach and static temperature with a simple pressure ratio upper exit boundary. The tertiary and secondary exit zones 
5-6 utilized a simple pressure ratio upper boundary condition and the primary exit and plume zone 7 was 
axisymmetric along the centerline with a simple pressure ratio on the upper boundary and an extrapolated pressure 
boundary condition at the exit. 

The importance of capturing the correct physics in the near nozzle exit region required significant grid 
resolution.  Additionally the grid needed to be aligned and stretched in high shear layer gradient regions. Extensive 
grid sensitivity studies were carried out over the course of the designs and an optimum topology was chosen. Blocks 
5-7 were assembled from as many as 15 sub-domains to ensure viscous stretching into the shear layer near nozzle 
exit regions and control streamwise grid stretching ratios progressing downstream into the peak TKE regions.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Example computational 2-D mesh and a zoomed nozzle region. Every other point is shown. 
 

 
Figure 4. Grid blocking configuration consisting of seven overset zones. 
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III. Results 
The computational solutions for the design space were analyzed by examining Mach number contours, non-

dimensional axial velocity, and non-dimensional turbulent kinetic energy (TKE).  The non-dimensional jet velocity 
U/Ujet is defined as the ratio of the axial velocity U normalized by the peak primary jet velocity Ujet . The non-
dimensional  turbulent kinetic energy is defined as the ratio of TKE normalized by the peak primary jet velocity 
squared U2

jet . Axial and radial dimensions have been normalized by the effective core diameter obtained from the 
core-nozzle exit area.   

The nozzle design contours were evaluated to identify flow separation and regions where local shocks formed. 
Figure 5 shows the design point Ab/Ac=At/Ac=1.0 and NPRc=NPRb=NPRt=1.8, where the secondary trailing edge 
location relative to the plug exhibited a sensitivity. As the design moved the secondary trailing edge closer to the 
plug an internal shock formed, as the secondary trailing edge was relocated upstream from the plug an external 
shock formed. A shock-free solution was finally obtained by increasing the rate of convergence of the secondary 
flow path area ratio near the nozzle exit plane.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A.  Two-stream Versus Three-stream 
Figure 6 details the secondary and tertiary potential cores which are of importance to understanding the benefits 

of adding a third stream.  The flow features of three-stream configurations consist of a thin shear layer between the 
primary potential core and secondary bypass potential core, another shear layer between the bypass and tertiary 
potential core and finally an outer shear layer with the ambient which continues to grow as the tertiary and 
secondary gradually merge to form a single potential core downstream. The length of the tertiary potential core can 
have an impact on jet mixing and, therefore, acoustic emission. 

 To gain a better understanding of the impact of adding a third stream to a dual stream configuration, solutions 
were obtained for the flowfield of dual-stream and three-stream designs with comparable mass flow rates. The 
results for a dual-stream configuration with a Ab/Ac ratio of 1.00, NPRc = 1.8, and NPRb = 1.8 are shown in the 
upper half of  Figures 7 and 8.  To match the mass flow rate of the dual stream configuration, a three-stream 
configuration with Ab/Ac = At/Ac = 1.00 was selected and analysis was performed for NPRc = NPRb = 1.6 and NPRt 
= 1.3.  The results for the three-stream nozzle configuration are shown in the lower half of Figures 7 and 8.  As 
shown by the normalized velocity in Figure 7, the primary potential core length was greater for the three-stream case 
than for the two-stream case.  In Figure 8, the three-stream nozzle produced lower peak turbulent kinetic energy 
(TKE) levels than those for the two-stream nozzle system and reduced jet exhaust noise across the full spectra, and 
is shown in the following section IV. 
 

Internal shock External shock Shock free 

Figure 5.  Mach number contour plots taken near the nozzle trailing edges for Ab/Ac=At/Ac=1.00 and for
NPRc=NPRb=NPRt= 1.8.  The plots show the impact of bypass-nozzle contouring and trailing edge 
location on the resulting near-nozzle Mach numbers. Secondary TE location relative to the plug exhibited 
an internal shock, secondary TE located upstream exhibited an external shock and finally increased rate 
of convergence for secondary nozzle exit area is shock free. 
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Figure 7.  Mean axial velocity predictions.  Upper half, two-stream nozzle (Ab/Ac = 1.0, NPRc = 1.8, NPRb 
= 1.8); lower half, three-stream nozzle (Ab/Ac = 1.0, At/Ac = 1.0, NPRc = NPRb = 1.6, NPRt = 1.3). 
 

