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ABSTRACT 47 

 48 

Current cloud microphysical schemes used in cloud and mesoscale models range from simple 49 

one-moment to multi-moment, multi-class to explicit bin schemes.  This study details the 50 

benefits of adding a 4th ice class (frozen drops/hail) to an already improved single-moment 3-51 

class ice (cloud ice, snow, graupel) bulk microphysics scheme developed for the Goddard 52 

Cumulus Ensemble model.  Besides the addition and modification of several hail processes 53 

from a bulk 3-class hail scheme, further modifications were made to the 3-ice processes, 54 

including allowing greater ice supersaturation and mitigating spurious evaporation/sublimation 55 

in the saturation adjustment scheme, allowing graupel/hail to transition to snow via vapor growth 56 

and hail to transition to graupel via riming, wet graupel to become hail and the inclusion of a rain 57 

evaporation correction and vapor diffusivity factor.  The improved 3-ice snow/graupel size-58 

mapping schemes were adjusted to be more stable at higher mixing rations and to increase the 59 

aggregation effect for snow.  A snow density mapping was also added.  60 

   The new scheme was applied to an intense continental squall line and a moderate, loosely-61 

organized continental case using three different hail intercepts.  Peak simulated reflectivities 62 

agree well with radar for both the intense and moderate case and were superior to earlier 3-ice 63 

versions when using a moderate and large intercept for hail, respectively.  Simulated reflectivity 64 

distributions versus height were also improved versus radar in both cases compared to earlier 3-65 

ice versions.  The bin-based rain evaporation correction affected the squall line more but overall 66 

agreement in reflectivity distributions was unchanged.  The new scheme also improved the 67 

simulated surface rain rate histograms. 68 

  69 

70 
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1.  Introduction 71 
 72 

   Atmospheric cloud modeling has benefited immensely from the continued improvement in 73 

computational power.  Simulations using explicit spectral bin microphysics (SBM) with large 3D 74 

domains in mesoscale models like WRF (the Weather Research and Forecasting model, 75 

Michalakes et al. 2004; Skamarock et al. 2008) can now be performed (Iguchi et al. 2012a, b).  76 

In addition to higher resolution (e.g., Khairoutdinov and Randall 2006) and the advent of MMFs 77 

(multi-scale modeling frameworks, Randall et al. 2003, Tao et al. 2009), cloud-resolving 78 

simulations have also benefited in the form of ever more sophisticated microphysics.  Simple 79 

bulk liquid (e.g., Kessler 1969) and ice schemes (e.g., Wisner et al. 1972) with only a few 80 

categories have grown into multiple ice categories (e.g., Straka and Mansell 2005), two moments 81 

(e.g., Ferrier 1994; Reisner et al. 1998; Morrison et al. 2009) and higher (Milbrandt and Yau 82 

2005b), and highly detailed SBM (Ovtchinnikov and Kogan 2000; Khain et al. 1999; 2000; 83 

2004).  Detailed bin forms originated a while ago but are only now becoming practical, having 84 

previously been limited to either 1D (Young 1974; Scott and Hobbs 1977), 2D (Takahashi 1976; 85 

Hall 1980; Reisin et al. 1996; Khain and Sednev 1996) or without ice (Kogan 1991). 86 

   Though the ability to use SBM with ever increasing 3D domains is becoming a reality, these 87 

types of simulations are still not common, and there is a trade-off versus bulk microphysics 88 

schemes (BMSs), which assume hydrometeor distributions follow a prescribed form (typically 89 

exponential or gamma).  BMSs are much faster and require a lot less memory.  For certain 90 

applications (e.g., very large domains or long-term simulations), computational resources are 91 

often not sufficient for SBM, which themselves are still not perfect (Li et al. 2010); these 92 

resources could also be applied to better resolution, which is another important consideration 93 

when it comes to realistically simulating convective entrainment and overturning (Bryan et al. 94 
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2003).  BMSs are typically invoked using either one-moment (1M, only mass is predicted) or 95 

two-moments (2M, both mass and number concentration are predicted); these schemes have also 96 

seen numerous advancements and improvements in recent years.  Numerous modeling studies 97 

and BMSs were made or based on the 1M 3-class ice (3ICE) schemes of Lin et al. (1983) and 98 

Rutledge and Hobbs (1983, 1984) developed in the early 1980’s.  These schemes were the 99 

workhorses of cloud microphysics for many years and are still used in some form by many 100 

schemes today, especially for NWP.  However, they do have their biases (Lang et al. 2007, 2011; 101 

hereafter L2007, L2011) and are susceptible to thresholding phenomena (Rutledge and Hobbs 102 

1984).  They use a priori hydrometeor classes of cloud ice, snow and either graupel or hail and 103 

transfer hydrometeors from one class to another conditional upon specified thresholds; this can 104 

result in abrupt and unnatural behavior and diverging solutions depending on if conditions are 105 

met.  An innovative approach was recently developed by Morrison and Grabowski (2008) based 106 

on the concepts of Heymsfield (1982) and Hashino and Tripoli (2007) whereby the amounts of 107 

mass acquired by riming and deposition are predicted separately.  This allows for the history of 108 

the riming fraction to be accounted for and results in a spectrum of particle densities with 109 

smooth, natural transitions from ice to snow and snow to graupel.  Lin and Colle (2011) included 110 

the effects of partially rimed particles using a diagnostic riming intensity as well as functional 111 

forms of the mass-, area- and velocity-diameter relationships.  In general, the representation of 112 

cloud microphysical processes is constantly improving as more and more schemes are including 113 

aerosols and the representation of ice processes continues to improve (Muhlbauer et al. 2013). 114 

   Two-moment BMSs have become increasingly popular (Ziegler et al. 1985; Ferrier 1994; 115 

Reisner et al. 1998; Meyers et al. 1997; Milbrandt and Yau 2005a; Morrison et al. 2005, 2009; 116 

Seifert and Beheng 2006; Thompson et al. 2008; Lim and Hong 2010) and offer a good 117 
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compromise between the extreme cost of SBM and the restriction of 1M BMSs.  They allow an 118 

extra degree of freedom in defining the hydrometeor distributions compared to 1M schemes and 119 

can account for size-sorting (Milbrandt and Yau 2005a) and aggregation as well as aerosol 120 

effects (Lim and Hong 2010).  Two-moment schemes are also superior to 1M in terms of rain 121 

evaporation.  A fixed rain intercept in 1M schemes tends to produce excessive rain evaporation, 122 

namely in the stratiform region; this can be alleviated with 2Ms, which can lead to better 123 

convective and stratiform rainfall structures (Morrison et al. 2009).  124 

   However, 2M schemes as well as SBM require observed cloud condensation nuclei (CCN) 125 

and/or ice nuclei (IN) profiles to activate cloud water and/or ice particles, and despite their 126 

potential (Ferrier et al. 1995; Milbrandt and Yau 2005a; Morrison et al. 2009), there are enough 127 

uncertainties and nonlinearities that more advanced/sophisticated schemes do not always perform 128 

better than simpler 1M bulk schemes (Wang et al. 2009; Varble et al. 2011).  Besides the extra 129 

degrees of freedom that are required to behave in a realistic manner, larger errors in a more 130 

dominant process can overwhelm potential gains elsewhere.  WRF contains a variety of 131 

microphysics packages, including 1M, 2M and schemes that are a mixture of both, easily 132 

allowing comparisons between the various schemes.  Van Weverberg et al. (2013) used the 133 

Advanced Research WRF to evaluate MCS simulations using three different BMSs over the 134 

tropical western Pacific and found that although different, the results from the 2M schemes were 135 

not superior to those using 1M; they found the most crucial element was the fall speeds of frozen 136 

particles.  Using WRF, Han et al. (2013) found that the 2M Thompson scheme (Thompson et al. 137 

2008) had the best radar reflectivities for a winter storm but the fall velocities from the Goddard 138 

scheme (Tao and Simpson 1993; Tao et al. 2003; L2007) agreed best with vertical profiler 139 

observations.  Powell et al. (2012) used vertically-pointing millimeter radar observations to 140 
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evaluate WRF simulations of MCS anvils near Niamey, Niger; they found the 1M Goddard and 141 

WDM6 (Lim and Hong 2010, which has 1M ice and 2M liquid) schemes actually produced more 142 

realistic anvils than did the 2M ice schemes.  Systematic biases in cloud-resolving model (CRM) 143 

BMSs were first identified when CRM simulations were used for satellite retrievals.  Radiative 144 

transfer models applied to CRM-simulated cloud fields revealed distributions that contained 145 

excessive scattering signatures that were not representative of actual observed distributions 146 

(Panegrossi et al. 1998; Bauer 2001; Olson et al. 2006).  In addition to the excessive scattering, 147 

several studies found excessively high reflectivities in the upper troposphere of CRM simulations 148 

with excessive amounts and/or sizes of precipitation-sized ice produced by the BMSs as the 149 

primary reason (L2007, L2011; Blossey et al. 2007; Zhou et al. 2007; Li et al. 2008; Matsui et al. 150 

2009).  Typically, the problem is associated with graupel (L2007; Li et al. 2008; Matsui et al. 151 

2009).  Though somewhat confirmed by Varble et al. (2011), they noted that excessively high 152 

reflectivities can also be due to snow in a 2M scheme (Morrison et al. 2009) and that reasonable 153 

reflectivities can be obtained using nonspherical graupel particles with variable density and 154 

mass-diameter relationships with 1M.  At any rate, there are enough inherent biases and room for 155 

improvement that microphysics schemes in general require and continue to undergo refinement. 156 

   This study is a follow on to L2007 and L2011 and details the continued improvement and 157 

enhancement of the Goddard 1M BMS used in the Goddard Cumulus Ensemble model (GCE), a 158 

version of which (L2007) is one of the microphysics packages available in WRF.  This scheme 159 

has been evaluated in WRF and despite some continued biases (L2007, L2011) found to compare 160 

quite well relative to other WRF schemes with regard to snow fallspeeds (Han et al. 2013) and 161 

MCS anvils.  The lineage is built upon the Rutledge and Hobbs (1983, 1984) 3ICE-graupel 162 

version.  Despite the improvements already made to the scheme (L2007, L2011), it still contains 163 
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some unrealistic aspects with regard to reflectivity structure and, without hail, lacks the ability to 164 

simulate more intense radar echoes.  Hail allows for the simulation of much more intense radar 165 

echoes and much higher fall velocities than graupel and can thus to first order expand the scheme 166 

to cover a far wider range of conditions than would be possible with say improving the graupel 167 

category to 2M.  This study details the addition of a 4th ice category, which encompasses the 168 

spectrum of particles from smaller frozen drops to larger hail stones that have a high density 169 

(~0.9 g cm-3) as a result of being or having a coating at or near liquid at some point in their 170 

history, as well as further refinements to the scheme that result in an improved 4-class ice (4ICE) 171 

version of the Goddard 1M BMS.  Despite the benefits of a smooth transition in particle 172 

characteristics (e.g., density) with a single prognostic rimed-ice category, higher and lower-173 

density particles cannot coexist in such a scheme without a separate hail category, which may be 174 

necessary to simulate for example a narrow hail shaft (Milbrandt and Morrison 2013).  The new 175 

