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The forthcoming Global Precipitation Measurement (GPM) Mission will provide next-
generation precipitation observations from a constellation of satellites. Since precipitation
by nature has large variability and low predictability at cloud-resolving scales, the impact of
precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely
affected by the characterization of background and observation errors and the representation
of nonlinear cloud/precipitation physics in an NWP data assimilation system.

We present a data impact study on the assimilation of precipitation-affected microwave
(MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble
Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are
carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in
western Europe. Sensitivities to observation error specifications, background error covari-
ance estimated from ensemble forecasts with different ensemble sizes, and MW channel
selections are examined through single-observation assimilation experiments. An empirical
bias correction for precipitation-affected MW radiances is developed based on the statistics
of radiance innovations in rainy areas. The data impact is assessed by full data assimilation
cycling experiments for a storm event that occurred in France in September 2010. Results
show that the assimilation of MW precipitation observations from a satellite constellation
mimicking GPM has a positive impact on the accumulated rain forecasts verified with
surface radar rain estimates. The case-study on a convective storm also reveals that the
accuracy of ensemble-based background error covariance is limited by sampling errors and
model errors such as precipitation displacement and unresolved convective scale instability.
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1. Introduction

Precipitation plays key roles in the global and regional
hydrological cycles. It is also a difficult environmental variable
to be modelled and predicted in modern-era numerical weather
prediction (NWP) systems. One critical problem in the relatively
low accuracy of rain forecasts is that precipitation processes
are highly nonlinear with large variability in time and spatial
scales, therefore small errors in initial conditions can lead to a
large divergence in outcomes. To improve our knowledge of the
initial conditions of precipitation forecasts, we need to collect
observations and use data information to infer the conditions of
precipitation processes as well as the associated uncertainty. In the

last decade, measurements from the Tropical Rainfall Measuring
Mission (TRMM) have helped promote the use of satellite
precipitation data to improve modelling of precipitation processes
as well as initial conditions for forecasts. The assimilation of
satellite precipitation data in global NWP systems has been
shown to improve weather and hydrological forecasts as well as
climate analyses (Marécal and Mahfouf, 2002; Hou et al., 2004;
Mahfouf et al., 2005; Hou and Zhang, 2007; Bauer et al., 2010).

However, special challenges remain in the assimilation of
space-borne observations of cloud and precipitation (Errico
et al., 2007; Bauer et al., 2011). The most outstanding issue is
how to represent errors in background states associated with
precipitation processes and in precipitation-affected radiance
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observations. It is evident that the background error covariance
needs to represent the flow-dependent forecast uncertainty
associated with evolving precipitation processes, particularly
when hydrometeor variables are included in the analysis
procedure. Michel et al.(2011) developed a binning method to
compute separate background error covariance for precipitating
and non-precipitating areas. Their comparison study provides
statistical structure of heterogeneous forecast error covariance
with shorter horizontal error correlations in precipitating areas,
and vertical correlations mimicking the cloud vertical extension
by the convection processes. Geer and Bauer (2011) analysed the
statistical property of the first guess (FG) departures of all-sky
microwave (MW) radiances over ocean surface. They found the
dependence of FG departure standard deviations on so-called
symmetric cloud amount. From that, they derived an observation
error model to take into account non-Gaussian effects unique to
cloud and precipitation-related observations. The bias correction
on precipitation-affected radiance observations remains a difficult
problem. Unlike observations under clear-sky conditions,
precipitation-affected radiances are prone to situation-dependent
errors, such as poor approximations of physical properties of
hydrometeors in radiative transfer calculations and model cloud
physics (Lang et al., 2011; Johnson et al., 2012).

In recent years, there have been considerable advances in the
development of ensemble data assimilation techniques. Some
successes in assimilation of remote-sensed observations, such as
airborne Doppler radar radial velocity or MW radiances have
demonstrated strong evidence of improved forecast skills and
analysis accuracy (Schwartz et al., 2012; Weng and Zhang, 2012).
However, ensemble assimilation application of remote-sensed
cloud and precipitation data is scarce, mostly at the stage of
synthetic observations in an idealized experiment environment
(Pincus et al., 2011; Zupanski et al., 2011a). Ensemble approaches
estimate the flow-dependent background error covariance based
on an ensemble of forecasts, and use an ensemble of nonlinear
forward model simulations to link model space and observed
space. Taking advantage of these properties of ensemble
assimilation framework, the Goddard Weather Research Forecast
(WRF) Ensemble Data Assimilation System (Goddard WRF-
EDAS) has been developed to assimilate precipitation-affected
MW radiances from satellite instruments (Zupanski et al., 2011b).
This system uses the WRF model with National Aeronautics
and Space Administration (NASA) microphysics (Tao, 2003),
the Goddard Satellite Data Simulator Unit (G-SDSU:Matsui
et al., 2009) for the observation operator of cloud/precipitation-
sensitive radiance, and a maximum likelihood ensemble filter
(Zupanski, 2005; Zupanski et al., 2008). Zhang et al.(2013)
evaluated the analysis system performance of the Goddard WRF-
EDAS and examined data impact by assimilating data of the
TRMM Microwave Imager (TMI) and the Advanced Microwave
Scanning Radiometer for EOS (AMSR-E) in a tropical storm after
landfall and a heavy rain event in the southeast region of the
United States. They found that storm intensity in the analysis is
enhanced and short-term forecasts of accumulated surface rainfall
are improved, an indication of the benefit of using precipitation
information from radiances and ensemble-based forecast error
covariance.

The international Global Precipitation Measurement (GPM)
Mission to be launched in 2014 will provide the next-generation
observations of precipitation with additional observation
coverage (Hou et al., 2008). The GPM Core Observatory will
collect coincident passive and active MW measurements from
the GPM Microwave Imager (GMI) and the Dual-frequency
Precipitation Radar (DPR). These observations will provide
further insights on precipitation processes and establish a transfer
standard to improve the accuracy and consistency of precipitation
estimates from a constellation of satellites contributed by a
consortium of international partners (see http://pmm.nasa.gov/).
In this article, we extend the application of the Goddard
WRF-EDAS to assimilate precipitation data from a pre-GPM

constellation to examine: (i) the bias in precipitation-affected MW
radiances over land surface, (ii) the extent to which the ensemble
algorithm is able to capture synoptic features in background
error covariance, and (iii) the impact on precipitation forecasts of
assimilating data with a coverage similar to the GPM constellation.
In section 2 we give a system overview of the Goddard WRF-
EDAS. In section 3 we describe the satellite data to be assimilated
and an off-line bias correction scheme for precipitation-affected
radiance. In section 4 we use single-observation experiments
to examine the flow-dependent structure of background error
covariance and analysis sensitivity. In section 5 we present the
results of assimilating constellation MW data in a heavy rain
event in France and discuss the implication of data impact.
Finally, a summary is given and perspectives for future research
are discussed in section 6.

2. Assimilation system

The Goddard WRF-EDAS solves a maximum likelihood
estimation problem based not only on available observations
at the current time, but also on model forecasts initialized from
the previous analysis (Zupanski, 2005; Zupanski et al., 2008).
The system consists of a forecast and analysis cycle. The forecast
step provides the background state, defined as the WRF model
integration forward in time from tn−1 to tn (an analysis interval):

xf
n = M(xa

n−1). (1)

The analysis step is performed after the forecast and defined as
the maximum likelihood solution to the cost function:

J(x) = 1

2
[x − xf ]TP−1

f [x − xf ] + 1

2
[y − h(x)]TR−1[y − h(x)],

(2)

where [y − h(x)] is the FG departure (the discrepancy between
observation and model simulation), with nonlinear observation
operator h. The analysis increment on the current state is
expressed by [xa − xf ]. The background error covariance is
denoted as Pf , and the observation error covariance as R.
The analysis variable x includes hydrometeors (mixing ratio
of rainwater, snow, graupel, cloud water and cloud ice from
model microphysics) in addition to other dynamical variables.
Corresponding forecast errors in precipitation and clouds are
estimated simultaneously with that of the wind, temperature,
moisture and pressure fields.