 
Figure 8.  Turbulent kinetic energy predictions.  Upper half, two-stream nozzle (Ab/Ac = 1.0, NPRc = 1.8, 
NPRb = 1.8); lower half, three-stream nozzle (Ab/Ac = 1.0, At/Ac = 1.0, NPRc = NPRb = 1.6, NPRt = 1.3). 
 

 
Figure 6.  Enhanced three-stream CFD contours detailing secondary and tertiary potential cores at 
operating conditions. 
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B.  Tertiary NPR Variation 
    Simulations were performed with varying tertiary power settings to analyze the impact on acoustic emissions. The 
design point with area ratios Ab/Ac = 1.75 , At/Ac = 1.00 and tertiary power settings was analyzed for varying NPRt 
= 1.4,1.6,1.8. Both bypass and core flows were held constant at NPRb = NPRc = 1.8 simulating a “dual-stream 
configuration” with a free jet M∞ = 0.10. Figure 9 shows the computational results when the tertiary power settings 
are varied resulting in decreased peak TKE consistent with a previously noted dual-stream study4. 
    Figure 10 shows the axial locations of the cross-stream non-dimensional velocity and non-dimensional TKE to be 
plotted and analyzed for the previous design point. Analyzing stations along the nozzle geometry can highlight 
important features of three-stream configurations for potential core lengths and related TKE effects. Since both are 
important to acoustic levels, insight gained could lead to improved future designs. The stations are normalized with 
Dcore and the tip of the external plug is at station 0.0 with downstream stations positive valued. Station -3.1Dcore is 
located just upstream of the secondary trailing edge to capture the tertiary potential core and ambient shear layer. 
Station -2.9Dcore  is located just downstream of the secondary trailing edge and exhibits the tertiary potential core 
and secondary potential core with the shear layer between them and tertiary potential core with ambient shear layer. 
Stations -2.7Dcore   through -1.6Dcore  track the thinning of the shear layer between the secondary and tertiary 
potential cores and the eventual merging of the two streams as the tertiary core terminates. Station -1.4Dcore  is 
located just downstream of the primary trailing edge and captures the primary and secondary potential cores and the 
shear layer between them. Finally stations -0.7Dcore through  2.7Dcore track the thinning of the shear layer between the 
primary and secondary potential cores and the eventual merging into a single primary potential core and shear layer 
with the ambient.     
    The velocity profiles at the axial stations defined in Figure 10 are shown in Figure 11 and the TKE profiles are 
shown in Figure 12. The solutions for NPRt = 1.4, 1.6, 1.8 are shown as green, blue and red respectively. At station -
3.1Dcore  in Figure 11,the tertiary potential core is visible along with the shear layer and ambient for each NPRt . As 
NPRt   is increased the tertiary potential core jet velocity increases and results in a decrease in the shear rate (or 
slope) between the tertiary and ambient flow. At station -3.1Dcore  in Figure 12, the decrease in shear rate results in 
an increase in peak TKE . At station -2.9Dcore  in Figure 11, both the tertiary and secondary potential cores are visible 
along with the shear layer between them and the tertiary shear layer and ambient. The tertiary potential core has a 
slight effect on the secondary potential core as increasing NPRt causes a reduction in secondary potential core peak 
jet velocity. By station -2.7Dcore  in Figure 11, the tertiary potential core has minimal effect on the secondary 
potential core as peak velocities are again similar. Stations -3.1Dcore to -2.4Dcore in Figure 12 detail the increase in 
TKE region with the tertiary and ambient shear layer progressing downstream. By station -2.2Dcore   in Figure 11,the 
NPRt = 1.4 tertiary potential core is about to merge with the secondary potential core and appears as a slight kink in 
the velocity profile as the shear layer between them is reduced.  At station -1.9Dcore   Figure 11, the NPRt = 1.6 
tertiary potential core is about to merge with the secondary potential core and finally at station -1.4Dcore the NPRt = 
1.8 tertiary potential core has merged with the secondary potential core. NPRt has increased tertiary potential core 
length respectively. At station -1.4Dcore  in Figure 11, the shear layer between the primary and secondary is visible as 
well as the primary potential core. By station -0.7Dcore the addition of the tertiary stream on the primary potential 
core peak velocity is minimal. The shear layer between the secondary potential core and ambient continues to 
thicken and by 2.7Dcore the secondary potential core is about to merge to form the primary potential core. NPRt 
continues to thicken the shear layer with the ambient and decrease peak TKE. The primary potential core eventually 
terminates around 12Dcore where the reduction in peak TKE levels associated with large scale turbulence are 
expected to have an impact on sound spectra5. 
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Figure 9. Turbulent kinetic energy in a three-stream nozzle at (Ab/Ac = 1.75, At/Ac = 1.00, NPRb = NPRc = 
1.8, M∞ = 0.10 ): NPRt = 1.4, 1.6, 1.8 from top to bottom. 

