
Vision Algorithm for the Solar Aspect System of the
HEROES Mission

Alex Cramer
NASA Goddard Space Flight Center

Greenbelt, Maryland 20771
alexander.cramer@nasa.gov

Abstract—This work covers the design and test of a machine
vision algorithm for generating high-accuracy pitch and yaw
pointing solutions relative to the sun for the High Energy Repli-
cated Optics to Explore the Sun (HEROES) mission. It describes
how images were constructed by focusing an image of the sun
onto a plate printed with a pattern of small fiducial markers.
Images of this plate were processed in real time to determine
relative position of the balloon payload to the sun. The algo-
rithm is broken into four problems: circle detection, fiducial
detection, fiducial identification, and image registration. Circle
detection is handled by an ”Average Intersection” method, fidu-
cial detection by a matched filter approach, identification with
an ad-hoc method based on the spacing between fiducials, and
image registration with a simple least squares fit. Performance
is verified on a combination of artificially generated images, test
data recorded on the ground, and images from the 2013 flight.

TABLE OF CONTENTS

1 INTRODUCTION . 1

2 BACKGROUND . 1

3 RELATED WORK. 3

4 PYAS ALGORITHM . 4

5 PERFORMANCE AND TESTING 8

6 CONCLUSIONS . 12

REFERENCES . 13

BIOGRAPHY . 14

1. INTRODUCTION
The problem of generating solar aspect is common to many
missions. Knowledge of aspect relative to the sun is espe-
cially important for solar observatories, but it is also com-
monly used by other spacecraft as part of a suite of sensors
for determining attitude. Additionally, any system employing
solar panels can also make use of this knowledge to optimize
harvested power. In the case of the High Energy Replicated
Optics to Explore the Sun (HEROES) mission, solar aspect
was determined by processing images of a carefully con-
structed scene onboard the balloon in real time. The approach
taken for this Pitch and Yaw Aspect System is different
from that taken for other similar systems because it achieved
fine solar pointing with an accuracy of 20 arcseconds using
relatively inexpensive electronics. In contrast, many similar
systems require the use of carefully tuned photo-detectors,
FPGAs and other purpose-built electronic hardware. In the
case of the HEROES sun sensor, an off-the-shelf camera and
computer were used.

This paper is organized as follows. Section 2 provides
background on the PYAS optical and mechanical elements,
the scene observed by the PYAS, and assumptions made

U.S. Government work not protected by U.S. copyright.

about that scene. Section 3 covers existing work. It addresses
both existing sun-trackers, and existing algorithms that could
be applied to this specific computer vision problem. Section
4 outlines the details of the algorithm used by the PYAS.
Section 5 covers performance of the algorithm. This includes
performance on synthetic test data and pre-flight test data.
This section also provides a brief summary of the results from
the 2013 flight of the HEROES payload. Finally, Section 6
provides a summary of algorithm performance, some lessons
learned, and recommended changes for any future PYAS
system based on this same design.

2. BACKGROUND
This section covers some background for the HEROES mis-
sion and the place of the PYAS in that mission, specifically
performance requirements levied on the PYAS. The rele-
vant details of the PYAS optical, mechanical and electrical
hardware are given, as well as a discussion of how these
come together to form the PYAS scene. There will also
be a list of simplifying assumptions made in the algorithm
design. These assumptions are justified based on the PYAS
hardware, and are important for keeping the PYAS processing
problem tractable. The final PYAS algorithm was shaped by
these technical details, simplifying assumptions, and mission
requirements.

PYAS System Requirements

The PYAS was expected to provide pitch and yaw offsets
from a target anywhere on the sun with a accuracy of 20
arcseconds to the gondola control system (CTL), and to do
so with a cadence of 1 Hz. Each frame also needed to be
stored for post-processing on the ground. These solutions
had to be generated any time the sun was within the field of
view (FOV) of the PYAS. The HEROES CTL was capable of
pointing with an accuracy of ±1◦ in pitch and yaw on coarse
sensing alone, at which point it depended on fine sensing to
stabilize on a target. For solar pointing, the target could lie
anywhere on the sun. Ensuring the sun was always fully on
the screen after coarse pointing, regardless of where the target
was placed on the sun, would require at least a 3◦ FOV. The
PYAS was only able to achieve a 2.8◦ FOV, but because of the
narrow FOV of the HEROES telescope, only a coarse solution
was necessary at the edges of the FOV. Solutions at the edges
only had to be accurate enough to tell the CTL roughly where
to slew to bring the sun fully onto the screen. A summary of
the relevant requirements on the SAS are shown in Table 1.