In the Goddard WRF-EDAS, the observation error covariance R
is prescribed. The background error covariance Pf is dynamically
estimated using an ensemble of perturbed forecasts so that
the forecast error information is flow-dependent and updated
to current meteorological conditions. A localization scheme is
employed to reduce the sampling errors associated with the given
finite ensemble size (Yang et al., 2009). A compactly supported
covariance function (Gaspari and Cohn, 1999) is applied to
specify the error decorrelation, for instance it is set at 45 km in the
experiments with 9 km model resolution. The analysis problem
is solved in ensemble subspace with a variable transformation:

x − xf = P
1
2
f [I + ZTZ](−1/2)ζ , (3)

where ζ is the new transformed variable. With Pf
i being the ith

column of P
1
2
f , the ith column of the observation perturbation

matrix Z is defined as:

zi = R(−1/2)[h(xf + pf
i ) − h(xf )]. (4)

With the ensemble filter formulation, full nonlinear observa-
tion operators are used here. For a more detailed overview of the
Maximum Likelihood Ensemble Filter algorithm, see Zupanski
et al. (2011b).
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Table 1. MW level-1 radiance data selected for the study.

Satellite Instrument Scanning method Equator crossing time
(ECT) ascending node

Channels selected for
assimilation (along track ×
cross track resolution)

Channels selected for
additional information
(scattering index over land
computation)

DMSP-F16 SSMI-S Conical 18:51 91.6 H (14 × 13 km)
91.6 V (14 × 13 km)
150.0 H (14 × 13 km)
183.3 ± 7 H (14 × 13 km)

19.3 V (73 × 47 km)
22.2 V (73 × 47 km)

DMSP-F17 SSMI-S Conical 17:37 Same as above Same as above
DMSP-F18 SSMI-S Conical 20:08 Same as above Same as above
AQUA AMSR-E Conical 13:30 89 H (6 × 4 km)

89 V (6 × 4 km)
18.7 V (27 × 16 km)
23.8 V (32 × 18 km)

NOAA-18 MHS Cross track 14:22 89.0 (16 × 16 km at nadir)
157.0 (16 × 16 km at nadir)
190.3 (16 × 16 km at nadir)

–

NOAA-19 MHS Cross track 13:32 Same as above –
Metop-A MHS Cross track 21:30 Same as above –

The Advanced Research WRF (ARW) model is incorporated
in the assimilation system with mesoscale NWP configuration
(Skamarock et al., 2005). Operational global analyses from the
National Center for Environmental Prediction Global Forecast
System (NCEP GFS) provide lateral boundary conditions for the
limited-area forecasts. For all the experiments in this article the
model is configured as non-hydrostatic at the spatial resolution
of 9 km grid spacing over a domain spanning from 10◦W to
20◦E and 35 to 52◦N. The cloud and precipitation processes are
modelled by a one-moment bulk microphysical scheme based on
the Goddard Cumulus Ensemble (Tao, 2003).

For satellite radiance observations, the observation operator
consists of spatial interpolation and Radiative Transfer Model
(RTM) constructed from G-SDSU. MW radiances are simulated
by a delta-Eddington two-stream radiative transfer model with
slant path view (Kummerow et al., 1996). The parameters for
particle size distribution (PSD) are prescribed to be consistent
with those in the model cloud physics. The assumptions for
the physical properties of ice-phase hydrometeors are a soft
sphere with ice as an inclusion within an air matrix. To account
for the variability within a field of view (FOV) of the satellite
instrument measurement at pixel resolution, the simulated
brightness temperatures are calculated first at each model grid
point, then are convoluted to the FOV of each observation to
form a pixel-equivalent FG radiance to be compared to the
observation. Where the observations are over land, the National
Environmental Satellite Data and Information Service (NESDIS)
emissivity model is used to estimate the surface emissivity at
required frequencies using surface characteristics and variables
provided by the WRF background (Weng et al., 2001).

3. MW data in precipitating regions

3.1. Observations to be assimilated

A pre-GPM constellation of satellites provides MW observations
of precipitation for a domain in western Europe. Data from
seven satellites are available for the data assimilation period.
All observations are in the form of Level-1 radiance at native
sampling resolutions. Brightness temperature data from Special
Sensor Microwave Imager/Sounder (SSMIS) on board DMSP-
F16, -F17 and -F18 satellites are processed and inter-calibrated
as a beta version of the Colorado State University (CSU)
Fundamental Climate Data Record (Sapiano et al., 2012). Data
from Advanced Microwave Scanning Radiometer for EOS
(AMSR-E) on board Aqua, and Microwave Humidity Sounder
(MHS) on board NOAA-18, -19 and Metop-A are also included.
Table 1 summarizes the characteristics of precipitation-sensitive
MW radiance data used in this study. Figure 1 shows Cumulated
Distribution Functions (CDF) of time intervals between two

consecutive observations from two different constellations of
satellites, normalized by the total observations in each 1◦ latitude
band, are shown as function of latitudes ((a) and (c) panels). The
CDF are built from 90-day orbit simulations computed using the
IXION software (Capderou, 2005). For a given observing system,
each time its swath crosses a 1◦ by 1◦ area is considered as one
observation for the 1◦ domain; probability distribution functions
(PDFs) of time intervals between consecutive observations are
then computed for each 1◦ area over the latitude from 0 to 70◦,
and the longitude (0◦E; 1◦E). Note that over a 90-day period
a different longitude would give similar results; results are also
symmetric for the Northern and Southern Hemisphere. Such a
constellation leads to data coverage of 12–14 observations per day
in the midlatitudes (40–50◦N) with about 50% of the time
intervals between consecutive observations at the same location
shorter than 1 h (Figure 1(a)). A GPM constellation as foreseen
by 2014 will lead to 19 observations per day over the same
latitudes, more than 70% of the time with intervals shorter than
1 h (Figure 1(b)).

For precipitation assimilation experiments using MW radi-
ances over land surfaces, high-frequency channels are selected for
their sensitivity to hydrometeor scattering and relative insensi-
tivity to land surface emissivity. However, several low-frequency
channels are used to calculate a Scattering Index over Land (SIL)
to detect precipitating conditions (Grody, 1991). Data from cross-
track MHS is sampled to use only pixels with scanning angles
smaller than 40◦ from nadir. The datasets used in the assimila-
tion experiments cover a 3-day period from 6 September 2010
to 8 September 2010. Additionally, 8 months of SSMIS data
(September to December periods in 2010 and 2011 over western
Europe) are used in statistical calculations for bias correction and
error analysis.

3.2. Observation errors

In any data assimilation system based on an optimal estimation
framework, thorough knowledge of observation errors is as
important as the observation measurements themselves. In the
following subsections we discuss the bias and error covariance for
precipitation-affected MW radiances.

3.2.1. Bias correction to precipitation-affected MW radiances

Bias potentially affects analysis accuracy in data assimilation (Dee,
2005). Various bias correction methods have been developed
and implemented in operational data assimilation systems. The
most widely used is the variational adaptive bias correction
applied to clear-sky satellite radiances observations with selected
model variables as predictors (Dee, 2004; Auligné et al., 2007).
However, this approach may not be well suited to cloudy and
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Figure 1. (a), (c) Cumulated distribution functions of time intervals between two consecutive observations from two different constellations of satellites, normalized
by the total observations in each 1◦ latitude band, are shown as a function of latitude. The constellation considered for the top panel simulates the pre-GPM
constellation as available in 2010 (DMSP-F16, -F17, -F18, AQUA, TRMM, NOAA-18, NOAA-19 and Metop-A); the constellation for the bottom panel simulates the
GPM constellation as foreseen in 2014 (F16, F17, F18, F19, F20, GCOM-W1, TRMM, Megha-Tropiques, GPM-Core, NOAA-18, NOAA-19, Metop-A and NPP). On
the (b) and (d) panels, the blue curves show the mean number of observations per day for both constellations as a function of latitude, and the red curves show the
mean number of observations assimilated with 3 h cycles and 1 h assimilation windows. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

rainy areas if using the same predictors as those for clear-sky
conditions. A bias between the observed and the FG radiance
under precipitating conditions can arise from systematic model
errors and observational errors. Biases can occur in instrument
measurements because of satellite orbital drift, varying scan
geometry or poor calibration (Bell et al., 2008). Inaccuracies
in RTM with assumptions and approximations of hydrometeor
properties can cause biases in simulated radiances (Petty and
Huang, 2010). Uncertainty in land surface emissivity and skin
temperature can introduce biases in FG radiances (English,
2008). Numeric weather prediction models are imperfect and
often misplace rain locations or produce excess/shortage of
clouds and precipitation in the background state, and these
biases are projected to the observation space (Lang et al., 2011).
Furthermore, a so-called asymmetric sampling bias can occur
if predictors in the error model are based on either FG or
observed cloudiness (Bauer et al., 2010). A non-zero mean of
FG departures of precipitation-affected radiances represents the
combined bias from any error sources noted above. A bias
correction for precipitation-affected radiances should be designed
to avoid asymmetric sampling bias and correct only the biases
in observations and RTM, without attributing systematic model
errors to observations.