Goddard 4ICE scheme is tested for two cases, an intense midlatitude squall line observed during 176 

MC3E and a more moderate convective case from TRMM LBA (the Tropical Rainfall 177 

Measuring Mission Large-Scale Biosphere-Atmosphere Experiment in Amazonia).  The model 178 

results are evaluated using radar reflectivity contoured frequency with altitude diagrams 179 

(CFADs, Yuter and Houze 1995).  Validation via comparison with in situ aircraft data can 180 

provide a very detailed look at the performance of microphysical schemes (e.g., Molthan and 181 

Colle 2012); however, such data are limited and difficult to compare against (if even available) 182 

when it comes to convective cores and are essentially unavailable when it comes to intense 183 

convective cores.  Another approach has been to compare modeled versus observed radiances, 184 

often radar reflectivity, statistically in the form of CFADs, the primary approach adopted in 185 

L2007 and L2011.  CFADs, which are essentially PDFs sampled at discrete levels through the 186 
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depth of a storm stacked in the vertical and then contoured, were first used primarily to 187 

characterize observations (e.g., Yuter and Houze 1995).  Lin (1999) and Lang et al. (2003) 188 

constructed CFADs of model data, but Smedsmo et al. (2005), Eitzen and Xu (2005) and Braun 189 

(2006) were the first to use radar CFADs to actually evaluate CRM performance.  These were 190 

quickly followed by several other studies (Blossey et al. 2007; L2007; Rogers et al. 2007; Zhou 191 

et al. 2007; Li et al. 2008), establishing this method (or a close variation thereof) as a standard 192 

way of evaluating CRM-type simulations (L2011; Varble et al. 2011; Iguchi et al. 2012a; Powell 193 

et al. 2012; Guy et al. 2013; Han et al. 2013; Van Weverberg et al. 2013; Wu et al. 2013).  194 

Though there are other ways to evaluate the performance of CRMs and their microphysics 195 

schemes, having to match the observed radar reflectivity distributions is a more stringent test 196 

than mean quantities (Powell et al. 2012).  Radar observations are more readily available than in 197 

situ observations, especially when it comes to convection, and the resolution of the data is 198 

comparable to CRM grids and much better than satellite observations. 199 

   The main objectives of this study are to allow the improved 1M Goddard BMS (L2007; L2011) 200 

to simulate intense convection via the addition of hail and to further improve upon the model’s 201 

overall performance via the reduction of biases in the synthetic radar structure and reflectivity 202 

distributions.  The paper is organized as follows.  Section 2 describes the Goddard CRM, the 203 

changes to the Goddard microphysics, the two case studies, and the numerical experiments.  204 

Section 3 presents the simulation results and their validation using radar observations as well as 205 

surface rain intensities.  The summary and conclusions are given in section 4. 206 

 207 

2.  Simulation setup and cases 208 

 209 
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a.  The Goddard Cumulus Ensemble model (GCE)  210 

 211 

   The new Goddard 1M 4ICE BMS is evaluated using the 3D GCE.  The GCE was described in 212 

Tao and Simpson (1993) and Tao et al. (2003) and more recently in Tao et al. (2013).  The 213 

model configuration closely follows that used in L2011.  The GCE has a one-and-a-half order 214 

sub-grid scale turbulence scheme (Soong and Ogura 1980), parameterizations for shortwave 215 

(Chou and Suarez 1999), longwave (Chou and Kouvaris 1991; Chou et al. 1995, 1999; Kratz et 216 

al. 1998) and cloud optical properties (Sui et al. 1998; Fu and Liou 1993), positive definite 217 

advection (Smolarkiewicz 1983, 1984; Smolarkiewicz and Grabowski 1990), and options for 218 

anelastic (Ogura and Phillips 1962) or compressible flow (Klemp and Wilhelmson 1978).  The 219 

GCE has several microphysics options, but the primary BMS is the Rutledge and Hobbs (1983, 220 

1984)-based 3ICE-graupel scheme (i.e., cloud water, rainwater, cloud ice, snow and graupel), 221 

which has been improved to reduce unrealistically large amounts of graupel (L2007) and 40 dBZ 222 

echoes above the freezing level (L2011) and modified to introduce ice nuclei concentrations into 223 

the Bergeron parameterization (Zeng et al. 2008, 2009). 224 

  225 

b.  Addition of hail processes and other microphysics improvements 226 

 227 

   Prior improvements reduced excessive amounts of graupel (L2007) and excessive penetrations 228 

of 40-dBZ echoes above the freezing level (L2011), alleviating some of the biases in the original 229 

Goddard 1M 3ICE-graupel scheme.   The improved versions, however, have two artifacts in their 230 

simulated reflectivity structure.  Time-height cross sections of peak reflectivities show a band of 231 

elevated reflectivity maxima above the freezing level separated by corresponding local minima 232 
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just above the freezing level (e.g., Figs. 2c-d, 6d) as opposed to observations, which typically 233 

show a steady monotonic decrease with height (e.g., Figs. 2a, 6a).  The snow/graupel size 234 

mapping implemented in L2011 tried to compensate for this and still produce reasonable peak 235 

reflectivities by rapidly increasing the particle sizes (especially snow) at moderate to high mixing 236 

ratios (Figs. 1c-d).  This can lead to spurious artifacts in the reflectivity distributions near the 237 

melting layer for stronger cases (Fig. 4d).  To address these issues and allow the scheme the 238 

ability to simulate more intense convection, a 4th ice class (frozen drops/hail) was added and the 239 

scheme further refined to produce an improved Goddard 4ICE scheme. 240 

   Table 1 lists the changes in relation to previous versions of the scheme, which are detailed 241 

below.  Hail processes based on Lin et al. (1983) were added with some modification.  Hail 242 

riming, accretion of rain, deposition/sublimation, melting, shedding and wet growth processes 243 

were left unchanged.  Analogous to L2007 for graupel, the collection of other ice particles under 244 

dry growth conditions (dry collection) was eliminated for hail to prevent an excessive buildup of 245 

hail as collection efficiencies should be minimal; but, hail near wet growth conditions is 246 

expected to be close to water coated and thus efficiently collect other ice particles.  Hail within 247 

95% of wet growth is thus allowed to collect other ice particles.  Graupel is medium density 248 

(~0.3 to 0.5 g cm-3) and mainly a riming product; frozen drops, however, are high-density (~0.9 g 249 

cm-3) like that of solid ice or hail.  Therefore, the new scheme differentiates hail initiation from 250 

graupel by treating the product of any process that freezes rain as hail.  Five new hail processes 251 

were also added:  wet hail accretion of graupel, hail rime splintering, wet graupel conversion to 252 

hail, hail conversion to snow due to depositional growth (also added for graupel) to allow 253 

hail/graupel particles that undergo significant deposition at cold temperatures in the absence of 254 

liquid water to transition to snow, and hail conversion to graupel via riming, which tries to 255 
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account for lower hail bulk densities due to rime accumulation under non wet growth conditions.  256 

Milbrandt and Morrison (2013) demonstrated how graupel densities can sharply decrease at 257 

colder temperatures aloft when accounting for variable rime density.  A similar analogy is 258 

applied here with regard to the hail category, which too can be rimed.  The latter two processes 259 

are “apparent” and try to overcome some of the limitations associated with having fixed particle 260 

categories by providing additional pathways for particles to change from one category to another. 261 

   In addition to the hail processes, further modifications were made to the improved 3ICE 262 

processes.  Snow autoconversion was strengthened by adjusting the timescale, threshold and 263 

efficiency in the Kessler-type formulation.  The original formulation is quite weak, but aircraft 264 

observations of small ice particle distributions suggest that although diffusion dominates at 265 

colder temperatures, there is evidence of aggregation (Field 1999).  Though autoconversion was 266 

strengthened, diffusion still remains the dominant process.   The maximum snow collection of 267 

cloud ice efficiency was increased to reflect the fact that ice particles with diameters greater than 268 

about 200 microns are efficient collectors.  A water vapor diffusivity correction factor (Byers 269 

1965) was applied to all related processes, effectively replacing a more simplified function of 270 

pressure and temperature.  The formulation for the depositional growth of cloud ice into snow 271 

(i.e., Psfi) invokes the time step over a time scale, so that tiny amounts of snow can form even 272 

when cloud ice is quite small (i.e., the time scale to become snow is large).  Therefore, an 273 

arbitrary small threshold was introduced before activating this term1.  With ice supersaturations 274 

commonly observed on the order of tens of percent (Jensen et al. 2001; Stith et al. 2002; Garrett 275 

et al. 2005), the sequential saturation adjustment scheme (Tao et al. 2003) was further relaxed 276 

from the 10% constraint in L2011 to a maximum of 20%.  The deleterious effects of cloud 277 

                                            
1 A value of 1.e-5 g/g scaled by the surface air density over the level air density was used to inhibit this artificial 
snow production mainly because it has a noticeable effect on longer-term (i.e., MMF) simulations. 
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boundaries advecting through an Eulerian grid (e.g., spurious evaporation) have been previously 278 

noted [Klaassen and Clark 1985; Grabowski 1989; Grabowski and Smolarkiewicz 1990; Stevens 279 

et al. 1996; Grabowski and Morrison 2008; Reisner (personal communication)].  To reduce these 280 

effects, the saturation adjustment was further modified to restrict cloud evaporation and 281 

sublimation to subsidence areas.  The time-scale for ice sublimation can be appreciable, allowing 282 

even smaller ice particles to exist in subsaturated conditions (e.g., Garrett et al. 2005); so, the 283 

saturation adjustment was relaxed to allow cloud ice to persist under ice subsaturated conditions. 284 

   With the addition of hail, the size-mapping scheme for snow and graupel introduced in L2011 285 

was adjusted.  The rate at which the characteristic size (i.e., inverse of the slope parameter) 286 

increases with mixing ratio, especially of snow, was lowered (see Fig. 1).  As will be shown, 287 

peak reflectivities are now determined largely by hail and do not require large graupel or snow 288 

particles to generate these higher values.  In addition, the aggregation effect, especially for snow, 289 

was increased to allow particle sizes to grow more rapidly as temperatures rise from -25 C, and 290 

an associated snow density mapping (Fig. 1g) was introduced as a function of snow size (i.e., 291 

Brandes et al. 2007).  Graupel density was also divided into low and moderate based on a simple 292 

mixing ratio threshold.  Finally, to address the problem of excessive rain evaporation due to a 293 

fixed rain intercept, a rain evaporation correction was adopted based on the results from an 294 

explicit bin microphysics scheme (Li et al. 2009).  This correction was made “physical” by 295 

lowering the rain intercept (i.e., increasing the mean raindrop diameter) locally for each rain grid 296 

cell until the new evaporation rate matched the correction factor.  The scaling was capped such 297 

that rain size never increases with decreasing rain mixing ratio. 298 

   For a more detailed description of the new scheme, including the new hail budget equation, 299 

rain evaporation correction and snow mapping, please see the Appendix. 300 
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   301 

c.  Convective case studies 302 

 303 

 1) AN INTENSE MIDLATITUDE SQUALL LINE:  MC3E 304 

 305 

   The Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted in and 306 

around central Oklahoma (OK) from April to May 2011 as a collaborative effort between the 307 