 
Figure 10.  Velocity profile stations. Case NPRc = 1.8 , NPRb = 1.8, NPRt = 1.8, 
Ab/Ac = 1.75 and At/Ac = 1.00, M∞ = 0.10. 
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Figure 11. Velocity profiles progressing from near tertiary nozzle trailing edge to 2.7Dcore 
downstream. Primary, secondary and tertiary potential cores are highlighted for NPRt = 1.4, 1.6, 1.8, 
M∞ = 0.10. 

 
Figure 12. TKE profiles progressing from tertiary nozzle trailing edge to 2.7Dcore downstream. 
Primary, secondary and tertiary potential cores are highlighted for NPRt = 1.4, 1.6, 1.8. 
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C. Tertiary Area Variation 
The impact of varying tertiary-to-core exit area is analyzed for the design point of area ratio Ab/Ac = 1.75, and 

pressure ratios NPRt = 1.6, NPRb = NPRc = 1.8. The tertiary-to-core area ratio At/Ac is varied from 0.40, 0.60 and 
0.80 by increasing tertiary exit area with a fixed core exit area and TKE is plotted in Figure 13. As the ratio At/Ac is 
increased the peak TKE levels decrease in the downstream region near the termination of the primary potential core. 
In addition, the length of the primary potential core increases with an increase in At/Ac area ratio. 

In a similar fashion the axial velocity profiles are plotted in Figure 14 and TKE profiles are plotted in Figure 15 
for the At/Ac variation at the defined stations in Figure 10. At station -3.1Dcore  in Figure 14 the area ratio increase 
appears to translate the outer shear layer and thicken the tertiary potential core. The tertiary peak potential core 
velocity appears to remain fairly similar across the area variation but changes in tertiary potential core length are 
evident progressing to station -1.6Dcore. The ratio At/Ac = 0.40 tertiary potential core merges with the secondary 
potential core by -2.7Dcore , ratio At/Ac = 0.60 merges with the secondary potential core by -2.4Dcore , At/Ac = 0.80 
merges by -1.9Dcore and finally At/Ac = 1.00 merges with the secondary potential core by -1.6Dcore . Stations -3.1Dcore  
through -1.6Dcore in Figure 15 show an increase in peak TKE with an increase in At/Ac ratio but by -1.4Dcore the trend 
begins to reverse and by 2.7Dcore the smaller tertiary-to-core exit area results in a decrease in peak TKE over the 
larger areas respectively. The smaller tertiary At/Ac ratios when merged with the secondary potential core result in a 
reduced shear rate as you progress downstream and peak TKE is increased. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 13. Effect of tertiary area ratio on TKE at (Ab/Ac = 1.75, NPRt = 1.6, NPRb = NPRc = 1.8 ) and 
sweeping At/Ac = 0.40, 0.60, 0.80 from top to bottom. 
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Figure 14. Velocity profiles progressing from tertiary nozzle trailing edge to 2.7Dcore downstream at 
(Ab/Ac = 1.75, NPRt = 1.6, NPRb = NPRc = 1.8 ). Tertiary area ratios vary as  At/Ac = 0.40, 0.60, 0.80. 

 
Figure 15. TKE profiles progressing from tertiary nozzle trailing edge to 2.7Dcore downstream at 
(Ab/Ac = 1.75, NPRt = 1.6, NPRb = NPRc = 1.8 ). Tertiary area ratios vary as  At/Ac = 0.40, 0.60, 0.80. 
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D. Bypass Area Variation 
Simulations were performed varying the bypass-to-core area ratio Ab/Ac from 1.00, 1.75 and 2.50 by increasing 

the secondary exit area with a fixed core exit area. The design point with area ratio At/Ac = 0.80 and pressure ratio 
NPRt = 1.6, NPRb = NPRc = 1.8 was analyzed and TKE is plotted in Figure 16. Increasing the bypass-to-core area 
ratio elongates both the primary and secondary potential core and also results in a decrease in peak TKE.  

