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Abstract

The interstellar presence of protonated nitrous oxide has been suspected for some time. Using

established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental

vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and

its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within

6 MHz of their experimental values and the DJ quartic distortion constants agree with experiment

to within 3%. The known gas phase O−H stretch of NNOH+ is 3330.91 cm−1, and the vibrational

configuration interaction computed result is 3330.9 cm−1. Other spectroscopic constants are also

provided, as are the rest of the fundamental vibrational frequencies for NNOH+ and its deuter-

ated isotopologue. This high-accuracy data should serve to better inform future observational or

experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the

laboratory.
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I. INTRODUCTION

It has been long-believed that protonated nitrous oxide should be present in the inter-

stellar medium (ISM).1 Currently, this cation has not yet been detected in the ISM, but

the molecular precursor, N2O, has been observed in the giant molecular cloud Sagittarius

B2.2 Reaction schemes necessary to create protonated nitrous oxide and its isotopologue are

believed to be closely related to those that to lead to the formation of HOCO+,3 which has

also been previously detected in the ISM.4 There are two distinct isomers present on the pro-

tonated nitrous oxide potential energy surface, and various charge transfer reactions leading

to the creation of either isomer are possible in the ISM and other astronomically-relevant

environments.5

In 1986, an initial study into this molecular system was able to deduce rotational and

quartic distortion constants for at least one of the isomers in the ground vibrational state

and the v = 1 for the ν1 hydrogen-stretch, but it was still uncertain as to which isomer

was present.6 Shortly thereafter, Bogey et al. 1 corroborated the ground vibrational state

data but was not able to provide any more insight into the molecular structure. Initial

theoretical examinations indicated that the O-protonated isomer is the more energetically

stable of the two.7 Furthermore, the equilibrium rotational constants of NNOH+ computed

in the same study more closely resemble those from the experiments than do the equilibrium

HNNO+ rotational constants. Later experimental work8 strengthened the conclusion that

NNOH+ was the isomer observed. Further theoretical study utilized a myriad of methods to

determine the same result unequivocally,9 and modern experiments also agree.10,11 Recent,

highly-accurate computations report the O-protonated isomer (NNOH+) to be 4.02 kcal/mol

lower in energy than the N-protonated isomer (HNNO+), and the transition state between

the two is 86.06 kcal/mol above the NNOH+ minimum.11

The ν1 O−H stretching fundamental vibrational frequency was first successfully measured

at 3330.91 cm−1 in the initial study undertaken by Amano 6 . Ne matrix-isolation data has

since followed12 and shows a red-shift of 43.3 cm−1 in this fundamental frequency. NNOD+

was measured in the same Ne matrix setup, and the O−D fundamental is reported to be

2426.3 cm−1. However, none of the other fundamental vibrational frequencies have been

measured experimentally in either the gas phase or in matrix studies. Computations have

also been limited to the harmonic approximation,9,12 and further refinement to these values
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has not been provided in the literature.

The vibrational and rotational properties of several tetra-atomic, monohydrogen, lin-

ear/quasilinear cations of interstellar significance have been examined by our group recently

through the use of quartic force fields (QFFs). Cations included are: HOCO+ (Ref. 13),

HSCO+/HOCS+ (Ref. 14), and l-C3H
+ (Ref. 15), where accuracies compared to experiment

for many of the known spectroscopic quantities have been better than 0.1%. Additionally,

recent work on isocyanic acid,16 which is isoelectronic to NNOH+, has also shown high-

accuracy in the use of QFFs. Hence, we are applying the techniques shown previously

to produce accurate results for these systems to further elucidate the vibrational frequen-

cies and spectroscopic constants of the lower energy NNOH+ isomer. The reference data

generated for NNOH+ are timely for the recent commissioning of the newest generation

of space-based and ground-based telescopes including the Atacama Large Millimeter Array

(ALMA), the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the upcom-

ing James Webb Space Telescope (JWST), as well as for use in analyzing archived data

from completed missions such as the Herschel Space Observatory. This is especially true

for observational studies that might use the Echelon-CROSS-Echelle Spectrograph (EXES)

instrument on SOFIA, which records high-resolution spectra in the 355 cmi−1 to the 2200

cm−1 range. Finally, in order to fully characterize the rovibrational spectra of NNOH+

whether for laboratory studies or comparison to astronomical observations, elucidation of

reference data such as those provided in this work are essential, especially in the vibrational

frequency regime.