DOE (Department of Energy) ARM (Atmospheric Radiation Measurement) and NASA GPM 308 

(Global Precipitation Measurement) programs.  The 20 May 2011 case featured a deep, upper-309 

level low over the central Great Basin moving into the central and southern Rockies before 310 

lifting into the central and northern Plains.  At the surface, low pressure in southeastern Colorado 311 

drew warm, moist air up through the southern Plains to a warm front oriented E-W across 312 

Kansas, while a dry line extended from the Texas/Oklahoma Panhandle down through the 313 

Concho Valley.  The result was a series of convective lines that formed over the Great Plains and 314 

propagated eastward toward the Mississippi Valley.  The most intense squall line to pass through 315 

the MC3E sounding network was the result of convection that had developed over south-central 316 

Kansas (KS) and north-central OK within the network merging with the northern end of a long 317 

convective line that had formed along the dry line and extended from southwestern OK down to 318 

the Big Bend.  The northern portion of this longer line entered the MC3E sounding network 319 

around 07 UTC 20 May and by 09 UTC had consolidated with the convection near the KS-OK 320 

border to form a more intense convective segment with a well-defined trailing stratiform region 321 

that then propagated through the network between 09 and 12 UTC.  By 13 UTC, the convective 322 

leading edge had exited the network, leaving the network dominated by a large area of stratiform 323 
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rain.  Peak reflectivities within the network exceeded 60 dBZ over a depth of several km from 2 324 

km above and to 3 km below the freezing level, a strong sign of significant hail (May and 325 

Keenan 2005; Lerach et al. 2010), while 40 and 50 dBZ echoes reached upwards of 16 and 10 326 

km, respectively, placing this case within the top 0.005% in intensity (i.e., 1 feature in 20,000 is 327 

as strong) with regard to 40 dBZ echo penetrations based on a TRMM observed precipitation 328 

feature climatology (Zipser et al. 2006).  With 45 dBZ echoes reaching more than 10 km above 329 

the freezing level, a further indication of the presence of hail (Waldvogel et al. 1979); this case is 330 

well suited to test and evaluate the new Goddard 1M 4ICE scheme with hail.   331 

   As in previous GCE modeling studies (e.g., Zeng et al. 2007, 2008; L2011), the 3D GCE was 332 

driven by large-scale forcing data obtained from a variational analysis approach (Zhang et al. 333 

2001), in this case, from the MC3E sounding network.  Model experiments were run for 4 days 334 

starting at 0000 UTC 17 May and ending at 0000 UTC 21 May using 1-km horizontal grid 335 

spacing and a 256 x 256 km horizontal domain (similar in size to the sounding network) with a 336 

stretched vertical grid having 76 levels and a top near 27 km.  A 2-second time step was used, 337 

and surface sensible and latent heat fluxes were imposed from the variational analysis. 338 

 339 

2) A MODERATE TROPICAL CONTINENTAL CASE:  TRMM LBA 340 

 341 

   The 23 February 1999 case was previously presented in L2007 and L2011.  It was 342 

characteristic of the widespread, weaker monsoon-like convection observed within the westerly 343 

wind regime (Cifelli et al. 2002; Rickenbach et al. 2002) during TRMM LBA.  It falls within 344 

about the top 1% of TRMM precipitation features (i.e., 1 feature in 100 is as strong) in terms of 345 

40 dBZ echo height intensity (Zipser et al. 2006) and provides a good contrast to the more 346 
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intense 20 May 2011 MC3E case.  On this day, daytime heating triggered widespread convection 347 

that loosely organized into southeast-northwest bands.  A long thin convective band developed 348 

by 2000 UTC and by 2100 UTC was already decaying.  Dual-Doppler observations were 349 

collected for the northern portion of this line where 40 dBZ echoes reached to about 7 km.  350 

Please see L2007 and L2011 for more details.   351 

   The current model setup closely follows L2011 and uses the same horizontally homogenous 352 

initial conditions based on the 1200 UTC morning sounding taken at Rebio Jaru having weak 353 

low-level northwesterly flow and a 500 m mixed-layer CAPE of 934 J kg-1, cyclic lateral 354 

boundary conditions and convection initiated by imposing time-varying (diurnal) surface fluxes 355 

based on surface observations collected at two different sites (ABRACOS Hill and Ji Parana).  356 

The horizontal domain was kept at 128 x 128 km as in L2011, but the horizontal grid resolution 357 

was improved to 200 m in both directions and the time step reduced to 2 seconds.  The stretched 358 

vertical grid was kept at 70 levels with a top near 23 km.  The north-south oriented rectangular 359 

patch of higher sensible/lower latent heat fluxes (Ji Parana) imposed in L2011 was lengthened to 360 

18 x 80 km (solid rectangle in Fig. 8b) and replaced by higher latent/lower sensible heat fluxes 361 

(ABRACOS) if accumulated rainfall exceeded 3 mm over the patch to allow for some cloud 362 

feedback.  Simulations were run for 6 hours. 363 

 364 

d.   Numerical experiments 365 

 366 

   For each case, seven numercial experiments are conducted.  Three experiments are made using 367 

previous verions of the 3ICE-graupel scheme:  the original (3ice0), L2007 (3ice1), and L2011 368 

(3ice3).  Four variations of the new 4ICE scheme are tested:  with smaller-, medium- and larger-369 
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sized hail with the bin rain evaporation correction (4iceb sml, 4iceb med, and 4iceb lrg, 370 

respectively) and smaller-sized hail without the evaporation correction (4ice sml).  Smaller-, 371 

medium-, and large-sized hail use fixed hail distribution intercepts of 0.0200, 0.0020, and 0.0002 372 

cm-4, respectively.  See Table 2 for a list of the numerical experiments performed for these cases. 373 

 374 

3.  Simulation results and validation 375 

 376 

a.  MC3E 377 

 378 

   Figure 2b shows the 4ICE control simulation (4iceb sml) compared to the observed convective 379 

line (Fig. 2a) as it passed through north-central OK.  Despite the restrictive double cyclic 380 

boundary conditions, the model captures the general organization and intensity of the system 381 

with an eastward propagating north-south oriented intense convective leading edge with a 382 

trailing stratiform region off to the northwest.  A vertical east-west cross section through the 383 

center of the model domain (Fig. 2c) does show an erect intense uni-cellular convective 384 

structure, but the simulated trailing stratiform region appears to be noticeably narrower. 385 

   Time-height cross sections (Fig. 3) of NEXRAD and simulated peak radar reflectivity2 within 386 

the MC3E sounding array and model domain are shown from 00 UTC 20 to 00 UTC 21 May 387 

2011; the observed period 06 to 12 UTC (Fig. 3a) covers the formation of the main convective 388 

line within the sounding array until the leading edge propagated out of the array.  Peak 389 

reflectivities within this line exceeded 60 dBZ with 50 dBZ echoes reaching 9 km and 40 dBZ 390 

echoes 15 km.  At 06 UTC, the simulations are still quite weak.  The model imposed large-scale 391 

                                            
2 Simulated radar reflectivities were calculated from model rain, snow, graupel and hail contents assuming inverse 
exponential size distributions and accounting for all size mappings using the formulation of Smith et al. (1975) and 
Smith (1984). 
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forcing is horizontally uniform and first results in a patchwork of smaller convective cells over 392 

the domain that require 2-3 hours to respond to the organizing shear and form into a squall line 393 

(~09 UTC).  The 3ICE graupel runs (Figs. 3b-d) significantly underestimate the peak intensity of 394 

the observed squall line above the freezing level.  The 3ice1 and 3ice3 runs produce a band of 395 

elevated reflectivity maxima 3 km above the freezing level whereas the observed reflectivities 396 

monotonically decrease with height above the freezing level.  Graupel with its relatively slow 397 

fallspeeds (Fig. 4b) is carried aloft by the strong updrafts in the convective cores (Fig. 4a) where 398 

its mass is maximized well above the freezing level.  In contrast, the 4ICE simulations (Figs. 3e-399 

h) produce higher reflectivity values just above the freezing level due to higher fall speeds (Fig. 400 

4c) that keep the peak hail mass nearer the freezing level as well as peak values that decrease 401 

monotonically with height:  both in good agreement with the observations.  Profiles of peak 402 

reflectivity within the model domain over the period 09 to 15 UTC (sampled to match the 403 

observed squall line structure from 06 to 12 UTC, Fig. 5) show all three 3ICE simulations have a 404 

pronounced low bias that ranges from about 5 dBZ below the freezing level to as much as 15 405 

dBZ above the freezing level.  The 4ICE simulations show a marked improvement in the bias at 406 

almost all levels except for 4iceb lrg, which produces excessively large reflectivities (~15 dBZ) 407 

near the melting level.  The medium hail profile has the smallest overall bias and agrees best 408 

with the observed.  Though not quite as good, the smaller hail runs are significantly improved 409 

over the 3ICE with a consistent low bias of just 5 dBZ at all levels.  410 

  Figure 6 shows statistical CFADs constructed over these same observed (06 to 12 UTC) and 411 

model (09 to 15 UTC) time periods and domains.  The observed CFAD shows higher 412 

concentrations broadly ranging from 0 to 40 dBZ below the melting level; aloft a coherent core 413 

of higher probabilities increases from 10 dBZ near 200 mb to 25 dBZ just above the freezing 414 
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level.  Concentrations of infrequent but more intense echoes extend out to near 65 dBZ at and 415 

below the freezing level, 50 dBZ at 12 km, and 40 dBZ at 16 km.  None of the simulated 3ICE 416 

CFADs (Figs. 6b-d) produce reflectivities over 50 dBZ above the freezing level and thus miss 417 

the stronger echoes in the tail of the observed distribution consistent with Fig. 5.  Furthermore, 418 

the core of highest probabilities is either too broad with too many 40 dBZ echoes due to graupel 419 

(3ice0), shifted too high with too many 30 dBZ echoes due to snow (3ice1), or shifted too low 420 

with too many weak echoes (3ice3) compared to the NEXRAD data.  In contrast, all of the 4ICE 421 

simulations produce much better concentrations of both the moderate core echoes and the 422 

infrequent but intense echoes that arise from hail relative to the observations (Figs. 6e-h).  The 423 

4ICE core distributions are still too broad as a result of too many weak echoes, but their overall 424 

slope along on the right edge is fairly well aligned with the observed core probabilities. 425 