PYAS Hardware and Scene

A simplified diagram of the PYAS is given in Figure 2. A
CCD camera observes plate onto which the sun is projected.
The optics for handling this projection consist of an IR
filter, band-pass filter, and a plano-convex lens with 3m focal
length. This plate itself was covered in a printed pattern of

1

https://ntrs.nasa.gov/search.jsp?R=20150000216 2019-08-31T14:22:47+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42721010?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1. PYAS Requirements

Requirement
Cadence 1 Hz

Accuracy < 20 arcseconds

Field of View 2.8◦ (fine)

> 3.3◦ (coarse)

cross-shaped fiducial markers as shown in Figure 2. The
hardware is described in detail in ??. The identity of each
fiducial mark is encoded in the distance between it and adja-
cent markers, so that a minimum of 3 adjacent non-collinear
fiducials are required for identification. The entire assembly
was then surrounded with baffles to cut down on stray light,
ensuring the focused solar image was the only source of
illumination on the fiducial plate. Taking advantage of precise
knowledge of the locations of each fiducial marker relative to
the HEROES scientific payload, the hope was to determine
the payloads orientation relative to the sun by locating the
projected image of the sun relative to the fiducials.

Figure 1. Rough diagram of the PYAS

The HEROES electronics of immediate interest to the PYAS
would be the SAS computer stack and the camera. The
two communicated through a gigabit ethernet connection. A
summary of the relevant specs is given in Table 2. The SAS
computer performed all PYAS image processing, as well as
handling image storage, command, and telemetry functions
for the SAS subsystem. Doing all this on a single 1.6 Ghz
core meant that the PYAS algorithm had limited processing
power available. As for the camera, the detector size of
966 pixels in the short axis, combined with 2.8◦ FOV, gave
each image pixel an approximate width of 10.6 arcseconds.
This meant that to do better than 20 arcseconds accuracy the
algorithm would need to resolve to the sub-pixel level.

An example of the images seen by the PYAS is shown in
Figure 2. Images are rectangular with a small circular region
illuminated by the sun. This solar projection falls into a larger
circular area defined by the fiducial screen. A diagram of the
entire screen is shown in Figure 2. The screen is sized to span
nearly the entire image along the short axis. Within the solar
projection it is possible to see several cross-shaped fiducial
markers. Once the visible fiducials in a frame are located and
identified, they can be used to perform registration between
the image plane and the gondola coordinate system. Location
and orientation of the fiducial plate and each of its fiducial
markers was measured relative to the HEROES x-ray tele-
scope. This calibration data bridged the gap from knowledge
of the suns location on the fiducial screen to knowledge of the

Table 2. PYAS Electronics

Camera
Camera Model Imperx IGV-B1310

Sensor Size 1296x966 pixels

Bit Depth 12 bit monochrome

Max Frame rate 26 FPS

Computer
SBC Model Cool RoadRunner-945GSE

Processor Intel Atom N270

Single-core, 1.6 GHz

Storage 256 GB SSD (x2)

Write Speed <260 MB/s

HEROES telescope’s offset from target.

Figure 2. Sample of a raw frame taken by the PYAS camera

Figure 3. Layout of the PYAS fiducial pattern

PYAS Assumptions

The setup described above gives a baseline for what the PYAS
image processing problem might have to handle. There are
scenarios not described above, however, which could severely
alter the scene observed by the PYAS camera. Accounting
for every possible anomaly would very quickly push the
algorithm’s complexity to a point where it had no chance
of meeting the cadence requirement. Instead some basic
assumptions were made about how PYAS frames might vary
during flight, with the goal of keeping the PYAS problem

2

Table 3. Algorithm Assumptions

Assumption
1 There will be only one large bright object

present in each frame

2 Optics and camera are approximately parallel
to the fiducial plate

2a Solar image is circular rather than elliptical

2b Projective affects from the camera orientation
can be approximated with a similarity trans-
form

2c Clocking of fiducial plate relative to the camera
is negligible

2d Change in distance and clocking between fidu-
cial plate and camera will be small

3 The projected solar image will not be under or
overexposed

tractable. These assumptions are listed in Table 3.