Geer and Bauer (2011) demonstrated a mean cloudiness
sampling method in the formulation of a symmetric error model
for all-sky low-frequency MW radiance. The predictor is the
average of the cloud amount of FG and the cloud amount

of observation. They also recommended mean cloud amount
as a predictor for bias correction to avoid an asymmetric
sampling problem. Lopez (2011) applied this approach and
used a symmetric predictor for bias correction of radar and
gauge precipitation data in the European Centre for Medium-
range Weather Forecasts (ECMWF) global Integrated Forecasting
System. To determine if there is a similar dependence of FG
departure bias at MW high frequencies on the strength of
precipitation signals both in FG and observed radiance, FG
departures of SSMIS are collected from various meteorological
conditions that occurred in western Europe during the 2010
and 2011 September–December periods. For this purpose, WRF
simulations are performed at 9 km resolution in this region,
and reinitialized every day. The RTM is used to simulate FG
radiances at the same frequencies and same geolocations as SSMIS
observations. A Scattering Index over Land (henceforth SIL),
originally developed for MW precipitation retrieval algorithms
over land (Grody, 1991; Wilheit et al., 2003), is used to identify
precipitation signatures and sample the FG departures. Figure 2(a)
shows the FG departure bias at 150 GHz binned as a function
of SIL for observations (SILOBS) and FG (SILFG). This figure
illustrates the aforementioned mixture of biases from forecast
and observations. When SILFG is greater than SILOBS, the positive
bias ranges up to 70 K. On the other hand, when SILFG is lower
than SILOBS, the bias is negative with a minimum of −75 K.
In situations where observations and FG simulations agree on
scattering condition as represented by the samples along the
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Figure 2. Bias of FG departures between SSMIS observations at 150 GHz and model forecast as function of SILFG and SILOBS: (a) before bias correction, (b) after bias
correction taking into account all samples, and (c) after bias correction taking into account only the samples with similar SIL. (d) Number of samples (on log scale)
collected during the September–December periods in 2010 and 2011, with grey areas for bins where less than 30 samples have been collected, grey areas where both
SILFG and SILOBS are lower than 10 K, and black contour lines representing the SILAVG value as function of SILFG and SILOBS. (e) Bias correction with SILAVG as
predictor; the red curve represents the bias correction model taking into account all samples, the blue curve represents the bias correction model taking into account
only the samples with similar SIL, error bars indicate the standard deviation of estimation of empirical bias computed for each bin of SILAVG.

diagonal of Figure 2(a), biases are persistently negative and the
absolute value increases with increasing SIL. In addition to this
asymmetry along the diagonal line in Figure 2(a), there is a second
asymmetry in terms of scattering occurrence shown in Figure 2(d)
indicating an excessive frequency of high scattering index samples
in FG.

To avoid the asymmetric sampling problem, we use an averaged
Scattering Index as the predictor for an empirical bias correction
model. A third-degree polynomial is used to fit the empirical bias
values. A set of polynomial coefficients is computed; the derived
bias correction model, shown as the red curve in Figure 2(e) for
the 150 GHz channel, increases from 4 K for low SILAVG up to
15 K as SILAVG increases to 40 K.

However, this bias correction based on all FG departure
sampling fails to reduce the bias effectively; the bias in the
area of similar SILAVG (along the diagonal) becomes larger as
shown in Figure 2(b). Indeed, the bias correction encounters two
underlying asymmetries in the FG departure distribution. The
first is the warm bias of FG brightness temperatures indicated by
the consistent negative values along the diagonal. The second is the
excessive scattering occurrence frequency in FG corresponding
to mismatched precipitation situations as shown in Figure 2(d).
These biases can be caused by systematic errors in the RTM, or
by the excessive ice-phase precipitation in the background state,
or, alternatively, by a combination of the two. We examine
this issue by a sensitivity experiment altering assumptions
and approximations in radiative transfer calculations for high
frequencies sensitive to ice-phase hydrometeors. Changing the
soft sphere approximation to non-spherical ice crystals (Liu,
2008) deepens the brightness temperature depression in the
order of −3 K in 91 V and −5 K in 150 GHz. This change in
simulated brightness temperatures associated with the Mie sphere
approach is consistent with the warm bias shown in Figure 2(a).
For the bias of high occurrence of scattering in FG illustrated in
Figure 2(d), there are ice-phase hydrometeors in abundance in the
background state. The high occurrence frequency of scattering
FG likely results from the systematic bias in model-simulated
ice contents due to uncertainties in hydrometeor parameters
prescribed in WRF model physics and RTM. For example a
change of the intercept of snow particle size distribution (PSD)
from a fixed value to being temperature-dependent leads to as

much as a 10 K increase in simulated 91 V brightness temperatures
in the precipitating area. The high scattering occurrence bias is
dominant, if all samples are used. When coefficients of the
bias model are derived without discriminating among model
errors and observation biases, degradation is indeed caused
by applying the bias correction to FG departures as shown in
Figure 2(b).

To avoid attributing systematic model errors in the background
state to observations, we limit the samples for estimating bias
correction polynomial coefficients to those along the 1:1 line in
Figure 2(a). It is here that observations and FG are in agreement
with precipitating conditions. In this work, a 5 K tolerance
between SILOBS and SILFG was selected. A set of bias correction
model parameters is computed using this sampling strategy; the
numerical values of the polynomial coefficients are reported in
Table 2 for each selected SSMIS channel. The blue curve in
Figure 2(e) depicts this bias correction model as a function of
SILAVG, with error bars indicating the standard deviation of
estimation for each bin of averaged SIL. The error becomes
greater when fewer samples are available in the regime of high-
end averaged SIL. As shown in Figure 2(c), the FG departure
distribution after this bias correction reduces the bias in higher
scattering situations, with overall bias along the diagonal reduced
to 0.09 K from −1.6 K in the original distribution.

The bias correction model presented in this section is a first
attempt to correct precipitation-affected observation biases with
a symmetric predictor SILAVG. In the assimilation experiments
in this article, the empirical bias correction is applied to MW
radiance FG departures before the analysis step in assimilation
cycling. Systematic errors in land surface emissivity and skin

Table 2. Coefficients of the third-degree polynomials used for the bias correction
of the four selected SSMIS channels.

a0(K) a1(no unit) a2(K−1) a3(K−2)

91 H GHz 0.55 −0.43 0.024 −0.00037
91 V GHz −2.78 0.44 −0.014 0.00007
150 H GHz 8.36 −1.29 0.054 −0.00087
183 ± 7 H GHz −0.17 0.18 −0.005 −0.00002

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 1219–1235 (2014)
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temperature are important factors for MW radiance assimilation
over land. Currently this bias correction only applies to observa-
tions in channels with relatively weak sensitivity to land surface
and to those under precipitating conditions indicated either by
FG or observed radiances. However, in the category of non-
precipitating FG and precipitating observation, the simulated FG
brightness temperatures may be under clear-sky conditions. The
bias correction of samples in this category should take land surface
factors into consideration. Further development of the radiance
bias correction will need to take into account all-sky situations.