   The improvements in the 4ICE distributions are reflected in the normalized overlap score 426 

between the observed and simulated PDFs at each level in the CFADs where unity represents 427 

perfect overlap and zero no overlap.  Figure 7 shows the 4ICE PDFs are consistently better than 428 

the 3ICE above the freezing level from 6 to 10 km.  Below the melting layer, all of the 429 

simulations are similar and better than in the mixed and ice phase regions.  The agreement 430 

between the simulations and observations drops off sharply near storm top where simulated radar 431 

echoes become too weak.  This discrepancy was noted in L2011 and could be due to entrainment 432 

effects wherein dry air disproportionately sublimates small particles while preserving relatively 433 

large particles.  Cloudsat CFADs show a distinct difference between convective and anvil 434 

regions (Luo et al. 2009) with the highest probabilities in the anvil concentrated at the lowest 435 

reflectivities, indicating mostly smaller particles, before shifting to higher values lower in the 436 

cloud consistent with accretion and aggregation.  In contrast, convective cloud top PDFs are 437 
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broader, indicating a mix of small and large particles, with a much great proportion of larger 438 

particles.  The current model CFADs resemble the Cloudsat anvil distributions at upper levels.     439 

 440 

b.  LBA 441 

 442 

   Hail is associated with intense convection and as shown needed to produce stronger radar 443 

echoes.  However, a key objective is for the 4ICE scheme to respond appropriately to the 444 

environment without the need for excessive tuning.  The moderate intensity 23 February case is 445 

suitable for evaluating the new scheme for a weaker convective environment.  A radar CAPPI for 446 

this case (Fig. 8a) shows the northern end of the transient convective line as it was starting to 447 

decay.  Individual convective cells are loosely aligned with a small stratiform area extending 448 

northwestwards.  The simulated convective leading edge using the 4ICE scheme (4iceb sml, Fig. 449 

8b) is also cellular in nature and loosely organized into a north-south line with a small stratiform 450 

area extending northwestward, consistent with the weak southeast-northwest oriented shear on 451 

this day.  A vertical east-west cross section (Fig. 8c) through the center of the domain shows the 452 

leading edge is somewhat multi-cellular (also see Fig. 10a) with a small, undeveloped stratiform 453 

area.  Following L2011, a 64 x 64 km subdomain over the northern portion of the simulated line 454 

(dashed box in Fig. 8b) was used in the analyses with model data averaged to the 1-km resolution 455 

of the radar analyses.  The mean convective fraction within this subdomain over the simulation 456 

period from 300 to 360 minutes using the 4ICE scheme ranged from 0.46 to 0.49 in close 457 

proximity to the radar value of around 0.43. 458 

                                            
3 As in L2007 and L2011, convective fractions were computed based on Rickenbach and Rutledge (1998), a texture 
algorithm applied to radar reflectivity data that largely follows Steiner et al. (1995) to match the radar observations. 
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   Figure 9 shows time-height cross sections of peak reflectivity observed by the NCAR S-pol 459 

radar within the dual-Doppler analysis domain and simulated within the model subdomains.  As 460 

previously noted (L2007; L2011), the original scheme (3ice0) with its excessive graupel 461 

produces 40-dBZ echoes that penetrate much higher (over 12 km, Fig. 9b) than was observed (~7 462 

km, Fig. 9a).  Though better, 3ice1 (Fig. 9c), which eliminates the dry collection of ice/snow by 463 

graupel (L2007), still produces excessive 40-dBZ echoes penetrations.  The 40-dBZ echoes in 464 

3ice3 (L2011) are greatly reduced aloft and closer to the observed, but 3ice3 results in an 465 

elevated reflectivity maximum above the freezing level (Fig. 3d) that was not observed.  None of 466 

the 3ICE graupel simulations can reproduce the 45-dBZ echoes immediately above the freezing 467 

level (~4.9 km) as was observed (Fig. 9a).  In contrast, despite the addition of the higher density 468 

frozen drops-hail ice class, none of the 4ICE simulations (Figs. 9e-h) produces the excessive 40-469 

dBZ echo penetrations in 3ice0 and 3ice1 and all can replicate the observed monotonically 470 

decreasing reflectivity structure above the melting level though clearly the medium (4iceb med) 471 

and larger (4iceb lrg) hail peak reflectivities that are too strong around the freezing level.  These 472 

results suggest that hail or frozen drops with their higher fall speeds (Fig. 10c) relative to graupel 473 

(Fig. 10b) are crucial not detrimental for reproducing the observed core reflectivity structure of 474 

even moderate convection.  Peak reflectivity profiles from the 64 x 64 km model subdomains 475 

over the final 60 minutes (Fig. 11) confirms the strong (nearly 15 dBZ) to moderate (~5 dBZ) 476 

over bias in the 3ice0 and 3ice1 simulations aloft, respectively, as well as the under bias (~8 477 

dBZ) in 3ice3 near the melting level, which contributes to the elevated maxima.  The 4ICE 478 

simulations with smaller hail clearly perform the best and show almost no bias (less than ~4 479 

dBZ) through nearly the entire depth of the storm.  Remarkably, none of the 4ICE runs produce 480 

the over bias evident in runs 3ice0 and 3ice1 in the upper part of the storm, and all produce 481 
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monotonically decreasing profiles with height in agreement with the observations.  However, 482 

quite obviously the medium to larger hail sizes in runs 4iceb med and 4iceb lrg are much too 483 

large, producing over biases of up to ~10 to 15 dBZ around the melting level.  These results 484 

suggest the new 4ICE scheme is quite capable of responding appropriately to the intensity of the 485 

convective environment and can outperform the 3ICE-graupel scheme in terms of peak 486 

reflectivities even in a moderate intensity environment.  This actually is consistent with 487 

polarimetric radar and wind profiler evidence that frozen drops or hail quite often are present in 488 

tropical convection (Jameson et al. 1996; May et al. 2001); in situ aircraft data also confirmed 489 

the presence of frozen drops in this case (Stith et al. 2002)   490 

   Simulated and observed radar CFADs (Fig. 12) also show the 4ICE scheme equals or 491 

outperforms the 3ICE-graupel scheme in terms of overall reflectivity distributions for the 492 

moderate 23 February case.  The highest observed concentrations (Fig. 12a) gradually decrease 493 

from between ~5 to 20 dBZ at and below the melting level (~4.9 km) to ~ -5 to 15 dBZ near 494 

storm top with less apparent aggregation than MC3E (Fig. 6a).  Low probabilities of moderately 495 

strong echoes reach ~50 dBZ at and below the freezing level, 40 dBZ at ~7 km, and 30 dBZ at 496 

12 km.  As in MC3E only more pronounced, the original scheme (3ice0, Fig. 12b) produces 497 

excessive concentrations of 20 to 40 dBZ echoes between the melting level and 10 km, and 498 

again, though the number of excessive 30 to 40 dBZ echoes is reduced in 3ice1 (Fig. 12c), the 499 

core of peak probabilities is ~10 dBZ too high.  Core probabilities for 3ice3 are noticeably better 500 

(Fig. 12d), but the amount of echoes too weak is higher as is the penetration of 20 to 30 dBZ 501 

echoes near storm top.  There is also an unphysical notch in the higher echo distribution just 502 

above the freezing level.  Though hail amounts are small in the 4ICE simulations, they dominate 503 

the higher reflectivity values; the peak concentrations are nearly invariant (Figs. 12e-h) but are as 504 
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good as or better than the 3ICE at every level, aligning well with the observed concentrations 505 

along 20 dBZ from the melting level to 12 km.  In terms of echoes stronger than 20 dBZ in the 506 

distribution tail, the smaller hail results (Figs. 12e-f) match the observed frequencies extremely 507 

well while the medium (Fig. 12g) and larger hail (Fig. 12h) runs are overly intense especially 508 

near the melting level.  And as with MC3E, simulated probabilities collapse below 0 dBZ at 509 

storm top and are ~10 dBZ weaker than observed.  510 

   The overall level-by-level performance is confirmed by the profiles of normalized PDF 511 

matching scores (Fig. 13).  From the freezing level to 10 km, the 3ice3 and 4ICE PDFs are all in 512 

excellent agreement with the observed with matching scores on the order of 0.8, much better 513 

than 3ice0 and 3ice1.  Above 10 km, the performance of 3ice3 drops off quickly while the 4ICE 514 

simulations continue to perform well up to 12 km before they begin to deviate from the observed 515 

echo distributions near storm top.  Below the melting level, the 3ICE and 4ICE schemes all 516 

perform about the same and reasonably well with scores of around 0.75.   517 

 518 

c.  Rainfall comparisons and validation 519 

 520 

In addition to radar reflectivity, the 4ICE scheme is validated with regard to surface rain rates.  521 

Figures 14a,b show the instantaneous surface rain rates associated with the 4iceb sml simulations 522 

shown in Figs. 2b and 8b for MC3E and LBA, respectively.  Surface rain features in the 523 

convective region are larger, better organized and more intense in MC3E; the stratiform region is 524 

also larger and more coherent.  Simulated surface rain rate histograms (Figs. 14c and d) can be 525 

compared to observed rain rate histograms derived from the national Doppler radar network for 526 

MC3E (Fig. 14c) and ground-based radar deployed for the LBA field campaign (Fig. 14d).  The 527 
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3ICE and 4ICE histograms tend to fall into two distinct clusters, which is more apparent in the 528 

MC3E case.  For MC3E, the 3ICE simulations significantly underestimate the occurrence of 529 

more intense rain rates in the tail of the distribution (Fig. 14c); the 4ICE histograms also 530 

underestimate probabilities of extreme rain rates but are distinctly better than the 3ICE.  For 531 

LBA, the results are noisier due to a smaller sample size, but the overall results similar:  both sets 532 

of simulations underestimate the proportion of strongest rain rates but with the 4ICE simulations 533 

closer to the observed histogram than the 3ICE.  These results suggest the 4ICE simulations are 534 

producing more realistic surface rain rate distributions than the 3ICE in each environment. 535 

 536 

4.  Summary and conclusions 537 

 538 

   The improved Goddard 3ICE 1M BMS based on Rutledge and Hobbs (L2011, cloud ice, snow 539 

and graupel) was modified and hail processes added to produce an improved 1M 4ICE BMS 540 

(cloud ice, snow, graupel, and frozen drops-hail) capable of more realistically simulating the 541 

radar reflectivity patterns of intense and moderate convection better than previous 3ICE versions.  542 

Hail processes taken from the 3ICE-hail scheme based on Lin et al. (1983) include hail riming, 543 

accretion of rain, deposition/sublimation, melting, shedding and wet growth.  Hail collection of 544 

other ice species under dry growth conditions was eliminated to prevent the same excessive 545 

buildup as had occurred with graupel (L2007); however, hail near wet growth is permitted to 546 

collect other ice particles.  Processes that freeze rain now initiate hail not graupel.  Five new hail 547 

processes were added:  wet hail accretion of graupel, hail rime splintering, hail (also graupel) 548 

conversion to snow via depositional growth at colder temperatures, hail conversion to graupel via 549 

riming under non wet growth conditions, and wet graupel conversion to hail.   550 
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   Besides adding the frozen drops-hail category, snow autoconversion was strengthened based 551 

on the evidence of aggregation at colder temperatures (Field 1999), the collection efficiency of 552 

cloud ice by snow increased, a water vapor diffusivity correction factor added, and a small 553 

threshold introduced to prevent ice deposition growth into snow when ice is small.  Maximum 554 

ice supersaturation was increased to 20%, and cloud evaporation restricted to areas of subsidence 555 

to mitigate spurious evaporation effects at cloud boundaries.  Cloud ice can now persist in ice 556 

sub-saturated conditions as commonly observed.  Snow and graupel size mappings from L2011 557 

were adjusted, including an increased aggregation effect for snow.  A corresponding snow 558 

density mapping was added (Brandes et al. 2007), and graupel divided into low and moderate 559 

densities.  Lastly, an SBM-based rain evaporation correction factor (Li et al. 2009) was added. 560 