Given the design of the PYAS and the SAS as a whole, it
is reasonable to make these assumptions about the scene,
especially with regard to geometry. Baffling protects against
large illuminated patches, while construction and mounting
of the PYAS ensures that the camera, optics, and fiducial plate
are all roughly parallel and will not rotate relative to each
other. Finally required exposure should be constant during
a single balloon flight, and can be set manually from the
ground at the start of observation. Without these assumptions
the problem would still be tractable, but perhaps not possible
with limited processing power. Each portion of the PYAS
algorithm can leverage these assumptions to justify simpler
methods than might be required without. The next section
considers many methods that could applied to the PYAS
problem, some of which would have made it robust to the
failure of these assumptions.

3. RELATED WORK
The problem here is framed as solely a computer vision
problem, where the design of the SAS hardware, especially
fiducial pattern and solar optics, is considered to be fixed.
The larger problem is that of sun detection and aspect de-
termination, for which there is an extensive history. These
pointing problems are likely very similar to the problem faced
by the larger SAS system, so it is important to examine how
past missions have solved problems like the one faced by
HEROES. Existing work in computer vision is also directly
applicable, especially any solutions to similar shape-finding
and image registration problems.

Sun Sensors

Sun sensing has many applications, some with requirements
very different than fine pointing. The range of applications
has led to a wide array of cadence, FOV, and accuracy
requirements, and as a result there are many approaches
to sun detection. The simplest employ a small number of
photodetectors with finely tuned electronics. An exmaple of
these would be quad-cells like the Lockheed Intermediate Sun
Sensor (LISS) and the uSS, the former of which has similar
FOV and better performance than the PYAS [1] [2]. More
recent designs gravitate toward detector arrays on the order
of hundreds of pixels square, using custom cut apertures to

Table 4. Sun Sensors

Design FOV Accuracy Cadence
LISS Quad-

cell
6◦ 7 arcsec Cont.

uSS Quad-
cell

120◦ 0.15◦ Cont.

uDSS CMOS
array

94◦ 36 arcsec 10 Hz

MSS CMOS
array

120◦ 0.2◦ 2 Hz

RHESSI
SAS

Linear
CCDs

1.53◦ 0.4 arcsec 128 Hz

generate simple computer vision problems. For example the
Micro Digital Sun Sensor (μDSS) uses a pinhole aperture to
generate a 10-20 pixel-wide image image of the sun on its
sensor, which it locates quite accurately with a simple cen-
troid algorithm implemented on an FPGA [3]. A similar but
more complicated sensor called the Micro Sun Sensor (MSS)
adds multiple pinholes for redundancy, and identifies individ-
ual projections by measuring inter-projection distances [4].
The concept of encoding identity of simple geometric marks
in their spacing is one that used in the PYAS as well.

The Solar Aspect System of the RHESSI spacecraft falls
somewhere between an imaging array and a quadcell [5].
The RHESSI SAS employed three linear CCD sensors, each
with 2048 elements rotated 120◦ relative to eachother. By
projecting the sun onto these sensors with a 1.55m focal
length lens, the RHESSI SAS achieved a plate scale of 1.73
arcseconds/pixel, with each individual CCD having a FOV
of about 1◦. When the solar image was fully visible for a
detector the SAS software could determine the locations of
the solar limb and from these compute midpoint of the sun
along that particular detector’s chord through the solar disk.
With the sun fully visible by two CCDs, the solar center could
be estimated. Ideally the sun would be visible on all three. In
that case, knowledge of midpoint of the sun on each CCD and
the relative angle between CCDs would allow for a precise
estimate solar aspect. A summmary of the perfomance of this
and other sun sensors is given in Table 4.

Existing Algorithms

The scene the PYAS observed was actually quite benign when
compared to some in modern computer vision. Camera and
target were coupled together mechanically, and illumination
of the scene was very tightly controlled. The result is that the
PYAS problem decomposed into very basic image processing
tasks, each of which had a well-established history. The
task of locating the sun is one of finding a circle of known
radius. The fiducial detection task is one of detecting small
geometric markers and is another common machine vision
problem. Finally the task of generating a mapping from
pixel to gondola space is an image registration problem. This
section will briefly review relevant literature for each of these
tasks.