3.2.2. Observation error covariance

Observation error covariance in radiance assimilation accounts
for errors from MW measurements and from the RTM. It
also includes model physics errors projected to radiance space
under precipitating conditions. In practice the observation error
covariance is prescribed based on the statistical properties of
FG departures that represent the total errors of observation and
forecast in radiance space. In contrast with radiance observations
under clear-sky conditions, FG departures of precipitation-
affected radiances exhibit large variability reflecting discrepancies
between observed and FG brightness temperatures in terms
of precipitation intensity and location. Figure 3(a) shows the
distribution of the root-mean-square error of FG departures
sampled with a range of scattering index SILFG and SILOBS

varying from very light precipitation to heavy precipitation with
strong scattering (10 K < SIL < 50 K). Along the diagonal line
where observations and FG agree on precipitating conditions,
root-mean-square errors are about 10–15 K. The larger errors
are distributed in the areas where the forecast is clear while
the observation detects precipitation, or vice versa. This is
often a consequence of displacements in model precipitation
or unresolved convective-scale instability. These errors constitute
the heavy tails in the distribution of FG departures, which the
Gaussian assumption may not be able to represent properly.
Therefore the data in these situations will either be rejected by
quality control or be included pragmatically by prescribing a large
observation error standard deviation.

Similar to the all-sky radiance error model developed by
Geer and Bauer (2011) with averaged cloud amount as the
predictor, an observation error model can be formulated as a
function of averaged SIL with symmetric sampling. Figure 3(b)
illustrates the dependency of error standard deviations of SSMIS

150 GHz channel FG departures to the averaged SIL from SILFG

and SILOBS. The FG departure standard deviations have an
approximately linear relationship with the SILAVG, with the lower
bound at around 15 K and the high end at around 55 K. The
observation error model is derived as a fraction of the empirically
fitted piecewise function shown as the blue line in the same
panel. This observation error model is tested in an assimilation
experiment using SSMIS radiances. However, the test results give
little evidence that SILAVG-dependent radiance observation error
covariance improves analysis and forecast when compared to the
results using a constant value of 25 K assigned to all observations
under precipitating conditions (not shown). For the experiments
in the following sections, we choose to specify a constant value for
the observation error standard deviation in precipitating regions
based on the PDF of FG departures as shown in Figure 3(c). The
observation error covariance is set as a diagonal matrix, with no
error correlation between observations.

4. Single-observation studies

4.1. Experiment design

The sensitivity of analysis to the background error covariance and
the observation error covariance can be tested through single-
observation experiments, e.g. conducting a full analysis but only
assimilating one observation of interest. Background error covari-
ance and observation error covariance are crucial components
that determine the amplitude and structure of analysis incre-
ments, and control how the information content in observations
is used to correct model forecasts. In the Goddard WRF-EDAS, the
background error covariance is estimated from a finite number of
ensemble WRF model forecasts. It obtains flow-dependent char-
acteristics from up-to-date forecasts, but its accuracy is likely to
be affected by under-sampling and systematic model errors. The
observation error covariance is prescribed accounting for mea-
surement error and representativeness error. In practice it needs
to be tuned in balance with the background error covariance.

In early September 2010, an intense rainstorm hit southern
France. In this storm, a maximum of 355 mm accumulated rainfall
was recorded over a 48 h period. This storm event is selected for
the single-observation studies in this section and the full data
assimilation experiments in section 5. It is characterized by three
distinct phases. First, during the night from 6 to 7 September 2010,
an oceanic cold front moved slowly across Europe and extended

Figure 3. Error characteristics of SSMIS 150 GHz FG departures: (a) RMSE distributed as function of SILFG and SILOBS, (b) error standard deviations as function of
SILAVG in cross marks, and empirically fitted error model in blue line, and (c) PDF of FG departures in solid line as well as the reference Gaussian distribution in
dotted line, with same mean and standard deviation as the PDF (6 and 25 K respectively).
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Figure 4. (a) Two-day rain accumulation from 1200 UTC 6 September 2010 to
1200 UTC 8 September 2010 at 9 km resolution estimated from surface radar
measurements. (b) Number of hours during which >1 mm of rain fell over the
2-day period as observed by surface radars. (c) Elevation map at 9 km resolution.

from northern Spain to Greenland. Due to its association with a
moisture convergence from the Mediterranean Sea, storm activity
was triggered, producing heavy precipitation over southern
France. The second phase developed in the morning of the 7th
when the convective cells were transported by advection toward
the Massif Central mountain region before aggregating into a
stationary mesoscale convective system along the mountains. In
the third phase during the night from 7 to 8 September 2010,
storms moved eastward along the Mediterranean coastline toward
Italy. As shown in Figure 4(a) and (b), the 2-day rain accumulation
and the rainy hours recorded by surface radar illustrate the
precipitation characteristics of the event. The cold front produced
up to 100 mm of rain in the region of Lyon with persistent rain in
a band from the southwest up to the northeast of France, with a

maximum of more than 20 h of rain over the Rhône-Alpes region.
The convective cells led to four rainfall maxima over southern
France; in particular, a maximum of cumulated rain greater than
240 mm was produced in more than 18 h where the convective
cells aggregated into a stationary mesoscale convective system.

Considering the flow-dependency of the background error
covariance, two single-observation locations are selected within
different precipitation systems both occurring at the analysis time
of 0600 UTC 7 September 2010: case (a) is located in the cold
front coming from the Atlantic Ocean and case (b) is located in a
convective cell observed by the SSMIS instrument. In Figure 5, the
observed locations for case (a) and case (b) are indicated by the
white and black coloured crosses respectively. At location (a) the
FG radiance at 91V presents a stronger scattering signature than
that of the observation. Case (a) has a positive FG departure. At
location (b), a brightness temperature depression is observed but
the convective cell is not present in the FG. Case (b) has negative
FG departure. The analysis is expected to reduce precipitation in
case (a), and to generate cloud and precipitation in case (b).

For each case, the following configurations are made to examine
the analysis sensitivity to the ensemble-estimated background
error covariance, the observation error standard deviations, and
the different choice of MW channels:

(i) use SSMIS 91 V with observation error standard deviation
of 25 K, ensemble size of 32 members in estimation of
background error covariance;

(ii) same as (i), but with ensemble size of 64 members;
(iii) same as (i), but with observation error standard deviation

of 5 K;
(iv) use SSMIS 183 ± 7 GHz with observation error standard

deviation of 25 K, ensemble size of 32 members.

For all configurations listed above, we start with the same
forecasted background state, and examine (1) how much the
assimilation of a single radiance observation reduces the FG
departures, (2) how the analysis corrects hydrometeors produced
by model physics, and (3) how the observation information is
propagated into the precipitation forecast.

4.2. The cold-front case with positive FG departure

At the chosen location in the cold-front case, the FG is significantly
lower than the observation (195.1 K vs. 259.7 K of 91 V), indicating
too much precipitation in the model forecast. As reported in
Table 3, the positive FG departure is 64.6 K. The black curves
in Figure 6 depict vertical profiles of background hydrometeors
(rain, snow, graupel, cloud water and cloud ice) corresponding
to the FG at the observation location.

In configuration (i), the background error covariance
calculated from an ensemble of 32 forecasts gives estimated
error standard deviations in rain (noted σ32 rain below) with
a maximum around 0.2 g kg−1 as shown in Figure 6, the first
row, represented by light grey shaded areas. After assimilating

Figure 5. Brightness temperatures of 91 V at 0600 UTC 7 September 2010: (a) observed by the SSMIS instrument, and (b) simulated from a WRF forecast.
The white crosses (respectively black crosses) correspond to the location of the cold-front single-observation case (respectively to the small-scale convective-cell
single-observation case).
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Table 3. Departure and reduction on the departure after assimilating of a
single observation with four configurations for the cold-front case with positive

departure.

Configuration: (i) (ii) (iii) (iv)
91 V/25 K/
32 ens.

91 V/25 K/
64 ens.

91 V/5 K/
32 ens.

183 ± 7/25 K/
32 ens.

Departure (K) 64.6 64.6 64.6 58.8
Reduction of the
departure (K)

30.3 35.6 57.3 18.5

the single observation at 91 V with a 25 K observation error, the
brightness temperature of the analysis is 225.4 K. This corresponds
to a reduction of departure of 30.3 K reported in Table 4. The
blue curves in Figure 6 illustrate hydrometeors after analysis.
The reduction of scattering signature in brightness temperature
results in reduced rain, snow, ice and graupel, but increased
cloud water. For instance, the increments on the rain profile are
of approximately −0.15 g kg−1 between model levels 1 and 10,
which is a reduction equivalent to 75% of σ32(rain).