II. COMPUTATIONAL DETAILS

The basic procedure utilized here has been extensively described in Refs. 17–19, as well as

Ref. 13 for quasi-linear molecules of this type. In brief, the reference geometry is determined

utilizing RHF-CCSD(T) (Refs. 20–22) with a three-point cc-pVTZ, cc-pVQZ, and cc-pV5Z

basis set23–25 extrapolation27 corrected for core-correlation from the cc-pCVTZ basis set and

scalar relativity28 using the cc-pVTZ-DK basis set. From this point, 743 symmetry-unique

displacements are generated for coordinates composed of the three bond lengths, � H−O−N,

and LINX/LINY coordinates for the quasilinear � N−N−O and torsion. LINX/LINY coor-

dinates are defined in Ref. 26 and discussed in Ref. 13 for the related HOCO+ cation. At
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each point, CCSD(T)/cc-pVXZ (where X = T,Q, 5) energies are computed and extrapo-

lated to the complete basis set limit. The same further additive corrections are included

once more for core-correlation and scalar relativity to define the CcCR QFF. All electronic

structure computations are performed at the CCSD(T) level of theory using the MOLPRO

2006.1 program.29

After a least squares fit where the sum of squared residuals is 3.4× 10−16 a.u.2, the force

constants are transformed such that the gradients are identically zero. The Cartesian deriva-

tives are computed with INTDER 2005 (Ref. 26) and, then, used to produce spectroscopic

constants,30 and vibrational frequencies31,32 via second-order perturbation theory (VPT2)

using the SPECTRO program.33 After the force constants are transformed into Morse-cosine

coordinates so that they have proper limiting behavior,34,35 vibrational configuration inter-

action (VCI) theory can be employed with the the MULTIMODE program36,37 to provide

further analysis of the vibrational frequencies. The 2ν5 = ν4 Fermi resonance is included in

the SPECTRO computations for NNOH+, and the 2ν5 = ν3 = ν4 polyad38 is included for

NNOD+. The VCI procedure utilized here has a 5-mode representation (5MR) and requires

13 contracted basis functions composed of 25 primitive functions with 16 Hermite-Gauss

(HEG) quadrature points for the a′ modes and 9 contracted basis functions composed of 21

primitive functions with 12 HEG points for the a′′ mode.

III. RESULTS AND DISCUSSION

The force constants produced for this study are given in Table I and the anharmonic con-

stant matrix in Table II. The equilibrium geometry is depicted in Fig. 1, and the geometric

and spectroscopic constants for both NNOH+ and NNOD+ are listed in Table III. In this ta-

ble, comparison to previous experimental work demonstrates the accuracy of the QFFs. The

equilibrium geometric parameters agree well with recent high-level computations, and the

given equilibrium rotational constants show improvement over previous theory. The zero-

point rotational constants are in excellent agreement with experimental results for both

isotopologues. The NNOH+ Beff computed with the zero-point rotational constants (11

198.57 MHz), where Beff = B0+C0

2
(derived from the K = 0 form of the prolate top rota-

tional energy equation given in Appendix C of Ref. 39), is also very close to its corresponding

experimental value (11 192.919 4 MHz).10
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The quartic (D) and sextic (H) centrifugal distortion constants from the Watson S-

reduced Hamiltonian are equilibrium values, but they exhibit good agreement with experi-

mental results, especially theD constants. TheDJ constants for both NNOH+ and NNOD+,

as an example, correspond to their experimental counterparts to within 3% error. The com-

puted H-type constants are not as good as the D-type constants for NNOH+, but HJK is

set to zero in Ref. 40 since few lines were observed. As a result of this approximation, a

noticeable difference between theory and experiment is present for the H-type constants.