   The new Goddard 4ICE scheme was used to simulate an intense continental squall line 561 

observed during MC3E to evaluate its ability to simulate intense convection with significant hail 562 

as well as a loosely-organized transient line of moderate convection from TRMM LBA to ensure 563 

the scheme does not over predict less intense convection.  For the intense squall line, the 4ICE 564 

scheme with smaller and medium-sized hail, outperformed prior versions of the 3ICE-graupel 565 

scheme in terms of peak reflectivities; larger hail produced excessively high values.  Without 566 

hail, the 3ICE-graupel versions could not generate reflectivities over 50 dBZ below freezing, 567 

vastly underestimating the peak observed reflectivities throughout the depth of the storm with a 568 

low bias near 15 dBZ at the freezing level, 10 dBZ at midlevels, and 5 to 15 dBZ at upper levels.  569 

In contrast, the bias was significantly reduced in the 4ICE runs above the freezing level, except 570 

for the strong over bias of 15 dBZ near the melting level for larger hail.  For medium hail the 571 

bias is less than 5 dBZ at almost all levels except for a positive bias of ~5 dBZ at the freezing 572 

level.  The smaller hail simulations produced a consistent low bias of just 5 dBZ at nearly every 573 
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level, still a noticeable improvement over the 3ICE graupel simulations.  The 4ICE simulations 574 

produced radar reflectivity CFADs in better agreement with observations (as reflected in their 575 

normalized PDF overlapping scores) from 5 to 10 km with more realistic extremes in the 576 

distribution tails and more realistic reflectivity structures above the freezing level with peak 577 

reflectivities monotonically decreasing with height as observed versus the 3ICE graupel 578 

simulations, which often produced elevated reflectivity maxima.  Below the melting level, the 579 

4ICE runs with smaller hail had peak reflectivities similar to the 3ICE.  Those for medium and 580 

larger hail were greater due to contributions from melting hail and were closer to the 581 

observations for medium hail but not for larger where values were excessive.  The agreement 582 

between simulated and observed CFADs below the melting level was similar for all runs. 583 

Overall, the 4ICE simulation with medium hail performed the best for the intense MC3E case.  584 

   For TRMM LBA, adding frozen drops/hail per se did not necessarily cause unrealistically 585 

large reflectivity values4.  While medium and larger hail did result in excessive peak 586 

reflectivities by as much as 10 to 15 dBZ near the melting level, smaller hail had very small 587 

biases (less than 5 dBZ) that were on average as good or better than the 3ICE versions at every 588 

level.  Small hail eliminated the over bias at middle and upper levels in the original and L2007 589 

3ICE runs and outperformed the L2011 run above the freezing level by reproducing the observed 590 

monotonic decrease with height and eliminating the unrealistic elevated reflectivity maxima.  591 

The 4ICE simulations also produced radar CFADs whose normalized PDF scores were equal to 592 

or superior to the 3ICE at all levels.  The 4ICE simulations with smaller hail performed the best 593 

overall for the moderate intensity LBA case.   594 

                                            
4 Trace amounts of mass first appear in the 4th ice class as frozen rain at ~10 m/s for the LBA cases and ~5 m/s for 
MC3E, but the sizes are very small and combined with the fact that reflectivity values take a while to grow strong 
shows that the 4ICE scheme is not predisposed to generating larger hail particles nor strong dBZs for every case. 
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   Surface rainfall histograms were also used to evaluate the schemes for both cases with similar 595 

results.  In each case the 3ICE simulations significantly underestimated the occurrence of higher 596 

rain rates compared to observed histograms while the 4ICE histograms had a noticeably higher 597 

occurrence of stronger rain rates which were closer to but still less than the observed. 598 

   Though the bin rain evaporation correction (Li et al. 2009) did alter the temporal variation of 599 

peak reflectivities, it had very little effect on either the peak reflectivity profiles or the model 600 

CFADs in either case despite evidence that it reduced the intensity of the cold pool distribution 601 

(see Fig. 15).  The double cyclic lateral boundaries likely dampened its impact as initial 602 

excessive evaporation without the correction could over moisten the sub-cloud layer and inhibit 603 

successive over evaporation thus masking the effects of the correction.  The LBA case was in a 604 

moist environment and of short duration, which could also reduce the impact of the correction. 605 

   The 4ICE scheme with a frozen-drops hail category can simulate more intense radar echoes, 606 

though choosing a priori the hail intercept for intense or moderate convection is not optimal.  A 607 

size-mapping scheme may alleviate the issue, but ultimately a multi-moment scheme is likely 608 

needed.  4ICE also replicates the observed monotonic decrease in peak reflectivities with height 609 

as a result of increasing the range of particle fall speeds to include the higher values associated 610 

with frozen drops/hail, allowing a greater portion of their mass to remain near the freezing level.  611 

The scheme also adds pathways (apparent processes) by which particles can move to other 612 

categories due to their growth mechanisms.  Hail can be rimed.  If cloud freezes quickly, it 613 

creates air pockets, which should lower hail density.  Just as graupel is assumed to increase in 614 

density and become hail when reaching wet growth, so too should hail density go down when 615 

riming rates fall below wet growth.  This is the basis for the new Primh hail riming to graupel 616 

process.  For the MC3E control case, Primh increases (decreases) the peak average graupel (hail) 617 
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content by 25% (5%), decreases the peak echoes by 3 dBZ at and above 12 km, and improves the 618 

CFAD score by 2 to 4% from 4 to 13 km.  The other new set of pathways relates to trace 619 

amounts of graupel and hail that often persist aloft in the model long after convection ends.  620 Initially, sedimentation lowers their mass, but as the mass get small, with a fixed intercept, so 621 

too do their fallspeeds.  The result is tiny amounts of graupel and hail (mean volume diameters of 622 

a few hundred microns or less) suspended over a broad area where they continue to grow from 623 

deposition.  The new Pvapg and Pvaph vapor conversion to snow processes reduce the area and 624 

trace amounts of suspended graupel and hail but have minimal impact on the hail cores.  For the 625 

MC3E control case, peak reflectivity profiles are ~unchanged by Pvapg/Pvaph below 12.5 km 626 

(the same is true for Primh below 9 km) as the collection of large amounts of super cooled water 627 

dominates growth.  Peak average snow, graupel and hail amounts increase ~5%, decrease 5%, 628 

and increase 8%, respectively, when Pvapg/Pvaph are activated; Pvapg/Pvaph improve the 629 

CFAD score by 2 to 5% from 4 to 11 km.  The new apparent processes have a small effect on the 630 

hail cores but allow the model to better address variations in particle density while slightly 631 

improving the overall echo pattern. 632 

   Allowing a smooth transition in ice particle density (Morrison and Grabowski 2008) and 633 

fallspeed coefficients (Lin and Colle 2011) is a recent and realistic addition to BMSs, though 634 

comparisons with radar observations for intense cases are needed to evaluate their performance 635 

and in contrast to having a separate hail category.  636 

   Ultimately, cases should be tested at higher resolution (100 m) to ensure the dynamics are well 637 

resolved and not contributing to any biases.  Further study is also needed to address the 638 

abundance of weaker model dBZs near storm top to determine if this is an artifact of the radar 639 

observations or the microphysics.  Testing the 4ICE scheme in other environments using remote 640 
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sensing data for validation (Matsui et al. 2009) is important for systematically identifying and 641 

eliminating any remaining biases.  The ability to match the distribution and peak values of radar 642 

reflectivities at all levels of a convective system is a fairly stringent test, but radar intensities are 643 

not a unique solution and can arise from a variety of particle combinations.  This is where in situ 644 

aircraft observations could be very valuable in helping to further constrain the particle 645 

characteristics.  The next iteration of the Goddard scheme is planned to be 2M to ingest and 646 

include the effects of aerosols and improve limitations inherent in 1M. 647 
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APPENDIX 664 
 665 

a.  The hail budget equation 666 

 667 

The hail budget equation for the new 4ICE scheme is given as: 668 

3 3 2
1 ( ) 1 1 Pr 1   h

h h h qh
q V q w V q D Phfr Piacr aci Psacr
t z

669 

 670 

       21 Pr Pr 2acs Dgacr acg Dhacw Dhacr Whaci Whacs Whacg Pg h  671 

       PrPhdep Phsub Pvaph imh Phmlt       (A1) 672 

where the first three terms on the RHS of Eq. A1 are the horizontal advection, vertical advection 673 

and diffusion of hail, respectively, while Phfr  is the freezing of rain to hail, Piacr  cloud ice 674 

accretion of rain, Pr aci  rain accretion of cloud ice, Psacr  snow accretion of rain, Pr acs  rain 675 

accretion of snow, Dgacr  graupel accretion of rain, Pr acg  rain accretion of graupel, Dhacw  676 

hail riming, Dhacr  hail accretion of rain, Whaci , Whacs , and Whacg  wet hail accretion of 677 

cloud ice, snow and graupel, respectively, 2Pg h  the conversion of graupel to hail, Phdep  hail 678 

deposition, Phsub  hail sublimation, Pvaph  the conversion of hail to snow via deposition, 679 

Pr imh  hail riming to graupel and Phmlt  hail melting.  Phfr , Dhacw , Dhacr , Whaci , Whacs , 680 

Phdep , Phsub , and Phmlt  follow the formulations of Lin et al. (1983), while Piacr , Pr aci , 681 

Psacr , Pr acs , Dgacr , and Pr acg  follow the formulations of Rutledge and Hobbs (1984).  682 

Whacg  follows the Lin et al. (1983) formulation for Whacs  but using graupel instead of snow 683 

parameters.  Graupel is assumed to increase in density and become hail upon reaching wet 684 

growth such that 685 
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2 gq
Pg h

dt
   at the moment when Dgacw + Dgacr  > Pgwet     (A2) 686 

where the wet growth of graupel Pgwet  is computed using the formula for hail wet growth 687 

from Lin et al. (1983) but with graupel parameters5. 688 

   Just as lower density particles can transition to a higher density class of particles, in the new 689 

4ICE scheme, the reverse can occur.  As such, when hail particles experience riming or 690 

deposition at colder temperatures, they are transitioned towards graupel and snow, respectively.  691 

For both processes, an increasing proportion of the mass of hail acquired via riming and 692 

deposition along with an equal portion of the previous hail mass is transferred to graupel and 693 

snow, respectively, using a sliding temperature scale with the proportion increasing with 694 

decreasing temperature.  The conversion of hail to graupel via riming is thus formulated as: 695 