The ensemble size is increased to 64 in configuration (ii) so that
we can examine the under-sampling effect on the estimation of
the background error covariance. In comparison with the results
from configuration (i), the background error standard deviations
of rain increase by 20% to around 0.24 g kg−1 (noted σ64(rain)
below). The differences are illustrated in Figure 6(1a), with
σ32(rain) in light grey shade and σ64(rain) in dark grey. Similar
changes are observed in the background error standard deviations
for snow, cloud ice and graupel, shown in the first column of
Figure 6, in grey shades. With a larger background uncertainty,
the analysis gives more weight to the observation and produces
a larger correction to microphysical variables. For example, as
shown in Figure 6(1a), the analysis increments on the rain profile
from configuration (ii) (red curve) reduce precipitation more
than that of configuration (i) (blue curve). Consequently, the
reduction of FG departure is greater in configuration (ii) than
in configuration (i) at 35.6 K vs. 30.3 K (reported in Table 3).
It should be noted there is very little background cloud water
in this column (Figure 6(1e), black curve), and the increased
ensemble size has negligible impact on the estimated background
error standard deviations (grey shade). However, amplitudes
of analysis increments are bigger than those in configuration
(i), indicating a stronger error cross-covariance between
cloud water and other hydrometeors in the larger ensemble
estimation.

The observation error covariance represents the uncertainties
in measurement, sampling and forward calculation. We use
configuration (iii) to investigate the analysis sensitivity to
different prescribed observation error standard deviations. The
observation error standard deviation for the radiance data is
set to 5 K, in contrast with 25 K in configuration (i). The
analysis draws the solution significantly closer to the observation
when the observation error standard deviation is reduced. This
configuration produces a reduction of FG departure of 57.3 K
that is the largest reduction among all four configurations
(Table 3). The result corresponds to large analysis increments
that completely remove rain and snow (Figure 6(2a) and 6(2b)),
reduce graupel by 50% (Figure 6(2d)), as well as increase cloud
water substantially (Figure 6(2e)). However, the amplitudes of
corrections to microphysical variables are much bigger than
background error standard deviations (Figure 6, second column,
red curves vs. grey shades), implying the observation errors are
underestimated and the observation is given too much weight for
this particular situation.

Observations from different MW channels can impact analysis
differently, because observations at various frequencies differ in
their sensitivity to precipitation and other background variables.
Configuration (iv) tests the analysis sensitivity to an observation
from the 183 ± 7 GHz channel instead of the 91 V, while the

background error covariance and observation error standard
deviations are kept the same as in configuration (i). At this
frequency the FG departure is 58.8 K and the analysis produces a
reduction of 18.5 K on the FG departure (Table 3). The analysis
increments of hydrometeors are smaller than the counterpart in
the assimilation of the 91 V channel. In order to have more direct
comparison, we use the observation from the 91 V channel as
‘passive monitoring’ data, e.g. this observation is used to calculate
departures only and is not assimilated in the analysis procedure.
The passive monitoring of the 91 V channel in configuration
(iv) shows a smaller reduction of the departure of 23.9 K when
compared to 30.3 K in configuration (i). Hence the analysis has a
lower sensitivity to the observation at 183 ± 7 GHz than 91 V with
the same observation error standard deviations and background
error covariance.

These results illustrate the capability of the Goddard WRF-
EDAS when the model forecast produces excessive precipitation
and the MW radiance observation is used to identify a positive FG
departure in brightness temperature. The ensemble forecasts have
an adequate spread to provide background error covariance under
precipitating conditions. The discrepancy between the simulated
and observed brightness temperatures is effectively reduced and
corresponding corrections to microphysical variables are applied
through analysis. Doubling the ensemble size has a considerable
impact on the background error covariance and the assimilation
solution.

4.3. The convective-cell case with negative FG departure

The convective-cell case sets up a different scenario. Here the
model fails to forecast the precipitation process that is observed
by the single observation of SSMIS radiance and verified by the
surface-based rainfall data. A large and negative FG departure of
−53.2 K is reported in Table 4. The black curves in Figure 7 depict
vertical profiles of background hydrometeors corresponding to
the FG at the single-observation location. There are very few
precipitating hydrometeors in the background, in particular
frozen precipitation. The small ensemble spread indicates that
the observed convective precipitation is not represented in the
ensemble. There is little sensitivity in the precipitation observation
operator.

In configuration (i) with 32 ensemble members, the ensemble-
estimated background error standard deviations in rain are
rather small with 0.02 g kg−1 at the maximum, as shown in
Figure 7, the first row, represented by light grey shaded areas. The
estimated small background errors in rain directly result from
the non-precipitating model background, not only in the central
forecast but also in most of the ensemble members. The lack of
signature of error growth in the convective rain region implies
the initial condition is in the stable non-convective regime.
The perturbations generated from the previous analysis error
covariance could not produce an ensemble forecast spread that
includes convective rain. After assimilating the single observation
of SSMIS 91 V with the observation error standard deviation
assigned at 25 K, the FG departure is reduced by 8.9 K as reported
in Table 4. The analysis manages to increase the precipitating
hydrometeors and clouds by a modest amount. For instance, the
increments on rain profile are about 0.01 g kg−1, equivalent to
50% of σ32(rain).

The ensemble size is increased from 32 to 64 in configuration
(ii) to examine if a larger ensemble size can help better estimate the
background error covariance in a situation of non-precipitating
model background. In contrast with the cold-front case where
the ensemble spread is increased with a larger ensemble size,
the error standard deviations in rain decrease by 25% when the
ensemble size is increased in configuration (ii). The differences
are illustrated in Figure 7(1a), with σ32(rain) in light grey
and σ64(rain) in dark grey. Similar results are observed in the
background error standard deviations for snow, ice and cloud
water, shown in the first column of Figure 7, in grey shades.
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Figure 6. Row (a) to row (e) show background profiles (black lines) as well as increments (blue and red lines) of (a) rainwater, (b) snow, (c) ice, (d) graupel and
(e) cloud water at the location of the cold-front single-observation case with positive FG departure. The light grey shaded areas represent corresponding vertical
background error standard deviations. Column (1) shows the increments resulting from the single-observation assimilation in configuration (i) (blue lines) and in
configuration (ii) (red lines); configuration (ii) leads to different background error standard deviations from configuration (i) and are represented by the dark grey
shaded areas. Column (2) shows the increments resulting from the single-observation assimilation in configuration (i) (blue lines) and configuration (iii) (red curve).
Both configurations have the same background error standard deviations so only light grey shaded areas are represented. Column (3) shows the increments resulting
from the observation assimilation in configuration (i) (blue lines) and configuration (iv) (red lines). The background error standard deviations are the same as in
column (2).

With a smaller background uncertainty, the analysis gives less
weight to the observation and produces a smaller correction to
microphysical variables. For example, as shown in Figure 7(1a)
and 7(1b), the increments in the rain and snow profiles from
configuration (ii) (red curve) increase both rain and snow less
than those of (i) (blue curve). Consequently, the reduction of
departure is smaller in configuration (ii) than in configuration
(i), (3.9 K vs. 8.9 K as reported in Table 4). This experiment
illustrates that a low probability of occurrence of convective rain
limits the accuracy of ensemble-based estimation of background

error covariance in hydrometeors because of a finite number of
ensemble forecasts and model errors. The small spread around
the non-precipitating background with a limited ensemble size
also causes a lack of sensitivity in the ensemble representation of
the perturbed precipitation observation operator.

Since the background error covariance in hydrometeors is
likely to be small with the non-precipitating background, one
possible route to increase the observational impact is to tune the
observation error variance to a smaller value. In configuration
(iii) the observation error standard deviations is prescribed to a
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Table 4. Same as Table 3 for the small-scale convective-cell case with negative
departure.

Configuration: (i) (ii) (iii) (iv)
91 V/25 K/
32 ens.

91 V/25 K/
64 ens.

91 V/5 K/
32 ens.

183 ± 7/25
K/ 32 ens.

Departure −53.2 −53.2 −53.2 −40.8
Reduction of
the departure

8.9 3.9 27.7 0.8

smaller value of 5 K, while all the other settings remain the same
as configuration (i). The analysis draws the solution significantly
closer to the observation as seen in the cold-front case, achieving

a reduction of 27.7 K to FG departure, as reported in Table 4.
Figure 7(2a) shows the analysis increments from configuration
(iii) (red curve). Notice that the analysis increments in rain and
snow are four times as big as the estimated background error
standard deviations because of fitting the observation with an
assigned small observation error standard deviation. The large
analysis increments, beyond the expected range of the assumed
Gaussian distribution, imply that the assimilation system is not
able to use this observation to make an adjustment properly.