Circle or Ellipse Detection—The simplest method for deter-
mining location of a large circle like the solar image is a
centroid of pixel intensity. Both of the imaging sensors in
the previous chapter used this method to achieve sub-pixel
accuracy [3], [4], and the same method has also been used
in detection of circular fiducials where it is was favored for
simplicity and accuracy [6] [7] [8]. However, all of these

3

cases treated small circles on the order of 10-20 pixels wide,
not 180 wide like the sun in a PYAS image. Centroids can
be sensitive to occlusions, irregular illumination, and sensor
noise, all of which become more likely for larger shapes. In
this case especially, fiducials represent a known, unavoidable
occlusion. Other classic approaches to circle finding would
be a matched filter or Hough Transform, but both of these
are also better suited to smaller circles and smaller image [9]
[10]. To search an entire PYAS frame with either method
would be far too intensive computationally.

Edge detection and curve fitting is an attack that is better
suited to larch circles than centroiding or matched filtering,
and that scales better than Hough. After passing the image
through an edge detection filter, the task becomes one of
generating a set of parameters that fit a circle through the
edge pixels. This can be framed as a least squares problem,
and has been studied fairly extensively for both circles and
ellipses [11] [12] [13]. Beyond the least squares approach,
there are methods that focus on determining the center of the
circle described by a set of points, then deriving radius as the
average of the distance from each point to this center. One of
these is Average Intersection, using triplets of non-co-linear
points and treating them as endpoints of chords through a
circle [14]. The bisectors of a circles chords intersect at its
center, so the average of these intersections should provide a
good estimate of the circle center. This method was shown to
be sensitive to noise on the edge of the circle and to situations
where chords were too short, i.e. points used to calculate
an individual bisector were too close together, but is very
similar to the method used by RHESSI. A modification of
this method was ultimately used on the PYAS as well.

Fiducial Mark Detection—The task of finding PYAS fiducial
markers is again a shape finding problem. Unlike the sun-
finding task where it could be assumed there was only one
circle in the frame, here there are guaranteed to be multiple
fiducial markers. As with circle-finding, the task of locating
small geometric marks has been present in machine vision for
a long time. Although there is no direct requirement on the
accuracy of fiducial marker locations, the goal for this stage
was to once again to resolve to sub-pixel levels. This is a
fairly common requirement for fiducial markers, so most of
the methods considered here resolve fiducial location to sub-
pixel level.

Regardless of the marker shape, the method most often
employed for locating these kinds of fiducials is template
matching. Common methods to further refine the locations
from a template matching approach include centroiding,
intensity interpolation, correlation interpolation, and curve
fitting. Centroiding is by far the simplest and most popular,
but was shown to work best on convex shapes like circles and
diamonds, with degraded performance on cross-shaped marks
[6] [7] [8]. Centroiding can also be used in a correlation
image to refine peak location. With a sharp enough spike in
correlation the problem becomes very similar to light stripe
detection in one dimension, or to detection of point sources in
two dimensions as would happen in a star tracker or a system
using LEDs as active fiducials [15] [16]. Tests on centroid
estimation in this context show it to be able to narrow down
peak position to fractions of a pixel, but to be sensitive to
window size, noise, and threshold [16] [17] [18].

Instead of using a centroid, it would also be possible to
refine the pixel location returned by a matched filter by using
interpolation. In intensity, this would mean up-sampling
both image and template. Accuracy in the estimate of a

fiducials location should increase proportionally with the up-
sampling factor. This approach is analyzed in great detail
in [19], where an algorithm is devised that reduces the cost
both in required computation and storage. By comparison
to most other methods this approach is extremely accurate,
showing errors on the order of .005 pixels. However, this
accuracy comes at the price of high computational cost. Even
with the measures taken to reduce computation time, [19]
concedes that correlation interpolation is faster. In the case
of correlation interpolation, the idea is to perform a least
squares fit of a paraboloid surface to the region around the
maximum in correlation, using the maximum of this surface
as the refined location of the shape [20]. This method was
shown to be accurate down to 1/16 of a pixel for a wide array
of image features.