Pr rimeimh F Dhacw          (A6) 696 

where rimeF  is given by  
2

( 00 0)2.0 Tairc
rime t tF       (A7) 697 

where Tairc is the air temperature in degrees Celcius, 00t  is 238.16 degrees K, and 0t  is 273.16 698 

degrees K.  Similarly the conversion of hail to snow via deposition is formulated as: 699 

vapPvaph F Phdep   when the cloud water mixing ratio  qc < 1.e-5 g/g  (A8) 700 

where vapF  uses the same temperature scaling as rimeF .  The same form of the relation is used for 701 

the conversion of graupel to snow via deposition Pvapg .  Although Hallet-Mossop rime 702 

splintering (Hallet and Mossop 1974) is not directly part of the hail equation, it does affect the 703 

hail riming term Dhacw  and is computed as: 704 

                                            
5 In nature, larger graupel particles would reach wet growth first.  Converting only the mass above the mean volume 
diameter (0.5004) for the MC3E control case reduced the maximum average hail content by over 15%.  However, 
peak reflectivities below 9 km were nearly unchanged due likely to high riming rates in the updraft cores but were 
decreased by 3 dBZ or more above 12 km. 
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* 1000.* ln * lnfactPihmh T Dhacw Xnsp t Xmsp t  705 

where 706 

factT = 0.5  when 8 2o oC Tairc C  707 

factT = 1.0  when 6 4o oC Tairc C  708 

where the peak number of ice splinters generated per milligram of rime ln 370Xnsp t  and the 709 

mass of each splinter 8ln 4.4Xmsp t e  grams.  Pihmh  is first subtracted directly from Dhacw .  710 

The water vapor diffusivity (Dv) in air was assumed to be a constant (2.26e-5 m2s-1) in Rutledge 711 

and Hobbs (1984); it is parameterized as a function of temperature and pressure in this study 712 

following Massman (1998): 713 

1.81

0
0

0
v

PTD D
T P

, 714 

where D0 is the water vapor diffusivity (2.18e-5 m2s-1) at T0=273.15 K and P0=1013.25 hPa=  The 715 

importance of water vapor diffusivity on the diffusional growth rate of ice crystals as a function 716 

of pressure and temperature is illustrated in Fig. 9.4 of Rogers and Yau (1989).  An adjustment 717 

factor (Fdwv) is used to adjust the diffusional growth rate of ice crystals based on a constant 718 

water vapor diffusivity. 719 

 720 

b.  Rain evaporation correction 721 

 722 

The rain evaporation correction uses the empirical formula of Li et al. (2009): 723 

r(qr ) 0.11qr
�1.27 0.98          (A9) 724 



 32 

where r is the ratio of the rain evaporation rate between bulk and bin microphysics and qr (g/kg) 725 

is the rain mixing ratio; r is based on cloud-resolving model simulations using both bulk and bin 726 

microphysics and can be used to scale down the bulk rain evaporation rate.  In the new 4ICE 727 

scheme, the correction factor is made “physical” by scaling the rain intercept (i.e., increasing the 728 

grid local raindrop size) until the bulk rain evaporation rate matches the bin such that: 729 

3.351Ftnw
r

           (A10) 730 

where Ftnw  is the scaling factor for the rain intercept parameter. 731 

 732 

c.  Snow mapping  733 

 734 

The snow mapping scheme maps the snow intercept parameter as a combination of variations in 735 

temperature and mixing ratio.  Variations in mixing ratio are set for two distinct conditions:  (1) 736 

at cold temperatures where aggregation effects are small, sizes are small and only slowly 737 

increase with increasing mixing ratio and (2) near the melting layer where aggregations effects 738 

are large, sizes are larger and size increases significantly with increasing mixing ratio.  Another 739 

set of parameters controls how quickly the cold setting variations transform to the warm setting 740 

variations through the aggregation zone.  For both cold and warm regions, an exponent is used to 741 

control the snow intercept; as this exponent approaches zero, snow sizes relax to those for a fixed 742 

snow intercept (i.e., larger sizes), and when the exponent approaches one, snow sizes collapse to 743 

that of a small base size.  The formula for the snow size exponent is given by: 744 

exp11 1
exp lim 1min ,max 0.,

sqs sno
sml sml dsnoF X X S       (A11) 745 

which is then used create the mixing ratio component of the snow intercept scaling factor: 746 
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exp
1

F

base

qsFtnsq
S

           (A12) 747 

where 1qs  is the snow water content in g/m3, and 1Sno  is a snow water content threshold in 748 

g/m3 above which snow sizes begin to increase.  Snow sizes then continue to increase at an ever 749 

increasing rate over the next  1dsno  g/m3 until reaching the limit limS .  smlX  is arbitrarily given 750 

a number close to but less than one.  This allows snow sizes to vary ever so slightly (i.e., not be a 751 

constant size) between snow contents of 0.0 and 1Sno .  The parameter settings for cold 752 

conditions transform through the snow aggregation zone (~ -20 to 0o C) to those near 0o C as: 753 

expStTaircP Pwarm Pwarm Pcold
Tcold

       (A13) 754 

where Pwarm  is the parameter value near the melting level, Pcold  the parameter value for cold 755 

conditions, and Tcold the air temperature in degrees C for the cold parameter settings.  An air 756 

temperature component for the snow intercept scaling factor, given by 757 

exp
exp 1.

F
FtnsT Tslopes Tairc        (A14) 758 

where Tslopes is the rate of snow intercept change with temperature on a natural logarithm scale 759 

and Tairc  is capped by Tcold , is then combined with the mixing ratio component of the snow 760 

intercept scaling factor to obtain the total snow intercept scaling factor: 761 

Ftns Ftnsq FtnsT           (A15) 762 

with the condition that the snow size cannot go below a minimum value Dsnowmin.  The snow 763 

intercept mapping is combined with the Brandes et al. (2007) relation between snow density and 764 

median snow volume to get:  
0.2995

( )0.001996 Ftns tns
s qs      (A16) 765 
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where s  is snow bulk density and tns  the snow intercept.  Table A1 lists the specific values 766 

used for the snow mapping.  767 
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Table 1.  Microphysical processes modified or added to the original (i.e., Tao and Simpson 1993; 1218 

Tao et al. 2003) Goddard 1M Rutledge and Hobbs-based 3ICE-graupel bulk microphysics 1219 

scheme (updated from L2011).  Current changes associated with the new single-moment 4ICE 1220 

scheme are shown in italics.  New hail processes are in bold italics.  “f( )” indicates “function 1221 

of”.  Esi, Egc, and Esc are the collection efficiencies of cloud ice by snow, cloud by graupel and 1222 

cloud by snow, respectively.  Qc0 is the cloud water threshold for snow riming, Qi0 the cloud ice 1223 

threshold for snow autoconversion, ssi the supersaturation percentage with respect to ice, 1224 

RH/RHice the relative humidity for water/ice, Dwv the water vapor diffusivity, Vs/g the 1225 

snow/graupel fall velocity, Bh,i the immersion mode ice nucleating efficiency, IN the ice number 1226 

concentration, and Tair the air temperature.  Qr, Qi, Qs, Qg, and Qh are the rain, cloud ice, snow, 1227 

graupel, and hail mixing ratios, respectively.  The process nomenclature essentially follows Lin 1228 

et al. (1983) and Rutledge and Hobbs (1983, 1984).  ** =0 if Dhacw + Dhacr < 0.95 * Phwet. 1229 

 1230 

Process Original Modifications    Reference(s)/Notes 1231 

--------------------------------------------------------------------------------------------------------------------- 1232 

Psaut  Efficiency  Efficiency=0.15, Qi0 changed from 1233 

  f(Tair)  g/g to g/m-3, time scale reduced from 1234 

    1000 to 300 s, Qi0 lowered to 1235 

    0.4 g m-3, efficiency=0.25 1236 

 1237 

Psaci  Esi = 0.1 Esi f(snow diameter), maximum See snow size mapping in 1238 

    Esi = 0.25, maximum Esi=0.70, Fig. 1 1239 

    =0 when Qs=0    1240 



 46 

 1241 

Praci/Piacr   Accounts for addition of cloud Cloud ice fall speed follows 1242 

    ice fall speed,  =0 when Qr=0, Hong et al. (2004) 1243 

    becomes hail not graupel  1244 

      1245 

Pracw    =0 when Qr=0 1246 

 1247 

Psfi  Independent Depends on RH, accounts for  Meyers et al. (1992); 1248 

  of RH  cloud ice size via Meyers IN,   Krueger et al. (1995) 1249 

    which is a f(ssi), added Dwv 1250 

    correction factor & Qi threshold 1251 

 1252 

Psfw    Added Dwv correction factor 1253 

 1254 

Dgacs/Dgaci   Turned off    See Lang et al. (2007) 1255 

 1256 

Dgacw  Egc=1.0 Egc is f(graupel diameter),  See graupel size mapping in 1257 

    maximum Egc = 0.65,   Fig. 1; Khain et al. (2001) 1258 

    =0 when Qg=0 1259 

 1260 

Dgacr/Pracg   =0 when Qg=0 or Qr=0 1261 

 1262 

 1263 
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Psacw/Pwacs Esc=1.0, Esc=0.45, Qc0=1.0 g/kg,  Lang et al. (2007); 1264 

  Qc0=0.5 g/kg Qc0=0.5 g/kg, =0 if Qs=0  Morrison and Grabowski 1265 

         (2008) 1266 

       1267 

 1268 

Pracs/Psacr   =0 if Qr or Qs=0, =hail not graupel 1269 

 1270 

Rime  None  Added and applied to   Hallet and Mossop (1974); 1271 

Splintering   Psacw/Pgacw, not f(Vs/g)  f(Tair) and splinter mass 1272 

   or f(cloud size), added for  follow Ferrier (1994) 1273 

    Dhacw 1274 

 1275 

Pidw/Pidep Based on Based on Meyers IN, which is Fletcher (1962); 1276 

  Fletcher a f(ssi), added Dwv   Meyers et al. (1992) 1277 

    correction factor to Pidep 1278 

 1279 

Pint  Based on Based on Meyers IN, which is Fletcher (1962); 1280 

  Fletcher a f(ssi), previous ice    Meyers et al. (1992) 1281 

    concentration checked      1282 

 1283 

Immersion None  Added based on Diehl  Diehl and Wurzler (2004);  1284 

Freezing        Diehl et al. (2006), assumes 1285 

         Bh,i = 1.01 e-2 for pollen 1286 
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 1287 