The computed NNOD+ H-type constants are much closer to the experimentally determined

values than those of the standard isotopologue since these constants could be derived from

the larger number of rotational lines observed for this isotopologue. The experimental Deff

of 7.765 kHz is determined by utilizing the A, B, C, and DJ constants given by Bogey

et al. 40 and the same equation as above for Beff from Ref. 39 with K = 0. The theoretical

Deff is computed in the same manner but with A0, B0, C0, and the equilibrium DJ . It is

7.608 kHz. The difference between the two is only 0.157 kHz or just 2.02%.

Interestingly, recent attribution of lines observed in the Horsehead nebula photodissocia-

tion region (PDR) to l-C3H
+ (Ref. 41) has been questioned15 mainly on the grounds that the

D constant derived from the observations, 7.652 kHz, is too large for it to match the CcCR

De of l-C3H
+ at 4.248 kHz. The NNOH+ Deff of 7.608 kHz is actually within 1% of the

value necessary to match the D from the astronomical observations. However, the NNOH+

Beff , whether from the CcCR QFF computations or from experiment,10 is more than 45

MHz lower than the necessary 11 244.947 4 MHz B. Hence, NNOH+ probably cannot be

the carrier of the observed rotational lines in this PDR even though the D-type constants

are very close. For more discussion see Ref. 42 regarding 1 1A′ C3H
− as a potential carrier

for the observed lines.

The fundamental vibrational frequencies are listed in Table IV. The NNOH+ harmonic

vibrational frequencies are in line with those computed previously9 with the differences be-

tween the harmonic frequencies about what should be expected for the differences in the

older CCDS(T)/TZ2P calculation compared to the state-of-the-art CcCR QFF reported

here. The anharmonic computations performed here with VPT2 and VCI are notably con-

sistent with one another. The VPT2/VCI difference for the ν2 N−N stretching frequency,

for instance, is only 0.4 cm−1, and the largest difference is 2.6 cm−1 for the ν4 N−O stretch.

The ν6 torsional frequency is also in good agreement between VPT2 and VCI with a dif-
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ference of 1.9 cm−1. The torsional mode has often been problematic for single-reference

MULTIMODE without the reaction path coordinate formulation,19,43,44 but the use of linear

coordinates for the heavy atom bond angle in similar systems has alleviated this issue to

some extent,13,14 as it appears to do so here.

Comparison of the NNOH+ CcCR QFF ν1 O−H stretching frequency from either VPT2

or VCI to the the known gas phase frequency for the ν1 O−H stretch is exceptional. This

frequency has been observed at 3330.91 cm−1 in the gas phase.6 VPT2 is 1.1 cm−1 higher, but

VCI puts this value exactly at 3330.9 cm−1. CcCR QFF accuracies within 1 cm−1 for known

gas phase data are also reported for the O−H stretch of HOCO+ where VCI is slightly more

accurate than VPT2, as well.13 In each case, the QFF benefits from closed-shell reference

wavefunctions in the electronic structure computations, but the additional corrections for

core correlation and scalar relativity also improve the accuracy of the QFF. As a result of

this agreement between theory and experiment for the gas phase O−H stretch, comparison

between the matrix-isolation ν1 frequency
12 and the theoretical result is identical. Hence, the

matrix O−H stretching frequency is red-shifted by 43.3 cm−1 away from the VCI frequency.