The axial velocity profiles are plotted in Figure 17 and TKE profiles are plotted in Figure 18. The profiles are 
again taken at the previously analyzed stations. In the design process the flow lines were obtained by lengthening the 
plug downstream to increase the Ab/Ac ratios and therefore the tertiary stream trailing edge location has also 
lengthened with increased bypass-to-core area ratio to meet the Ab/Ac = 2.50,1.75 design space. At station -3.1Dcore 
in Figure 17 the tertiary potential core is visible and for Ab/Ac = 2.50 and the secondary potential core is also present 
in the profile. Increasing the secondary exit area decreased the outer tertiary shear layer with the ambient. The 
tertiary potential core merged with the secondary and increased the secondary potential core height and elongated 
the secondary potential core. Increasing the secondary area ratio decreases the outer shear layer thickness with the 
ambient after the tertiary has merged with the secondary potential core. At -1.4Dcore the increased secondary are ratio 
has impacted and decreased the primary potential core peak velocity. The trend of secondary on the primary 
potential core  continues until 2.7Dcore. At station -2.4Dcore in Figure 18 the increase in area ratio has decreased the 
shear rate and thinned the shear layer resulting in a reduced TKE region and slightly reduced peak TKE. Lastly, the 
increase in secondary potential core length from increased area ratio has extended the secondary potential core 
length shielding the primary potential core significantly farther downstream than previously observed tertiary NPR 
and area ratio effects. The increase in bypass-to-core area ratio creates a decrease in shear rate and results in an 
increase in peak TKE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 16. Effect of bypass area ratio on TKE at (At/Ac = 0.80, NPRt = 1.6, NPRb = NPRc = 1.8) and 
sweeping Ab/Ac = 1.00, 1.75, 2.50 from top to bottom. 
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Figure 17. Velocity profiles progressing from tertiary nozzle trailing edge to 2.7Dcore downstream at 
(At/Ac = 0.80, NPRt = 1.6, NPRb = NPRc = 1.8). Bypass area ratios vary as Ab/Ac = 1.00, 1.75, 2.50. 

 
Figure 18. TKE profiles progressing from tertiary nozzle trailing edge to 2.7Dcore downstream at 
(At/Ac = 0.80, NPRt = 1.6, NPRb = NPRc = 1.8 ).  Bypass area ratios vary as Ab/Ac = 1.00, 1.75, 2.50. 
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E. Forward Flight Variation 
The impact of forward flight is of interest as both stationary runway and takeoff/landing community noise are 

important to modern nozzle design. A design point with area ratios Ab/Ac = 1.75, At/Ac = 0.80, and pressure ratios 
NPRt = 1.6, NPRb = NPRc = 1.8 was analyzed for varying freestream Mach number  M∞ = 0.01, 0.10, 0.30. The free 
jet Mach number effect on TKE is shown in Figure 19. As the freestream Mach number is increased the 
corresponding jet plume region narrows and elongates the primary potential core and reduces peak TKE. Forward 
flight effect is know to reduce turbulent mixing noise in jet exhaust. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 19. Effect of forward flight on TKE at (Ab/Ac = 1.75, At/Ac = 0.80, NPRt = 1.4, NPRb = NPRc = 
1.8)  and sweeping M∞ = 0.01, 0.10, 0.30 from top to bottom. 
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IV. Acoustic Predictions 