Contact None  Added based on Cotton  Cotton et al. (1986); 1288 

Nucleation   and Pruppacher for   Pruppacher and Klett (1980), 1289 

    Brownian diffusion only  500 active nuclei per cc 1290 

         with radii of 0.1 microns   1291 

 1292 

Saturation Sequential Modified sequential, iterative, Tao et al. (2003) 1293 

Adjustment based on Tao ssi up to 10%, ssi up to 15%   Reisner (personal) 1294 

    (T<-44oC) and 20% (T>-38oC), 1295 

    no evaporation if W > -0.1 m/s,   1296 

    no sublimation if RHice > 70% 1297 

    or W > 0 m/s 1298 

 1299 

Psdep/Pgdep   =0 if Qs/Qg=0 1300 

 1301 

Snow/Graupel None  Allowed if outside cloud and air 1302 

Sublimation   subsaturated, allowed if air subsaturated 1303 

     1304 

Pvapg/Pvaph   convert Qg/Qh to Qs via deposition 1305 

    if Qc < 1.e-5 g/g, f(Tair) 1306 

 1307 

Snow/  Based on Based on intercepts mapped according 1308 

Graupel fixed  to snow/graupel mass and Tair, revised,   1309 
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size  intercepts greater aggregation effect for snow 1310 

 1311 

Snow density =0.1 g cm-3 =0.05 g cm-3, f(snow size)  Brandes et al. (2007) 1312 

 1313 

Graupel =0.4 g cm-3 =0.3 g cm-3 if Qg < 2.0 g m-3  Brown and Swann (1997);  1314 

density    =0.5 g cm-3 if Qg > 2.0 g m-3   Straka and Mansell 2005 1315 

 1316 

Cloud ice None or Based on Hong, included in  Hong et al. (2004); 1317 

fall Speed Starr and Cox all sweep volumes   Starr and Cox (1985) 1318 

 1319 

Ern    Added rain evaporation correction Li et al. (2009) 1320 

    via tnw, max correction=1.30, 1321 

    Added Dwv correction factor      1322 

    1323 

Pmlts/Pmltg   Added Dwv correction factor 1324 

 1325 

Whaci**   Added from Lin, =0 if Qh=0,  Lin et al. (1983) 1326 

     1327 

Whacs**   Added from Lin, =0 if Qh/Qs=0 Lin et al. (1983) 1328 

    1329 

Whacg**   Follows Whacs, =0 if Qh/Qg=0  1330 

 1331 

Dhacw    Added from Lin, =0 if Qh=0  Lin et al. (1983) 1332 
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 1333 

Primh    convert Qh to Qg via riming,  see text on Milbrandt 1334 

    f(Phwet, Tair)    and Morrison (2013) 1335 

 1336 

Dhacr    Added from Lin, =0 if Qh/Qr=0 Lin et al. (1983) 1337 

 1338 

Phwet    Added from Lin, =0 if Qh=0  Lin et al. (1983) 1339 

 1340 

Phfr    Follows Pgfr but frozen rain  Rutledge and Hobbs (1984) 1341 

    = hail not graupel, =0 if Qr=0 1342 

 1343 

Phdep    Added from Lin, =0 if Qh=0  Lin et al. (1983) 1344 

      1345 

Phmlt/ Whacr   Added from Lin   Lin et al. (1983) 1346 

--------------------------------------------------------------------------------------------------------------------- 1347 

1348 
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Table 2.  Numerical experiments performed for both the 20 May 2012 MC3E and 23 February 1349 

1999 TRMM LBA cases using various options of the Goddard 1M bulk microphysics scheme 1350 

where N0h is the hail intercept.  1351 

 1352 

Experiment Description     Reference(s)/Notes 1353 

--------------------------------------------------------------------------------------------------------------------- 1354 

3ice0  3ICE graupel (original)   Rutledge and Hobbs (1983, 1984) 1355 

 1356 

3ice1  Original + no graupel dry collection  Lang et al. (2007) 1357 

 1358 

3ice3  Original + no graupel dry collection  Lang et al. (2011) 1359 

  + snow/graupel size mapping 1360 

 1361 

4ice sml New 4ICE with smaller hail   N0h = 0.0200 cm-4 1362 

   1363 

4iceb sml New 4ICE with smaller hail   N0h = 0.0200 cm-4 1364 

  + rain evaporation correction  1365 

 1366 

4iceb med New 4ICE with medium hail   N0h = 0.0020 cm-4 1367 

  + rain evaporation correction  1368 

 1369 

4iceb lrg New 4ICE with larger hail   N0h = 0.0002 cm-4 1370 

  + rain evaporation correction  1371 



 52 

Table A1.  Values of snow intercept mapping parameters used to obtain the characteristic snow 1372 

size mapping shown in Fig 1e.   1373 

 1374 

Snow Mapping Parameter  Cold Value  Warm Value  Value 1375 

--------------------------------------------------------------------------------------------------------------------- 1376 

Tcold            -25 oC 1377 

Twarm           0 oC 1378 

1sno      1.0 g m-3  0.0 g m-3 1379 

1dsno      4.0 g m-3  1.0 g m-3 1380 

exp1s      1.1   0.6  1381 

Slim           0.8  1382 

smlX            0.97 1383 

baseS            0.040 g m-3  1384 

exp1st           0.5 1385 

tns            0.10 cm-4 1386 

Tslopes  (cm-4 C-1)         0.1842 1387 
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  1388 
FIGURE CAPTIONS 1389 

 1390 

Figure 1.  Characteristic sizes (inverse of the slope parameter) of precipitation ice particle 1391 

distributions (inverse exponential) as a function of precipitation ice content and temperature for 1392 

(a) snow in the original Rutledge and Hobbs (1983,1984)-based Goddard scheme, (b) graupel in 1393 

the original Goddard scheme, (c) snow in the modified Goddard 3ICE scheme, (d) graupel in the 1394 

modified Goddard 3ICE scheme, (e) snow in the new Goddard 4ICE scheme, (f) graupel in the 1395 

new Goddard 4ICE scheme, and (g) snow density in the new  Goddard 4ICE scheme.  (a) – (d) 1396 

adapted from L2011.  1397 

 1398 

Figure 2.  Horizontal cross sections of radar reflectivity for the 20 May 2011 MC3E case (a) 1399 

observed by the NEXRAD Doppler radar network at 10:30 UTC over north-central Oklahoma 1400 

(figure obtained from the National Mosaic and Next Generation Quantitative Precipitation 1401 

Estimation) and (b) simulated using the new 4ICE scheme with smaller hail and bin rain 1402 

evaporation correction (4iceb sml) at a simulation time of 85.5 h (13:30 UTC).  The vertical east-1403 

west cross section of radar reflectivity shown in (c) was taken through the center of the domain 1404 

from the same simulation and time as (b). 1405 

 1406 

Figure 3.  Time-height cross sections of maximum radar reflectivity for the 20 May 2011 MC3E 1407 

case (a) observed by NEXRAD Doppler radar and simulated using the (b) original 3ICE, (c) 1408 

level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE 1409 

with smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail and bin 1410 

rain evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation 1411 
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correction Goddard microphysics scheme.  Right axes are heights in km, while horizontal dashed 1412 

lines show the level of indicated environmental temperatures in degrees C.  Times range from 00 1413 

UTC 20 May to 00 UTC 21 May 2011. 1414 

 1415 

Figure 4.  Same as Fig. 2c except showing vertical cross sections of simulated (a) vertical 1416 

velocities (b) graupel fall speeds, and (c) hail fall speeds. 1417 

 1418 

Figure 5.  Vertical profiles of maximum radar reflectivity for the 20 May 2011 MC3E case 1419 

extracted between 06 and 12 UTC from Doppler radar observations and between 09 and 15 UTC 1420 

from the three Goddard 3ICE simulations and four Goddard 4ICE simulations shown in Figure 2. 1421 

 1422 

Figure 6.  Radar reflectivity CFADs for the 20 May 2011 MC3E case constructed from (a) 1423 

NEXRAD Doppler radar observations and simulations using the (b) original 3ICE, (c) level 1 1424 

improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE with 1425 

smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail and bin rain 1426 

evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation correction 1427 

Goddard microphysics scheme.  Heavy thick lines in (b) - (h) show the edges of the core 1428 

observed frequency probabilities [i.e., the 5 % contours shown in (a)] and the outer limits of the 1429 

observed frequency distributions [i.e., the 0 % contours shown in (a)].  Right axes are heights in 1430 

km, while horizontal dashed lines show the level of indicated environmental temperatures in 1431 

degrees C. 1432 

 1433 
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Figure 7.  Vertical profiles of PDF matching scores (i.e., the amount of overlap between the 1434 

simulated and observed PDF at each level) for the 20 May 2011 MC3E simulations using the (b) 1435 

original 3ICE, (c) level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller 1436 

hail, (f) new 4ICE with smaller hail and bin rain evaporation correction, (g) new 4ICE with 1437 

moderate hail and bin rain evaporation correction, and (h) new 4ICE with larger hail and bin rain 1438 

evaporation correction Goddard microphysics scheme.  1439 

 1440 

Figure 8.  Horizontal cross sections of radar reflectivity for the 23 February 1999 LBA case (a) 1441 

observed by the S-Pol radar at 20:50 UTC over Amazonia overlaid with storm-relative winds 1442 

from a dual-Doppler wind analysis and the track of the University of North Dakota Citation 1443 

aircraft (figure adapted from http://radarmet.atmos.colostate.edu/lba_trmm/23feblba_cappi.html 1444 

and Lang et al. 2007) and (b) simulated using the new 4ICE scheme with smaller hail and bin 1445 

rain evaporation correction (4iceb sml) at a simulation time of 330 minutes (21:00 UTC).  The 1446 

vertical east-west cross section of radar reflectivity shown in (c) was taken through the center of 1447 

the domain from the same simulation and time as (b).  The solid rectangle and dashed box shown 1448 

in (b) denote the north-south oriented rectangular patch of higher sensible/lower latent heat 1449 

fluxes (Ji Parana) imposed to initiate convection and the analysis domain, respectively. 1450 

 1451 

Figure 9.  Time-height cross sections of maximum radar reflectivity for the 23 February 1999 1452 

LBA case (a) observed by the S-pol ground-based radar and simulated using the (b) original 1453 

3ICE, (c) level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) 1454 

new 4ICE with smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail 1455 

and bin rain evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation 1456 
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correction Goddard microphysics scheme.  Right axes are heights in km, while horizontal dashed 1457 

lines show the level of indicated environmental temperatures in degrees C.  Model data were 1458 

taken from a 64 km x 64 km subdomain.  Black and gray labels at the bottom of (a) are the UTC 1459 

and approximate matching times, respectively. 1460 

 1461 

 Figure 10.  Same as Fig. 8c except showing vertical cross sections of simulated (a) vertical 1462 

velocities (b) graupel fall speeds, and (c) hail fall speeds. 1463 

 1464 

Figure 11.  Vertical profiles of the maximum radar reflectivity for the 23 February 1999 LBA 1465 

case extracted from the S-pol radar observations and the last 60 minutes of the three Goddard 1466 

3ICE simulations and four Goddard 4ICE simulations shown in Figure 6.  Model data were taken 1467 

from a 64 km x 64 km subdomain. 1468 

 1469 

Figure 12.  Radar reflectivity CFADs for the 23 February 1999 LBA case constructed from (a) S-1470 

pol radar observations and the final 60 minutes of the simulations using the (b) original 3ICE, (c) 1471 

level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE 1472 

with smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail and bin 1473 

rain evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation 1474 

correction Goddard microphysics scheme.  Heavy thick lines in (b) - (h) show the edges of the 1475 

core observed frequency probabilities [i.e., the 5 % contours shown in (a)] and the outer limits of 1476 

the observed frequency distributions [i.e., the 0 % contours shown in (a)].  Right axes are heights 1477 

in km, while horizontal dashed lines show the level of indicated environmental temperatures in 1478 

degrees C.  Model data were taken from a 64 km x 64 km subdomain. 1479 
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 1480 