The analysis sensitivity to an observation from the 183 ± 7 GHz
channel instead of 91 V is tested in configuration (iv). The
observation impact is small compared to all other tests. At this
frequency, the FG departure is −40.8 K and the analysis only

Figure 7. Same as Figure 6 but for the convective-cell single-observation case with negative FG departure.
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reduces the departure by 0.8 K. Using the observation from chan-
nel 91 V as ‘passive monitoring’ data led to the same conclusion
as above. Comparing the results of using 91 V and 183 ± 7 GHz
observations, there is no obvious difference in the vertical
structure of the analysis increments, suggesting that the vertical
distribution of observation information is largely determined by
vertical correlations in the background error covariance.

4.4. Propagation of the observation information

The precipitation information at one observed location is
propagated to the surrendering area and to dynamic variables by
the background error covariance. It is demonstrated by the spatial
distributions of analysis increments from single-observation
experiments as shown in Figure 8(a) and (b). The increments
distribute heterogeneously in a geographical area of about 150 km
diameter bounded by the localization scheme. In the cold-front
case (Figure 8(a)), the local decrease of rainwater is associated with
a dipole change of rainwater to the northeast of the observation
location. These corrections on the background rainwater are
also correlated with northeastward wind field increments (not
shown). In the convective-cell case (Figure 8(b)), the positive
rain increments are much weaker and stretched northward and
southward from the observation location.

The model forecast provides temporal propagation of
increments via interaction between dynamics and physical
processes. As depicted in Figure 8(c) and (d), the forecast of
accumulated surface precipitation is modified because of the
correction to the forecast initial state with the single observation.
In the cold-front case, the 3 h forecast shows a decrease of rain in an
area surrounding the single-observation location in comparison
to the control experiment (Figure 8(c)). The dipole in the spatial
distribution of rainwater increments and wind increments leads
to an increase of accumulated rain northeast from the location of
the single observation. A qualitative comparison to surface-based
radar data confirms that the control experiment overestimates
rainfall over a 500 km wide region in the vicinity of the single-
observation location and underestimates rainfall northeastward
(Figure 8(e)). Hence, the analysis correction based on information
in the single observation at the forecast initial time makes a right
correction to the 3 h precipitation forecast.

For the convective-cell case, the modification of the 3 h accu-
mulated precipitation forecast due to the single observation is
surprisingly significant considering the relatively small increments
applied to the initial state. We see an increase in accumulated rain
in an area northeastward from the single-observation location
(Figure 8(d)). Comparing the control experiment to the radar
data shows that this is the area where the control experiment
underestimates rainfall. The positive rain increments are prop-
agated northeastward through interaction with dynamics. The
change to the forecasted rainfall is confirmed by the radar data.

The single-observation experiments illustrate the potential
benefit of flow-dependent background error covariance to
radiance assimilation under precipitating conditions. The findings
also highlight the challenges that remain in ensemble estimation
of background errors, such as non-precipitating background
due to sampling errors and model errors. The accuracy of the
background error estimation and the quality of the analyses are
expected to improve when the data density increases. The impact
with the data coverage from a pre-GPM constellation will be
examined in the following sections.

5. Data impact of a pre-GPM constellation

Because precipitation varies widely in temporal and spatial
scales and in underlying complex physical processes, to this
day NWP models still have difficulty representing precipitation
accurately in short-term forecasts and climate prediction. The
rain event described in the previous section is used to evaluate
the assimilation performance and assess the impact of pre-GPM

constellation MW observations using the Goddard WRF-EDAS
system. The MW observations from the instruments listed in
Table 1 are used exclusively under precipitating conditions with
symmetric decision (precipitation either detected by observations
or indicated by forecast), except MHS for which all-sky data
is included without scattering index screening. An observation
outlier criterion is set at 2.5 times observation error standard
deviations. In this case, any data with FG departure larger
than the criterion will be rejected. All experiments assimilate
conventional data as well as selected channels of Advanced
Microwave Sounding Unit-A (AMSU-A) and High-resolution
Infrared Sounder (HIRS) brightness temperatures under clear-sky
conditions.

We configure four experiments, with the assimilation cycling
period from 1200 UTC 6 September 2010 to 1200 UTC
8 September 2010:

(a) CNTL: The control experiment assimilating conventional
observations including in situ measurements as well as
radiance data from AMSU-A and HIRS selected under
clear-sky conditions, with ensemble size of 32 members
and 3 h assimilation cycles.

(b) EXP32-3H: The MW experiment assimilating all data as
in CNTL and precipitation-affected radiances listed in
Table 1, with ensemble size of 32 and 3 h assimilation
window. The temporal sampling window for MW data is
set to 1 h centred at the analysis time. Observation error
standard deviation is prescribed at 25 K.

(c) EXP64-3H: same as (b), but with ensemble size of 64
members.

(d) EXP32-1H: same as (b), but with 1 h assimilation window.

Analyses and forecasts from these experiments will be
compared to examine: (i) the impact from adding MW
precipitation-affected radiances (EXP32-3H vs. CNTL), (ii) the
impact from increasing ensemble size for background error
covariance estimation (EXP64-3H vs. EXP32-3H), and (iii) the
impact from using a shorter analysis interval to increase MW data
temporal coverage (EXP32-1H vs. EXP32-3H).

A statistically robust impact assessment of the bias correction
scheme, detailed in section 3.2.1, would require an investigation
involving a longer assimilation period. Nevertheless, short-term
assimilation experiments (with and without bias correction)
indicate a positive impact on 2-day accumulated rainfall forecast
for this particular event (3.5% improvement of the root-mean-
square error (RMSE) and 1.3% of the bias with respect to
surface radar data). Hence, the bias correction is applied to
SSMIS radiances in the EXP32-3H, EXP64-3H and EXP32-1H
experiments.

Precipitation forecasts from all experiments listed above are
verified against an independent surface-based rainfall product.
This surface rain estimate is retrieved from the French opera-
tional ‘Application Radar à la Météorologie Infra-Synoptique’
(ARAMIS) radar network and adjusted hourly with rain-gauge
data (Tabary, 2007). The dataset has 1 km spatial resolution
and 5 min temporal resolution, which is averaged to 9 km
resolution and accumulated over analysis and forecast intervals
accordingly. In this study the radar rain estimates are treated as
the ground truth. Nevertheless, Tabary et al.(2007) reported that
the ARAMIS rain product is characterized by errors depending
on the distance from the radar locations prior to rain-gauge
adjustment. In future applications when an error bar is provided
with the basic rain amount in radar-based rain products (e.g.
Kirstetter et al., 2010), errors can be taken into account in
the verification process (e.g. Roca et al., 2010; Chambon et al.,
2012).

5.1. System performance

The Goddard WRF-EDAS uses ensemble forecasts to estimate
the background error covariance, and applies the maximum
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Figure 8. Increments on rainwater at 700 hPa after assimilating single observation of 91 V for (a) the cold-front case and (b) the convective-cell case single-observation
locations at 0600 UTC 7 September 2010, using 5 K as the observation error standard deviation. (c), (d) Difference between the following 3 h rain accumulation
forecast (0600 and 0900 UTC) with and without assimilation of the single observations. (e), (f) Difference between the following 3 h rain accumulation from surface
radar estimations and 3 h rain accumulation forecast without assimilation of the single observation. The colour scale is kept the same for the second and the third row;
differences larger than the range displayed are represented in dark blue and dark red in the third row.

likelihood ensemble square root filter (MLEF) scheme to update
the analysis ensemble covariance. It is critical particularly
for precipitation data assimilation that the background error
covariance adequately represents the forecast error growth in the
precipitating region. The analysis quality relies on the system’s
capability to maintain a sufficient spread of the ensemble with a
limited ensemble size.