A. An Acoustic Analogy Method 
    Jet noise predictions presented here are carried out using a RANS-based acoustic analogy approach available 
within the JeNo 9,10 code. In the context of the generalized acoustic analogy, as proposed by Goldstein11, the 
governing acoustic equations are obtained by dividing Navier-Stokes (NS) equations into a set of non-radiating base 
flow equations, plus a set of linear equations for the radiating components of motion.  By selecting a set of five 
appropriately defined variables, four of them non-linear, it is shown that the operator part of the acoustic equations 
resembles those obtained by linearizing the convective form of the Euler equations about a similar base flow.  In 
addition, when the base flow is approximated as a locally parallel mean flow, factors on the left-hand side of the 
momentum and energy equations that explicitly depend on viscosity reduce to higher order terms, and are neglected. 
Subsequently, these equations are combined into a single third-order wave equation for pressure, referred to as the 
inhomogeneous Pridmore-Brown (PB) equation12.  
    The equivalent sources of sound are defined as the second-order stresses that appear on the right-hand side of the 
equation, and consist of velocity/velocity and velocity/temperature fluctuations.  These two distinct sources are 
associated with the momentum flux and enthalpy flux in the turbulent jet.   The solution to the PB equation is 
usually obtained in a frequency domain using Green’s function (GF) approach. The volume sources are expressed as 
an auto-covariance function associated with turbulent stresses at two points separated in space and time.  
Experimental data, such as measurements by Bridges et al.13, 14 are used to assist with the source modeling. The 
required scales are normally obtained from suitable variables in a RANS solution. For example, using standard 
RANS solvers with a k-  or k-  turbulence model we obtain the length- and time-scales as , and , 
respectively. 
    The intensity of the momentum-flux source component depends on the local kinetic energy of turbulence as 
provided by a RANS solver. The enthalpy-flux source term, on the other hand, requires a dedicated RANS solution10 
that provides the variance in stagnation enthalpy.  For reasons discussed by Khavaran et al.15 it is more convenient if 
the latter source strength were evaluated from an empirical model dependent on readily available mean flow 
variables, such as an appropriate function of the mean stagnation enthalpy.  
    Supersonic jets, when not perfectly expanded, emit broadband shock associated noise in addition to the usual 
turbulent mixing noise.  Shock noise is generated when convecting turbulent eddies interact with the shock cell 
structure, and could dominate the spectra at high frequency and at upstream directivity angles.  When a third stream 
is available, it may be exploited as a mechanism to control or weaken the shock cell structure and reduce the 
associated noise. A third stream is potentially capable of reducing the shear between a jet and the ambient. In 
addition, it may help with fluid concepts such as inverted velocity profile and/or heat shield.  These latter concepts 
are usually considered useful in diverting turbulent mixing noise from the sideline direction.  
    As noted above, the propagation GF is evaluated for each pair of source/observer locations, and at all frequencies 
of interest.  Aside from a limited number of closed-form asymptotic solutions in the low or high frequency limits, 
the GF calculation is usually carried out numerically.  When possible, solving the adjoint form of the equation helps 
with computational efficiency.  These computations could become very challenging in 3D jet flows, and a practical 
implementation remains an area of research in aero-acoustics.   With an available RANS solution for the nozzle flow 
of interest, the remaining computational activity is devoted mainly to the propagation GF.   
    The acoustic spectrum for jet mixing noise is evaluated here using the JeNo code and according to equation (16) 
in Khavaran et al.15 This reference also details the latest development in modeling the enthalpy/velocity source term.  
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B. Acoustic Results 
Examples presented here are intended to illustrate the sensitivity of the prediction tool of choice “JeNo” to a 

selective number of parameters in a multi-stream jet exhaust. In the first place, we compare the acoustic emission in 
a two- vs. a three-stream nozzle configuration of equivalent exhaust thrust.  The operating conditions and RANS 
predictions for the two nozzles of interest were presented earlier in Figures 7 and 8.   Figure 7 shows a reduction in 
jet exit velocity and primary core-length, and a reduction in the turbulent kinetic energy in the three-stream nozzle 
case compared to that of the two-stream exhaust is shown in Figure 8. Reduction in the core flow NPR between the 
two cases (from 1.8 in two-stream to 1.6 in three-stream), and introduction of a third-stream at a lower pressure ratio 
of NPRt =1.30 works the same way as increasing the by-pass ratio in conventional two-stream nozzles with the 
introduction of a low speed secondary flow for thrust compensation.  This concept provides the observed noise 
benefits in high-bypass ratio turbo-fan engines.  Similar results are also predicted here as seen in Figure 20.  The 
noise benefit is evident at all frequencies and all angles.  All predicted spectra are shown as lossless, and on an arc at 
60o, 90o, 120o and 150-deg from nozzle inlet.   

The effect of varying the tertiary NPR on jet noise is investigated next.  In this example, three cases are 
examined using fixed parameters of (Ab /Ac = At /Ac =1.0, NPRc = NPRb = 1.8) at an ambient Mach number of 0.10.  
The variable parameter is the third-stream pressure ratio that sweeps as NPRt = 1.4, 1.6, 1.8. Computational RANS 
results, presented earlier in Figures 9-12, correspond to similar three-stream configurations at a slightly larger 
tertiary area ratio of Ab /Ac=1.75.  Subsequently mean velocity and turbulence discussions of section III-B hold 
bearing for this case as well. Velocity profile comparisons, at sections prior to the primary exhaust, show noticeable 
differences in the peak values for three cases (Figure 11).  Downstream of the primary exhaust, there is little 
variation in the peak velocities among the three cases.  Turbulence comparisons (Figure 12) also indicate increased 
turbulence near the exhaust in the tertiary with increasing NPRt.   Since turbulence scales (time and length) are the 
smallest in this vicinity, these differences in the tertiary flow result in additional high-frequency noise shown in the 
spectral predictions of Figure 21. The slight color difference visible in the contour-plots for TKE near x/Dcore =12 
(Figure 9) is not large enough to make a significant difference in predicted noise levels, and for all practical 
purposes the increase in low frequency noise is projected as ~1.0dB due to the slight increase in thrust. 