Figure 13.  Vertical profiles of PDF matching scores for the 23 February 1999 LBA simulations 1481 

over the final 60 minutes using the (b) original 3ICE, (c) level 1 improved 3ICE, (d) level 3 1482 

improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE with smaller hail and bin rain 1483 

evaporation correction, (g) new 4ICE with moderate hail and bin rain evaporation correction, and 1484 

(h) new 4ICE with larger hail and bin rain evaporation correction Goddard microphysics scheme.  1485 

Model data were taken from a 64 km x 64 km subdomain. 1486 

 1487 

Figure 14.  Instantaneous surface rainfall rates corresponding to the horizontal radar reflectivity 1488 

cross sections shown for the 20 May MC3E case in Fig. 2b (a) and the 23 February LBA case in 1489 

Fig. 8b (b).  (c) surface rainfall histograms observed by the Doppler radar network around the 1490 

MC3E sounding array from 06-12 UTC and simulated with Goddard microphysics from 09-15 1491 

UTC for the 20 May MC3E case.  (d)  surface rainfall histograms derived from ground-based 1492 

radar observations collected from 2002-2130 UTC and simulated over the final 60 minutes of 1493 

simulation time over a 64 km x 64 km subdomain (shown by the dashed square in panel b) for 1494 

the 23 February 1999  case using the Goddard microphysics schemes. 1495 

 1496 

Figure 15.  Distribution of surface cold pool intensities for the 20 May MC3E case for the 1497 

smaller hail runs with and without the bin rain evaporation correction, 4iceb sml and 4ice sml, 1498 

respectively.  Intensities are shown in terms of the surface potential temperature deviations (K) 1499 

over the 09 to 15 UTC analysis period for regions where the lowest level rain mixing ratio 1500 

exceeds 0.1 g m-3. 1501 
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 60 

Figure 1.  Characteristic sizes (inverse of the slope parameter) of precipitation ice particle 1546 
distributions (inverse exponential) as a function of precipitation ice content and temperature for 1547 
(a) snow in the original Rutledge and Hobbs (1983,1984)-based Goddard scheme, (b) graupel in 1548 
the original Goddard scheme, (c) snow in the modified Goddard 3ICE scheme, (d) graupel in the 1549 
modified Goddard 3ICE scheme, (e) snow in the new Goddard 4ICE scheme, (f) graupel in the 1550 
new Goddard 4ICE scheme, and (g) snow density in the new Goddard 4ICE scheme.  (a) – (d) 1551 
adapted from L2011.  1552 
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Figure 2.  Horizontal cross sections of radar reflectivity for the 20 May 2011 MC3E case (a) 1559 
observed by the NEXRAD Doppler radar network at 10:30 UTC over north-central Oklahoma 1560 
(figure obtained from the National Mosaic and Next Generation Quantitative Precipitation 1561 
Estimation) and (b) simulated using the new 4ICE scheme with smaller hail and bin rain 1562 
evaporation correction (4iceb sml) at a simulation time of 85.5 h (13:30 UTC).  The vertical east-1563 
west cross section of radar reflectivity shown in (c) was taken through the center of the domain 1564 
from the same simulation and time as (b). 1565 
  1566 
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Figure 3.  Time-height cross sections of maximum radar reflectivity for the 20 May 2011 MC3E 1576 
case (a) observed by NEXRAD Doppler radar and simulated using the (b) original 3ICE, (c) 1577 
level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE 1578 
with smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail and bin 1579 
rain evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation 1580 
correction Goddard microphysics scheme.  Right axes are heights in km, while horizontal dashed 1581 
lines show the level of indicated environmental temperatures in degrees C.  Times range from 00 1582 
UTC 20 May to 00 UTC 21 May 2011. 1583 
  1584 



 66 

 1585 
 1586 

 1587 

 1588 

 1589 

  1590 

c 
 

b 
 

a 
 



 67 

 1591 
Figure 4.  Same as Fig. 2c except showing vertical cross sections of simulated (a) vertical 1592 
velocities (b) graupel fall speeds, and (c) hail fall speeds.  1593 
  1594 
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Figure 5.  Vertical profiles of maximum radar reflectivity for the 20 May 2011 MC3E case 1599 
extracted between 06 and 12 UTC from Doppler radar observations and between 09 and 15 UTC 1600 
from the three Goddard 3ICE simulations and four Goddard 4ICE simulations shown in Figure 2. 1601 
  1602 
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Figure 6.  Radar reflectivity CFADs for the 20 May 2011 MC3E case constructed from (a) 1613 
NEXRAD Doppler radar observations and simulations using the (b) original 3ICE, (c) level 1 1614 
improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE with 1615 
smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail and bin rain 1616 
evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation correction 1617 
Goddard microphysics scheme.  Heavy thick lines in (b) - (h) show the edges of the core 1618 
observed frequency probabilities [i.e., the 5 % contours shown in (a)] and the outer limits of the 1619 
observed frequency distributions [i.e., the 0 % contours shown in (a)].  Right axes are heights in 1620 
km, while horizontal dashed lines show the level of indicated environmental temperatures in 1621 
degrees C.1622 
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Figure 7.  Vertical profiles of PDF matching scores (i.e., the amount of overlap between the 1625 
simulated and observed PDF at each level) for the 20 May 2011 MC3E simulations using the (b) 1626 
original 3ICE, (c) level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller 1627 
hail, (f) new 4ICE with smaller hail and bin rain evaporation correction, (g) new 4ICE with 1628 
moderate hail and bin rain evaporation correction, and (h) new 4ICE with larger hail and bin rain 1629 
evaporation correction Goddard microphysics scheme. 1630 
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Figure 8.  Horizontal cross sections of radar reflectivity for the 23 February 1999 LBA case (a) 1637 
observed by the S-Pol radar at 20:50 UTC over Amazonia overlaid with storm-relative winds 1638 
from a dual-Doppler wind analysis and the track of the University of North Dakota Citation 1639 
aircraft (figure adapted from http://radarmet.atmos.colostate.edu/lba_trmm/23feblba_cappi.html 1640 
and Lang et al. 2007) and (b) simulated using the new 4ICE scheme with smaller hail and bin 1641 
rain evaporation correction (4iceb sml) at a simulation time of 330 minutes (21:00 UTC).  The 1642 
vertical east-west cross section of radar reflectivity shown in (c) was taken through the center of 1643 
the domain from the same simulation and time as (b).  The solid rectangle and dashed box shown 1644 
in (b) denote the north-south oriented rectangular patch of higher sensible/lower latent heat 1645 
fluxes (Ji Parana) imposed to initiate convection and the analysis domain, respectively. 1646 
 1647 
  1648 
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Figure 9.  Time-height cross sections of maximum radar reflectivity for the 23 February 1999 1658 
LBA case (a) observed by the S-pol ground-based radar and simulated using the (b) original 1659 
3ICE, (c) level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) 1660 
new 4ICE with smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail 1661 
and bin rain evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation 1662 
correction Goddard microphysics scheme.  Right axes are heights in km, while horizontal dashed 1663 
lines show the level of indicated environmental temperatures in degrees C.  Model data were 1664 
taken from a 64 km x 64 km subdomain.  Black and gray labels at the bottom of (a) are the UTC 1665 
and approximate matching times, respectively. 1666 
  1667 
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Figure 10.  Same as Fig. 8c except showing vertical cross sections of simulated (a) vertical 1674 
velocities (b) graupel fall speeds, and (c) hail fall speeds.  1675 
 1676 
  1677 
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Figure 11.  Vertical profiles of the maximum radar reflectivity for the 23 February 1999 LBA 1681 
case extracted from the S-pol radar observations and the last 60 minutes of the three Goddard 1682 
3ICE simulations and four Goddard 4ICE simulations shown in Figure 6.  Model data were taken 1683 
from a 64 km x 64 km subdomain.   1684 
  1685 
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Figure 12.  Radar reflectivity CFADs for the 23 February 1999 LBA case constructed from (a) S-1734 
pol radar observations and the final 60 minutes of the simulations using the (b) original 3ICE, (c) 1735 
level 1 improved 3ICE, (d) level 3 improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE 1736 
with smaller hail and bin rain evaporation correction, (g) new 4ICE with moderate hail and bin 1737 
rain evaporation correction, and (h) new 4ICE with larger hail and bin rain evaporation 1738 
correction Goddard microphysics scheme.  Heavy thick lines in (b) - (h) show the edges of the 1739 
core observed frequency probabilities [i.e., the 5 % contours shown in (a)] and the outer limits of 1740 
the observed frequency distributions [i.e., the 0 % contours shown in (a)].  Right axes are heights 1741 
in km, while horizontal dashed lines show the level of indicated environmental temperatures in 1742 
degrees C.  Model data were taken from a 64 km x 64 km subdomain.   1743 
  1744 
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Figure 13.  Vertical profiles of PDF matching scores for the 23 February 1999 LBA simulations 1747 
over the final 60 minutes using the (b) original 3ICE, (c) level 1 improved 3ICE, (d) level 3 1748 
improved 3ICE, (e) new 4ICE with smaller hail, (f) new 4ICE with smaller hail and bin rain 1749 
evaporation correction, (g) new 4ICE with moderate hail and bin rain evaporation correction, and 1750 
(h) new 4ICE with larger hail and bin rain evaporation correction Goddard microphysics scheme.  1751 
Model data were taken from a 64 km x 64 km subdomain. 1752 
  1753 
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Figure 14.  Instantaneous surface rainfall rates corresponding to the horizontal radar reflectivity 1756 
cross sections shown for the 20 May MC3E case in Fig. 2b (a) and the 23 February LBA case in 1757 
Fig. 8b (b).  (c) surface rainfall histograms observed by the Doppler radar network around the 1758 
MC3E sounding array from 06-12 UTC and simulated with Goddard microphysics from 09-15 1759 
UTC for the 20 May MC3E case.  (d)  surface rainfall histograms derived from ground-based 1760 
radar observations collected from 2002-2130 UTC and simulated over the final 60 minutes of 1761 
simulation time over a 64 km x 64 km subdomain (shown by the dashed square in panel b) for 1762 
the 23 February 1999  case using the Goddard microphysics schemes. 1763 
  1764 
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Figure 15.  Distribution of surface cold pool intensities for the 20 May MC3E case for the 1767 
smaller hail runs with and without the bin rain evaporation correction, 4iceb sml and 4ice sml, 1768 
respectively.  Intensities are shown in terms of the surface potential temperature deviations (K) 1769 
over the 09 to 15 UTC analysis period for regions where the lowest level rain mixing ratio 1770 
exceeds 0.1 g m-3. 1771 