The NNOD+ harmonic frequencies computed with the CcCR QFF are similar to those

computed via RB3LYP/cc-pVTZ.12 There are positive anharmonicities present in the two

lowest frequency modes of NNOD+. Similar behavior has also been noted for the other

tetra-atomic cations,13,14,45 is present in NNOH+, and has been suspected in one tetra-

atomic quasilinear radical, HCCO.46 Agreement between VPT2 and VCI is actually better

between the fundamental frequencies for NNOD+ than it is for the standard isotopologue.

The difference in the ν3 D−O−N bend is 0.1 cm−1, and the largest VPT2/VCI difference is

0.7 cm−1 for the ν4 N−O stretch once more. No gas phase data is available for the deuterated

isotopologue, but the Ne matrix experiment puts the ν1 O−D stretch at 2426.3 cm−1. This

is 41.0 cm−1 lower than the VCI O−D stretch, similar to the 43.3 cm−1 red-shift for the

O−H stretch in NNOH+. These consistencies indicate that the gas phase O−D stretch of

NNOD+ should be very close to the CcCR QFF VCI frequency at 2467.3 cm−1. The other

fundamental vibrational frequencies should also be very close to their experimental gas phase

counterparts.

The ν3 through ν6 fundamentals for both isotopologues fall within the spectral range cov-

ered by the EXES (SOFIA) instrument. Hence, based on the previously published infrared

instrensities7, it is expected that ν3 or ν4 would be most easily observed using EXES, though
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it would also be important to ascertain information about the target and the atmospheric

conditions present for observation of a given target.

IV. CONCLUSIONS

As the sensitivity of high-resolution telescopes increases and experimental procedures

improve, it will be necessary to have highly accurate reference data for new molecules of

interest to both astronomers and experimentalists. NNOH+ has been postulated to exist in

the ISM, but a detection has yet to be reported. Only the ν1 O−H stretch has been observed

experimentally both in the gas and condensed phases. The NNOD+ O−D stretch has also

been observed in Ne matrix experiments. High-accuracy computational reference data for the

unknown fundamental vibrational frequencies and spectroscopic constants is provided here.

The gas phase ν1 O−H stretch is nearly coincident with the CcCR VCI frequency at 3330.9

cm−1. The experimentally known spectroscopic constants are in excellent agreement with

the computational results. As a result, the highly-accurate rovibrational results reported

in this study should provide the necessary reference data to assist in the detection of this

molecule in the ISM and in future laboratory experiments.
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T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf,

“Molpro, version 2006.1, a package of ab initio programs,” (2006), see http://www.molpro.net.

30 D. Papousek and M. R. Aliev, Molecular Vibration-Rotation Spectra (Elsevier, Amsterdam,

1982).

31 I. M. Mills, in Molecular Spectroscopy - Modern Research, edited by K. N. Rao and C. W.

Mathews (Academic Press, New York, 1972) pp. 115–140.

32 J. K. G. Watson, in Vibrational Spectra and Structure, edited by J. R. During (Elsevier, Ams-

terdam, 1977) pp. 1–89.

33 J. F. Gaw, A. Willets, W. H. Green, and N. C. Handy, in Advances in Molecular Vibrations and

Collision Dynamics, edited by J. M. Bowman and M. A. Ratner (JAI Press, Inc., Greenwich,

Connecticut, 1991) pp. 170–185.

34 C. E. Dateo, T. J. Lee, and D. W. Schwenke, J. Chem. Phys. 101, 5853 (1994).

35 R. C. Fortenberry, X. Huang, A. Yachmenev, W. Thiel, and T. J. Lee, Chem. Phys. Lett.

(2013), in press.

36 S. Carter, J. M. Bowman, and N. C. Handy, Theor. Chem. Acc. 100, 191 (1998).

37 J. M. Bowman, S. Carter, and X. Huang, Int. Rev. Phys. Chem. 22, 533 (2003).

38 J. M. L. Martin, T. J. Lee, P. R. Taylor, and J.-P. François, J. Chem. Phys. 103, 2589 (1995).
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FIG. 1. NNOH+ at the CcCR equilibrium geometry.