Figure 9 depicts the PDF quartiles of the normalized back-
ground error standard deviations of rainwater in precipitating
regions during the 2-day assimilation cycling period. The back-
ground error standard deviations (the diagonal of error covari-
ance) are normalized by the local background rainwater content
and collected in the entire domain to form the distribution.
For EXP32-3H, in which MW observations are assimilated using
32 ensemble members (Figure 9(a)), the PDF mean fluctuates
between 60 and 100% normalized error standard deviations, the
lower quartile (respectively higher quartile) between 20 and 50%
(respectively from 60 to 130%). This indicates that the system
sustains an adequate spread of the ensemble in terms of rain-
water during the cycling period of the case-study. When the
ensemble size is increased to 64 in EXP64-3H (Figure 9(b)), the
impact on the spread is noticeable as indicated by the PDF mean
and quartiles of larger background error standard deviations.
The 1 h assimilation window in EXP32-1H (Figure 9(c)) limits
the amplitude of forecast error growth due to relatively shorter
forecast model integration time. The background error standard
deviations are smaller in comparison to the counterparts in the
other two experiments with a 3 h analysis window. Nonetheless, a
spread of the ensemble is sustained throughout the 2-day period
with PDF mean maintained between 50 and 80%.

As demonstrated in Zhang et al.(2013) and in the
single-observation experiments described in section 3, the
flow-dependent background error covariance of the Goddard
WRF-EDAS system is characterized by background errors sig-
nificantly larger in model-predicted cloudy and precipitating
regions. This implies that the analysis process will give relatively
more weight to observations in FG storm regions. On the other
hand, the background errors for hydrometeors may be under-
estimated in FG cloud-free regions due to lack of sensitivity to
perturbations under such conditions. Discrepancies in the inten-
sity and location of precipitation between observation and FG can
be categorized as positive FG departures and negative FG depar-
tures according to the two situations described above. Once the
categorization is established, the effectiveness of error reduction
by analysis can be deciphered accordingly. Figure 10(b) shows
the RMSE of total precipitation-affected radiance FG departures
and analysis departures, categorized by positive FG departures
(red) and negative FG departures (blue). For analysis using MW
observations, the RMSE reduction is consistently larger in the
positive FG departure category than in the negative FG departure
category. For instance at 0600 UTC 7 September 2010, the RMSE
in radiance is decreased by 15 K in the areas where background
produces excessive precipitation (positive FG departures) but
only 5 K in the areas where background fails to produce pre-
cipitation observed by MW data (negative FG departures). This
illustrates both an advantage and a limitation of a flow-dependent
background error covariance estimated from ensemble forecasts
for cloud and precipitation data assimilation. The advantage is
that the flow-dependency enhances the capability of the data
assimilation system to make corrections if ensemble forecasts
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Figure 9. Time series of the 25%, median and 75% quartiles of the rainwater normalized error standard deviation PDFs (including only rainwater samples greater
than 0.1 g kg−1), for (a) EXP32-3H with 32 ensemble members and 3 h analysis window, (b) EXP64-3H with 64 ensemble members, and (c) EXP32-1H with 32
ensemble and 1 h analysis window. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

predict cloud and precipitation in the background. The disad-
vantage is that it will not be effective where forecasts erroneously
predict a cloud-free or non-precipitating condition.

5.2. MW data impact on precipitation forecasts

The analysis increments produced by assimilating MW radiance
are applied to the WRF state variables and the data impact on
precipitation forecasts is shown in terms of domain mean of
surface rainfall for the CNTL and EXP32-3H experiments in
Figure 10(a). The surface radar rainfall product serves as the
verification. The control experiment captures the double peak
of mean rainfall in the time series as observed by the radars
with a 3 h phase error. The assimilation of MW data makes
the precipitation forecasts produce a rainfall mean closer to
the verification, though by a modest amount. Looking at the
synoptic features of precipitation in the cold-front region and
the convective-cell area, we notice that during the first two
phases the model overestimates the rain when the cold front
crosses western Europe, and fails to generate the convective cells
southward as well as the associated heavy precipitation. Hence,
the analysis correctly decreases rainfall of the predicted cold-front
region, but does little to correct the too- low precipitation in the
observed convective-cell area. In the third phase of the event, the
model forecast produces rain cells moving eastward in general
agreement with observations. The increase of mean rain during
the third phase of the storm exemplifies the system’s capability

to increase rain where FG and observations in radiances both
exhibit scattering signals.

The assimilation of MW data from a constellation of
satellites ultimately impacts the accuracy of model accumulated
precipitation forecasts over the 2-day period. Figure 11 shows the
2-day accumulated rain forecasts from the four experiments as
well as their differences compared to the radar verification data
(shown previously in Figure 4(a)). The dominant maximum
of the storm indicated by the verification data at (4.5◦E,
44.8◦N) is reproduced in the control forecast (CNTL) with a
slight northward misplacement. The associated difference map
(Figure 11(b)) indicates that the CNTL forecast has overestimated
precipitation along the cold-front line of roughly 200 km. It has
also missed rainfall where convective cells produced heavy rain.
Overall in the storm domain the CNTL forecast has a positive
bias of 3.2 mm and an RMSE of 30.8 mm, as reported in
Table 5.

EXP32-3H has assimilated the constellation of MW data. The
verification for the EXP32-3H forecast gives evidence of a positive
data impact. The rain forecast is improved over the line of the cold
front mentioned above. However, where ensemble forecasts fail to
produce the heavy precipitation associated with convective cells,
the assimilation of MW observations has very little impact on
inducing convective rain in the subsequent forecasts. Overall the
RMSE is reduced to 28 mm, corresponding to an improvement
of 8.1% against the experiment CNTL. As reported in Table 5, the
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Figure 10. (a) Time series of mean 3-hourly rain over the domain (5◦W–7.5◦E, 42.5–51◦N). The black line corresponds to surface radar rain estimates; the dashed
blue line corresponds to the CNTL experiment and the full blue line to EXP32-3H assimilating SSMIS, AMSR-E and MHS MW observations. The dark grey, light
grey and white backgrounds show the three distinct phases of the meteorological event. (b) Time series of RMSE of FG departures and RMSE of analysis departures
of SSMIS MHS and AMSRE at 91 V, 91 GHz and 89 V respectively. The red curve (respectively blue curve) corresponds to the reduction of RMSE for samples with
positive departures (respectively negative departures). Circles show the RMSE of FG departures and squares show the RMSE of analysis departures.

Table 5. Statistics of comparisons between 2 days accumulated rainfall of
radar-based rainfall estimates and WRF model forecasts from four assimilation
experiments, sampled over land at 9 km resolution, in the domain (5◦W–7.5◦E,

42.5–48◦N).

Experiments Bias (mm); relative
bias (%)

Correlation Root-mean-square
error (mm); relative
RMSE (%)

CNTL 3.2 mm; 9.2% 0.57 30.8 mm; 88.8%
EXP32-3H 2.9 mm; 8.4% 0.63 28.0 mm; 80.7%
EXP64-3H 3.4 mm; 9.8% 0.59 30.6 mm; 88.2%
EXP32-1H 2.7 mm; 7.8% 0.61 27.6 mm; 79.5%

Sample size: 4845

bias is reduced slightly, and the correlation is increased to 0.63 vs.
0.57 of CNTL.

With a larger ensemble size, EXP64-3H is expected to extract
information from MW data more effectively and to have a larger
impact on rainfall forecasts. However, the results from EXP64-3H
do not show an improvement over EXP32-3H forecasts in terms
of bias and RMSEs in precipitation forecasts. The difference map
in Figure 11(f) shows that the overestimation of rainfall along the
cold-front line is not reduced and the rainfall in the convective-
cell region remains underestimated. Statistically the background
error covariance estimated by more ensemble members should
have larger error standard deviations and less noisy correlations,
as indicated by the single-observation experiments in section 4.
However, its impact on the subsequent precipitation forecast
skills is complicated by many factors including how error cross-
covariance is changed between hydrometeors and other variables,
and how nonlinear model physics responds to the analysis
correction. In this particular case-study, we observed that the
structures of analysis increments are different between EXP64-
3H and EXP32-3H, mainly controlled by their corresponding
error covariance, since the same observation error covariance and
same observations are used in both experiments. The increment
spatial distribution has finer-scale structures in EXP64-3H, which
may interact with model physics in a nonlinear and complex
manner in the heavy rain region during the model forecast. In
both experiments the localization scale is kept the same, which
may need tuning to better trade off sampling error and scaled
imbalance (Mitchell et al., 2002). It is possible that the forecast in
EXP64-3H has a less coherent response to the analysis increments

with more localized structure. Hence, in the larger area the
overestimation of precipitation is not corrected as much as that
in EXP32-3H. On the other hand, how to adjust prescribed
observation error covariance to ensure appropriate balance on
weighting of forecast and observations is still an unresolved issue.