A template matching approach followed by a local centroid is
the most common fiducial detection method for small, simple
fiducials. This method is easiest when applied to small, filled
convex shapes like circles. Circles are the most popular due
to their being easy to locate with a simple centroid and their
being rotationally symmetric, something which cross marks
are not. Because of their poor performance under centroiding,
cross shaped fiducials require either an interpolation of either
intensity or correlation to refine their location to sub-pixel.
Centroid of correlation is computationally simpler than inter-
polating in either correlation or intensity, and has comparable
performance.

Image Registration— The last problem to be tackled with
the PYAS is one of image registration. Camera position in
the PYAS setup was somewhat arbitrary, and certainly not
calibrated. All calibration of the PYAS was done to determine
position and orientation of the fiducial screen pattern relative
to the other HEROES systems. The last section considered
how fiducials on the screen could be located, and the ad-hoc
methods developed for identifying them will be described
in the next section. Once identified, each fiducial in the
PYAS image offers a single point correspondence between
the image plane and the plane of the fiducial screen. At the
worst then this should be a problem of computing a projective
transformation, which is addressed in [21]. The construction
of the PYAS actually constrains this to something much
closer to a simpler similarity transform. Furthermore there
is very little rotation between the fiducial plate and the
camera. This means that the problem of finding the mapping
between sensor and plate amounts to determining the scale
and offset between the two coordinate systems, requiring only
three parameters to properly characterize the mapping. This
problem was solved in the PYAS with a linear least-squares
approach.

4. PYAS ALGORITHM
At a top level the algorithm can be broken into a few simpler
problems. The solution to each individual problem can be
developed separately, as long as it delivers the proper data to
the next stage. This flow is illustrated in Figure 4. Where
relevant, the coordinate space is listed. The ultimate goal is
to determine solar center in gondola coordinates, or at least
in a space which can be easily mapped to the same space as
the gondola controller’s coordinate system, such as location
on the fiducial screen.

The four tasks are to locate the center of the sun, locate the
visible fiducial markers, identify the visible fiducials, and
transform the sun’s location from image or pixel coordinates

4

Figure 4. Flow chart of PYAS Algorithm

to a location on the fiducial screen. The entire algorithm was
executed on each successive frame, depending on very little
information from the previous frame. The only information
carried over was the previous sun location in pixels, used in
the first stage for placing chords.

Locate Sun Center

This stage takes in the raw PYAS frame and must determine
both the location of the sun’s center and an ROI containing
the illuminated patch of the fiducial screen. This stage must
determine the sun’s location to better than a pixel in order to
meet the 20 arcseond knowledge requirement. Once the sun’s
location is known, the ROI is just a neighborhood around that
point. This neighborhood could be sized based on knowledge
both of the sun’s size given the time of year and PYAS plate
scale, as well as knowledge of the payload’s max slew rate
based on past flights of the HERO payload.

An approach very similar to the RHESSI SAS can be taken
if individual rows and columns of the PYAS detector are
treated as independent linear CCDs. This is very similar to
the Average Intersection method of finding the center of a
circle, except it constrains points on a chord to be on the same
row or column of the image, avoiding issues that arise when
the two edge points are too close together. At a minimum
the midpoints of a single row and single column could be
combined to estimate the sun’s center. The more robust
approach taken with the PYAS was to take multiple rows
and columns, locate the limb crossings and their midpoint
for each, and average all of these midpoints to arrive at an
estimate of the solar center.

This does not address how to place these chords: how to pick
which rows and columns of the image to analyze. Ideally all
chords are placed on the sun, which is possible if we have
prior knowledge about the sun’s location. Otherwise chords
need to be placed evenly across the entire image. To take
advantage of any prior knowledge there were two states. If the
previous frame had determined a valid solar solution, then the
previous ROI location could be recycled. In this case chords

were placed evenly through the ROI. If the most recent frame
had not produced a valid solution, chords were placed evenly
across the entire image. This is illustrated in Figure 4

Figure 5. Placement of chords in an image when previous
sun location is either known or unknown.