TABLE I. The NNOH+ simple-internal (1-4), LINX (5) and LINY (6) CcCR QFF Quadratic,

Cubic, and Quartic Force Constants (in mdyn/Ån·radm).a

F11 6.934 532 F431 -0.0139 F1111 303.77 F4432 0.01 F5531 0.15

F21 0.049 406 F432 -0.0520 F2111 -0.89 F4433 -0.16 F5532 2.89

F22 7.702 967 F433 -0.1131 F2211 -0.26 F4441 1.22 F5533 0.92

F31 -0.120 510 F441 -0.5874 F2221 8.86 F4442 1.53 F5541 -0.10

F32 0.498 582 F442 -0.3618 F2222 382.56 F4443 0.59 F5542 -0.01

F33 21.257 633 F443 -0.3243 F3111 0.10 F4444 -0.16 F5543 -0.06

F41 0.107 165 F444 -1.3098 F3211 0.35 F5111 -0.01 F5544 0.26

F42 0.834 484 F511 -0.0277 F3221 -0.68 F5211 -0.01 F5551 0.01

F43 -0.011 877 F521 -0.0187 F3222 2.77 F5221 0.10 F5552 0.73

F44 1.004 344 F522 -0.5501 F3311 0.06 F5222 0.50 F5553 0.61

F51 -0.010 485 F531 -0.0196 F3321 -0.27 F5311 0.02 F5554 -0.07

F52 0.114 112 F532 -0.3960 F3322 5.38 F5321 0.23 F5555 3.35

F53 0.124 638 F533 -0.2356 F3331 0.84 F5322 0.90 F6611 -0.02

F54 0.054 977 F541 -0.0348 F3332 -0.51 F5331 0.07 F6621 -0.17

F55 0.390 995 F542 0.1129 F3333 950.94 F5332 0.65 F6622 2.94

F66 0.442 834 F543 -0.2099 F4111 -0.96 F5333 -0.30 F6631 0.06

F111 -48.7568 F544 -0.0699 F4211 0.35 F5411 -0.11 F6632 2.88

F211 0.4488 F551 0.0906 F4221 0.90 F5421 0.07 F6633 0.93

F221 -1.8947 F552 -0.9025 F4222 -4.95 F5422 -0.42 F6641 0.02

F222 -61.3566 F553 -1.4970 F4311 -0.06 F5431 0.14 F6642 -0.05

F311 -0.0823 F554 -0.0269 F4321 0.36 F5432 0.09 F6643 -0.03

F321 0.5146 F555 -0.3490 F4322 -0.16 F5433 -0.02 F6644 -0.01

F322 -1.7547 F661 0.0521 F4331 0.06 F5441 0.14 F6651 0.05

F331 0.0204 F662 -1.1419 F4332 -0.46 F5442 0.19 F6652 0.24

F332 -0.1365 F663 -1.3863 F4333 0.05 F5443 0.16 F6653 0.18

F333 -162.4211 F664 -0.0417 F4411 -0.50 F5444 -0.12 F6654 -0.01

F411 -0.1491 F665 -0.1206 F4421 0.84 F5511 -0.01 F6655 1.10

F421 -0.8169 F4422 0.44 F5521 -0.28 F6666 3.41

F422 -1.6277 F4431 0.15 F5522 2.51
a1 mdyn = 10−8 N; n and m are exponents corresponding to the number of units from the type

of modes present in the specific force constant.
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TABLE II. NNOH+ and NNOD+ CcCR QFF Anharmonic Constant Matrix (in cm−1).a