A constellation of satellites like the GPM constellation with
high data occurrence has a great potential to provide information
for the model physics through data assimilation. The experiment
EXP32-1H prototypes a rapid update cycle configuration that
might be used for nowcasting or re-analysis purposes. In the
other experiments the 3 h assimilation cycles only make use of
MW data that fall into the 1 h sampling window centred at the
analysis time. For example, as illustrated in Figure 1, with the
observing system available in 2010, 3–5 observations per day per
location are used with the 3 h assimilation cycles configuration
instead of more than 12 available during a day in the midlatitudes
(Figure 1(a)). It should be noted that in the future GPM-era,
out of 19 observations available per day, per location, only 6
observations would be used in the system with a 3 h analysis
window (Figure 1(b)). To increase the data temporal coverage,
EXP32-1H carries out analysis at every hour and uses all available
MW data because there is no time gap between data sampling for
analysis. EXP32-1H forecasts demonstrate the most improvement
in areas with overestimated rainfall among all experiments, as
shown in Figure 11(h). Forecast error statistics, as reported in
Table 5, confirms the larger positive data impact contributed
from the increased temporal data coverage: RMSE is the lowest at
27.6 mm corresponding to an improvement of 9.2% of the RMSE
over that of CNTL.

The results of the four experiments show the sensitivity of
model precipitation forecasts to the assimilation of precipitation-
affected MW observations within the Goddard WRF-EDAS
system. The improvement related to using information in
precipitation-affected radiances is noticeable and promising.
More frequent data coverage as anticipated in the GPM
constellation will have a positive impact on precipitation forecasts.
This is clearly demonstrated by the experiment with a 1 h
assimilation window. The verification and comparisons of these
experiments also highlight remaining issues, such as the intricate
balance between the background error covariance and observation
error covariance, as well as the lack of sensitivity in misplaced non-
precipitating background. For instance, the background error
covariance in EXP64-3H has a larger error magnitude as shown
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Figure 11. Two-day rain accumulation of WRF model forecasts from four experiments (left column) and the corresponding difference maps between forecasts and
verification radar surface rain estimates (right column), from 1200 UTC 6 September 2010 to 1200 UTC 8 September 2010 at 9 km resolution. First row ((a) and (b)):
CNTL. Second row ((c) and (d)): EXP32-3H. Third row ((e) and (f)): EXP64-3H. Last row ((g) and (h)): EXP32-1H.

in Figure 9(b), but the observation error standard deviation
is fixed as that in EXP32-3H. The resulting analysis could be
less balanced in relative weighting. The results presented here
suggest that prescribing observation errors in precipitating regions
may require a more situation-adaptive approach particularly
when the background error covariance is flow-dependent. As
another example, the ensemble forecasts systematically fail to
predict precipitation of convective cells. This lack of sensitivity in
precipitation in the area resulted in negligible background error
growth locally and prevented analysis from drawing information
from observations.

6. Summary and discussion

The data impact of satellite precipitation observations on the
accuracy of numerical weather prediction is largely affected by
the characterization of background and observation errors and
the representation of nonlinear cloud/precipitation physics. The
Goddard WRF-EDAS has been developed to assimilate satellite

precipitation observations with flow-dependent background
error covariance, nonlinear microphysics and an all-sky radiative
transfer model as the observation operator. A series of assimilation
experiments are carried out using precipitation data from a
pre-GPM constellation in a WRF model domain of 9 km
resolution in western Europe. The key objectives are to examine
the analysis sensitivities to observation errors and background
error covariance, and to assess the data impact on mesoscale
quantitative precipitation forecasts.

An empirical bias correction for precipitation-affected MW
radiances is developed based on the statistical analysis of SSMIS
data collected from precipitation events in an 8-month period.
A symmetric Scattering Index over Land is chosen as the
predictor. The bias correction model parameters are calculated
using only FG departure samples where observations and FG
agree on precipitating conditions. The bias correction removes
biases in observations caused by systematic errors of RTM and
measurements, and avoids the contamination by the occurrence
bias of scattering due to excessive ice-phase precipitation in the
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background state. The bias correction is applied to precipitation-
affected radiance FG departures before the analysis step in
assimilation cycling. Short-term assimilation experiments with
and without bias correction indicate a positive impact on
2-day accumulated rainfall forecast for this particular event
(3.5% reduction of the RMSE and 1.3% of the bias verified
against the surface radar data). The current data assimilation
and radiance bias correction schemes are not designed to
correct systematic model bias. Nevertheless, precipitation-
affected radiance assimilation can diagnose systematic model
errors in microphysics such as excessive precipitating ice content,
and the relevant statistical information can feed through to model
physics improvement and tuning.

Background error statistics play a critical role in how the
analysis interprets and propagates observation information into
forecasts. The single-observation experiments demonstrated the
potential benefit of flow-dependent background error covariance
to radiance assimilation under precipitating conditions. The anal-
ysis increments in hydrometeors are distributed heterogeneously
reflecting the storm structure. The background error cross-
covariance provides a link between dynamical and microphysical
variables and results in a positive correction to precipitation
forecasts, as verified by the radar-based surface rain estimate.

The data impact is assessed by data assimilation cycling
experiments on a storm event that occurred in France in Septem-
ber 2010. Results show that the assimilation of MW precipitation
observations from a satellite constellation mimicking GPM has
a positive impact on the accumulated rain forecasts verified with
surface-radar rain estimates. The experiment with a 1 h assimila-
tion window increases the temporal data coverage as anticipated
in the GPM constellation. Considering the fast evolution of
storm structure and location, rapid-update assimilation allows
the analysis to be more frequently constrained by observations
and to a better forecast with smaller root-mean-square errors
compared to that of 3 h analysis interval experiments.

The data impact studies also expose unresolved issues on how
to most effectively utilize precipitation observations in NWP data
assimilation. The ensemble approach of the Goddard WRF-EDAS
is advantageous in providing flow-dependency to background
error covariance; on the other hand it is also vulnerable to
the reduced-rank sampling errors and systematic model errors
in clouds and precipitation. For instance, in both single-
observation experiments and full data assimilation experiments,
the ensemble-estimated background error standard deviations of
hydrometeors are negligible in the convective-storm region with
non-precipitating background but precipitating observations. In
this situation of a low probability of occurrence of convective
rain, the lack of ensemble spread results in a small background
uncertainty. Therefore observations have very little impact on
analysis and precipitation forecasts. In the data assimilation
system with model errors such as unresolved convective-scale
rain or displacement of precipitation, representative errors are
accounted for as part of observation errors. Future development
will incorporate approaches that include a hybrid variational-
ensemble method for background error estimation (Zhang and
Zhang, 2012) and ensemble estimation with displacement error
correction (Aonashi and Eito, 2011).

It remains a challenge to characterize observation errors under
precipitation conditions. The off-line bias correction scheme
relies on empirically estimated parameters from past FG radiance
departures. The uncertainties in the modelling of scattering and
land emissivity are critical factors for radiance assimilation over
land surface (Baordo et al., 2012). These factors need to be
further investigated and accounted for in the bias correction
and observation error model. The development is under way
to replace the Mie sphere approximation with a non-sphere ice
particle database for ice-phased precipitation in RTM. The ice-
phased particle distribution parameters, such as the intercept and
the density, will also be re-evaluated in model cloud physics and
in RTM. Further work will be directed towards identifying sources

of biases and precipitation-related predictors. To effectively
discriminate and attribute bias to its source likely requires an
adaptive correction scheme that allows the bias estimation to be
constrained by relevant ancillary data. In the reality of possible
local underestimation or overestimation of flow-dependent
background error covariance in the presence of systematic model
errors in hydrometeors, an adaptive tuning of observation error
variance (Talagrand, 1999; Desroziers and Ivanov, 2001) may also
be considered to maintain the balance of analysis weighting.
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