Potential limb crossings were determined by searching each
chord for pixels immediately above a brightness threshold.
Ideally there would be two of these per valid chord: one
transitioning onto , and one transitioning back down from the
solar disk. Ideally all chords would either meet these criteria,
or have no crossings at all. Any chord that did not meet this
criteria could be rejected. The two threshold crossings are
considered to be approximate limb crossing locations. For
each of these crossings, a local linear fit is generated. This
is used in an attempt to refine the threshold crossing to the
exact point at which the solar limb crossed the brightness
threshold. Since the solar limb has a very stable brightness
profile, points of identical brightness on the limb are spaced
the same distance from the center of the sun.

This approach still needs some refinement. There are several
features which do not meet this model, and foremost among
them are fiducial marks. As these are black marks against a
white background they can produce spurious limb crossings
whenever they cross a chord. Because of the fiducial marker
arrangement, it is highly likely that a chord will cross at least
one marker. The solution is to both set the threshold below
the brightness of a fiducial marker, and to reject any pairs
of threshold crossings with slopes and spacing that could
correspond to a fiducial.

In addition to fiducial markers, there were other non-ideal
features which cropped up in both tests and during flight.
Although the optical path was enclosed by baffles, stray light
was still present due to bleed through joints in the baffling.
This is sometimes visible as a bright patches or patches
around the edge of the fiducial screen. Carefully sealing the
baffle joints to light cut down on this. Hot pixels and scratches
in the fiducial screen also posed a problem, usually as one or
more saturated pixels. These were removed by adjusting their
intensity value to the 99th percentile of brightness across the
image, effectively removing any intensity bright outliers.

The algorithm for sun-finding is summarized by the pseudo-
code in Algorithm 1. This code requires the current frame and
the previous ROI location as inputs. It also needs a threshold,
K, for defining limb location as a function of total brightness
of the sun, and a number of chords to use per axis, N.

Outputs of this stage are the SunCenter and a ROI which
should contain the patch of frame illuminated by the sun.
It also returns the 1st and 99th percentile cutoffs for pixel
brightness (RobustMin and RobustMax)

5

Algorithm 1 LocateSun

Require: CurrentFrame, PastROI , K, N
Ensure: SunCenter, ROI, RobustMax, RobustMin

RobustMax ← 99th percentile of CurrentFrame
RobustMin ← 1st percentile of CurrentFrame
Threshold ← K% of RobustMax
if PastROI is valid

Chords ←N rows and N columns spaced evenly
across PastROI in CurrentFrame

else
Chords ←N rows and N columns spaced evenly
across entire CurrentFrame

for each Chord in Chords
for each ThisP ixel at ThisIndex in Chord

if ((ThisP ixel > Threshold) &
(PastP ixel < Threshold))
Edges ← ThisIndex

else if ((ThisP ixel < Threshold) &
(PastP ixel > Threshold))

Edges ← −PastIndex
for each ThisEdge in Edges

if (|ThisEdge| − |PastEdge|)
< FiducialLength

remove ThisEdge and
PastEdge from Edges

if ((numel(Edges) = 2) &
(FirstEdge > 0) & (LastEdge < 0))

for each Edge in Edges
Nbhd ← pixels before
and after pixel at Edge
Line ← Least squares fit line to Nbhd
Limb ← Index s.t.
Line(index) = Threshold
if Chord is a row

RowLimbs ← Limb
else Chord is a column

ColLimbs ← Limb
SunCenter ← [mean(ColLimbs)
mean(RowLimbs)]
ROI ← Subset of CurrentFrame around SunCenter

Locate Fiducials

The ROI determined in the previous stage should contain
the only illuminated fiducials in the PYAS frame. The goal
in this stage is to locate fiducial markers in the ROI, again
down to a sub-pixel level. Several potential methods were
entertained for locating fiducials, but ultimately the simplest
was deemed to be a form of template matching. While other
considered methods might have been significantly faster,
template matching proved to be extremely effective without
requiring complicated logic and error checking that more ad-
hoc methods would have needed. Thanks to the reduced
size of the solar ROI and the small size of fiducial markers,
convolution with a mask has a low enough computation time
to be viable. An edge-based template based on the work in
[9] provided extremely strong responses to fiducials which in
turn were easy to refine down to sub-pixel level.