mode 1 2 3 4 5 6

NNOH+ 1 -86.117

2 -4.714 -15.321

3 -33.951 -3.520 -11.183

4 0.386 8.025 -3.919 -12.451

5 0.109 -10.936 1.678 -5.182∗ 0.549∗

6 1.049 -11.427 1.738 1.661 40.149 -0.212

NNOD+ 1 -45.651

2 -3.218 -15.449

3 -15.670 -2.579 -2.374

4 0.942 7.089 -17.519 -9.150

5 0.549 -11.229 3.794b -3.003∗ -0.157∗

6 0.335 -10.690 1.741 0.049 21.907 -0.038

a Constants marked with an asterisk (∗) are effected by Fermi resonances.
b This term does not consider the 2ν5 = ν3 Fermi resonance.
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TABLE III. The CcCR QFF Rα Vibrationally-Averaged (Zero-Point) and Equilibrium Structures, Rotational Constants,
Dipole Moment, Vibration-Rotation Interaction Constants, and S-Reduced Hamiltonian Terms of NNOH+ and NNOD+ with
Comparison to Experiment.

NNOH+ NNOD+

This Work Previous This Work Previous

r0(O−H) 0.998 804 Å 0.996 028 Å

r0(O−N) 1.276 293 Å 1.276 544 Å

r0(N−N) 1.105 147 Å 1.104 925 Å

� 0(H−O−N) 108.326◦ 108.270◦
� 0(N−N−O) 172.110◦ 172.058◦

A0 625 221.3 MHz 625 957.716 MHza 348 498.3 MHz 349 107.385 MHza

B0 11 307.00 MHz 11 301.562 8 MHza 10 753.40 MHz 10 747.354 03 MHza

C0 11 090.15 MHz 11 084.280 0 MHza 10 412.83 MHz 10 406.948 46 MHza

Beff 11 198.57 MHz 11 192.919 4 MHzb 10 583.12 MHz

Deff 7.608 kHz 7.765 kHza 15.941 kHz

DJ 5.215 kHz 5.365 08 kHza 4.411 kHz 4.548 97 kHza

DJK 0.697 MHz 0.725 48 MHza 0.518 MHz 0.514 886 MHza

DK 223.700 MHz 242.8 MHzc 62.216 MHz 69.697 MHza

d1 -0.081 kHz -0.095 0 kHza -0.123 kHz -0.142 302 kHza

d2 -0.012 kHz -0.017 97 kHza -0.029 kHz -0.038 26 kHza

HJ -3.159 mHz -24.692 mHz

HJK 0.457 Hz 0.0 Hzd 1.560 Hz 1.687 Hza

HKJ -1.882 kHz 0.228 kHza -0.832 kHz -0.516 0 kHza

HK -188.103 kHz 41.399 kHz

H1 0.049 mHz 0.025 mHz

H2 0.074 mHz 0.213 mHz

H3 0.014 mHz 0.044 mHz

τaaaa -897.607 MHz -250.957 MHz

τbbbb -0.022 MHz -0.019 MHz

τcccc -0.020 MHz -0.017 MHz

τaabb -2.370 MHz -1.887 MHz

τaacc -0.461 MHz -0.221 MHz

τbbcc -0.021 MHz -0.018 MHz

Φaaa -189 984.848 Hz 40 568.463 Hz

Φbbb -0.003 Hz -0.002 Hz

Φccc -0.003 Hz -0.002 Hz

Φaab 290.115 Hz 102.967 Hz

Φabb 1.855 Hz 2.440 Hz

Φaac -2 173.025 Hz -932.731 Hz

Φbbc -0.005 Hz -0.004 Hz

Φacc -1.009 Hz -0.436 Hz

Φbcc -0.005 Hz -0.003 Hz

Φabc 0.857 Hz 2.230 Hz

αA 1 24 543.4 MHz 10 693.5 MHz

αA 2 2 175.3 MHz 452.8 MHz

αA 3 -27 935.3 MHz -6 656.6 MHz

αA 4 -304.6 MHz -5 933.3 MHz

αA 5 5 127.5 MHz 4 312.2 MHz

αA 6 -5 140.9 MHz -2 188.8 MHz