The effect of tertiary area ratio variation on noise is considered next.  In this example, two cases are examined 
using fixed parameters of (NPRc = NPRb = NPRt = 1.80, Ab /Ac = 1.0) at an ambient Mach number of 0.10.  The 
tertiary area ratio sweeps as At /Ac = 0.60, 1.0. Computational RANS results, presented in Figures 13-15, although at 
a slightly different set of conditions (NPRt = 1.6 and Ab/Ac=1.75), indicate an increase in the mass flow (thrust) in 
the tertiary (Figure 14).  Changes in turbulence level near the exit are relatively insignificant compared to the 
previous case discussed above.  Subsequent changes in predicted spectra show a slight increase of ~1.0dB in low-to-
mid frequency noise due to an increase in nozzle thrust. 

In the final example, we examine the effect of secondary area ratio on noise.  Two cases are considered using 
fixed parameters (NPRc = NPRb = 1.80, NPRt = 1.40, At /Ac = 1.0) at an ambient Mach number of 0.10. The 
secondary area ratio sweeps as Ab /Ac = 1.0, 2.50.  Computational RANS results, presented in Figures 16-18, 
represent a similar nozzle but at a slightly different conditions of (NPRt = 1.60 and At /Ac = 0.80).  It shows a 
reduction in peak TKE (Figure 16), an increase in mass flow rate and thrust in the secondary (Figure 17), and a 
slight increase in turbulence near the exit (Figure 18) with increasing the bypass area ratio.  The net effect is 
projected as an increase in noise, up to 3.0dB in low-to-mid frequency (see Figure 23).  This is mostly due to an 
increase in nozzle thrust in the secondary potential core.   
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Figure 20.   Acoustic spectra – comparing jets on equal mass flow rate 
basis: two-stream (Ab/Ac = 1.0, NPRc = 1.8, NPRb = 1.8)  (dark) vs. three-
stream (Ab/Ac = 1.0, At/Ac = 1.0, NPRc = NPRb = 1.6, NPRt = 1.3) (blue)  

 
 
Figure 21.   Acoustic spectra  – comparing tertiary NPR variation in a three-stream 
nozzle at (NPRc = NPRb = 1.80):  NPRt = 1.40 (dark), 1.60 (blue), 1.80 (red).  
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Figure 22.   Acoustic spectra – comparing tertiary area variation in a three-stream nozzle 
at (NPRc = NPRb = NPRt = 1.80, Ab /Ac = 1.0):  At /Ac = 0.60 (dark), At /Ac = 1.0 (red).  

 
 
Figure 23.   Acoustic spectra – comparing secondary area variation in a three-stream 
nozzle at (NPRc = NPRb = 1.80, NPRt = 1.40): Ab /Ac = 1.0 (dark), Ab /Ac = 2.50 (red). 
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IV. Conclusions 
 
Computational fluid dynamics combined with acoustic simulations have shown predictive capability in three-

stream nozzle designs. Similarities between dual-stream experimental and numerical results and three-stream 
computations have been shown to have comparable acoustic effects. The results of an equal mass flow rate dual-
stream and three-stream comparison showed a large reduction in sound spectra for the latter. The noise benefit was 
evident at all frequencies from nozzle inlet. The three-stream results show increasing the tertiary power setting 
decreases the shear rate and lowers peak TKE resulting in increased high frequency noise. As tertiary-to-core area 
ratio is increased the near nozzle exit shear layer enlarges, peak TKE reduces and a slight increase in low frequency 
noise was observed. The foremost impact on noise was observed as secondary-to-primary area ratio was increased. 
The results showed an enlarged secondary potential core, elongated primary potential core and increased peak TKE 
levels. A noise increase was expected due to an increase in performance (thrust) as the secondary exit area was 
increased.  Lastly, results of the forward flight Mach number thinned the primary jet plume region and elongated the 
primary potential core reducing peak TKE.        
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