αB 1 7.7 MHz 9.9 MHz

αB 2 77.4 MHz 73.1 MHz

αB 3 -12.9 MHz 10.2 MHz

αB 4 79.1 MHz 52.4 MHz

αB 5 -9.5 MHz -10.4 MHz

αB 6 -39.9 MHz -41.6 MHz

αC 1 13.6 MHz 16.9 MHz

αC 2 75.3 MHz 69.1 MHz

αC 3 3.0 MHz -3.3 MHz

αC 4 81.6 MHz 86.0 MHz

αC 5 -29.9 MHz -28.7 MHz

αC 6 -14.2 MHz -14.3 MHz

re(O−H)e 0.986 699 Å 0.986 0 Åf

re(N−O) 1.271 062 Å 1.270 0 Åf

re(N−N) 1.103 964 Å 1.104 0 Åf

� e(H−O−N) 108.290◦ 108.38◦f

� e(N−N−O) 171.992◦ 172.05◦f

Ae 624 453.7 MHz 608 300 MHzg 348 838 2 MHz

Be 11 357.85 MHz 11 102 MHzg 10 800.08 MHz

Ce 11 154.96 MHz 10 903 MHzg 10 475.75 MHz

μh 2.98 D 2.43 Di

μx 2.03 D

μy 2.18 D
aExperimental results and derived Deff from Ref. 8. bExperimental results from Ref. 10. cExperimental results from Ref. 6. dHJK is fixed to

0.0 in Ref. 8. eNNOH+ and NNOD+ possess the same equilibrium geometries under the Born-Oppenheimer approximation.
fCCSD(T)/cc-pwCV5Z results from Ref. 11. gCCSD(T)/TZ2P results from Ref. 9. hThe NNOH+ coordinates (in Å with the center-of-mass at
the origin) used to generate the CCSD(T)/aug-cc-pV5Z Born-Oppenheimer dipole moment components are: H, 1.516751, 0.826938, 0.000000; O,

1.121745, -0.077244, 0.000000; N, -0.143865, 0.040354, 0.000000; N, -1.246604, -0.011638, 0.000000. iCISD/DZ+P result from Ref. 7.
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TABLE IV. The NNOH+ and NNOD+ CcCR VPT2 and VCI fundamental vibrational frequencies
(in cm−1) and previous theoretical and experimental results.

Harmonic Anharmonic Experiment

Mode Description This Work Previousa VPT2 VCI Ne Matrixb Gas Phasec

NNOH+ ν1 a’ O−H stretch 3522.8 3536 3332.0 3330.9 3287.6 3330.91

ν2 a’ N−N stretch 2370.5 2314 2328.5 2328.1 – –

ν3 a’ H−O−N bend 1405.8 1425 1364.4 1363.8 – –

ν4 a’ N−O stretch 1042.0 973 1024.3 1021.7 – –

ν5 a’ N−N−O bend 420.5 398 436.7 434.9 – –

ν6 a” torsional mode 472.2 446 486.2 484.3 – –

NNOD+ ν1 a’ O−D stretch 2566.7 2522.1 2466.9 2467.3 2426.3 –

ν2 a’ N−N stretch 2366.6 2432.2 2325.4 2324.8 – –

ν3 a’ D−O−N bend 1071.3 1086.1 1051.4 1051.3 – –

ν4 a’ N−O stretch 1032.3 1023.6 1010.4 1009.7 – –

ν5 a’ N−N−O bend 404.2 430.2 410.8 410.4 – –

ν6 a” torsional mode 463.4 491.8 469.1 468.6 – –
a NNOH+ results from CCSD(T)/TZ2P computations in Ref. 9. NNOD+ results from unscaled
RB3LYP/cc-pVTZ computations in Ref. 12.

b Ne matrix-isolation experimental data from Ref. 12.
c Reference 6.
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