In the ideal case the edge-based template matching algorithm
mentioned above worked basically out of the box. The image
could be convolved with a pre-generated matched filter to
generate a response image. Examples of each are shown
in Figure 4. Setting a threshold on response and searching
for local maxima above that threshold was sufficient to find

nearly all fully-illuminated fiducials, and even some partially-
illuminated marks. A thresholded centroid of the response
image around each local max refined the location of the peak
response, and therefore of the fiducial, to better than pixel
level.

Figure 6. From left to right: Example of a PYAS ROI, edge-
based template, convolution image.

As in sun-finding stage, there are a few edge cases here that
can hinder determination of fiducial locations. The matched
filter really only generated spurious detections for sharp
edges. Bbaffle leaks were too dim and dispersed to generate a
strong enough response. On the other hand scratches proved
to have much more impact. Scratches to the fiducial plate
showed up as long saturated strips of pixels,and were often
able to produce responses to the fiducial template that were
large enough to register as fiducial locations. This seemed to
be a result of their simply having a significantly higher bright-
ness value than their neighbors. To avoid this complication,
any point above the 99th percentile was set to the 99% value.
This was very effective at removing undesirable peaks in the
image while affecting a small number of pixels overall. With
these points removed, thresholds for detection could be tuned
to produce reliable detection with very few false-positives.
Thresholds were set in terms of standard deviations above
the mean pixel brightness value, which made them fairly
robust to changing intensity of the solar image. To further
protect against false-positives, if multiple detections occurred
within a fiducial length of each other, only the highest of
these responses was kept as a valid response. The rest were
discarded.

The pseudocode in Algorithm 2 describes this stage in the al-
gorithm. The inputs to this section of code are the ROI from
the previous stage, the RobustMax computed in the previous
stage, and a few parameters. The K1 and K2 parameters
specify how many standard deviations above the mean to set
thresholds for detection and centroiding respectively. The
NbhdSize variable sets the size of the region around each
fiducial to use when computing a centroid.

The output to the next stage is the Fiducials variable, a list
of the coordinates of fiducials in pixel space. As long as
there are at least three non-collinear fiducials, it is possible to
proceed to the next step and attempt to identify the detected
marks.

Identify Fiducials

Once fiducials are located, they must be identified. As
discussed in the introduction, fiducials are spaced on a rotated
grid. For each row of fiducials, vertical spacing between fidu-
cials increases by a fixed amount, while horizontal spacing
between fiducials is unique depending on location in the grid.
The reverse is true down columns of the grid. The idea then
is to find pairs of fiducials which meet the fixed spacing, and
then identify the pair based on the varied spacing.

6

Algorithm 2 LocateFiducials

Require: ROI,RobustMax,K1,K2, NbhdSize
Ensure: Fiducials

for each Pixel at Index in ROI
if Pixel > RobustMax

Pixel ← RobustMax
Mean = Mean(All Pixel in ROI)
Std = StdDev(All Pixel in ROI)
Threshold = Mean+K1 ∗ Std
load FiducialTemplate
Response ← conv2(ROI,FiducialTemplate)
for each Pixel in at Index in Response

if Pixel > Threshold
if Pixel is a local maximum

for each Fiducial in Fiducials
if (a fiducial at Index would

overlap a fiducial at Fiducial)
if Pixel > Response(Fiducial)

Fiducial ← Index
else

skip to next Fiducial
else

Fiducials ← Index
if numel(Fiducials) > 12

keep 12 Fiducial in Fiducials with largest
Response value

Threshold = Mean+K2 ∗ Std
for each Fiducial in Fiducials

Nbhd ← subimage of Response of size NbhdSize
centered at Fiducial
Refinement = centroid(Pixel in Nbhd s.t.
Pixel > Threshold)
Fiducial = Fiducial +Refinement

Identification revolves around finding pairs of neighboring
fiducials. These are spaced by a fixed distance in one
axis, and a varying distance in the other which is used for
identification. Identification proceeds by searching the entire
list of fiducials for pairs of the correct fixed spacing either
along either pixel rows or pixel columns. The result is two
lists of pairs, one where the fixed distance along rows is valid,
and one for column spacing. Each list is then searched for
pairs with valid fiducial spacing in the other axis. If a valid
pair is found, both members are given the ID for that distance.
For example, if a pair of fiducials was found to be spaced by
15 pixels along rows, it would be deemed a column pair. If
the spacing along columns was 45 pixels, then this pair would
get column IDs of 0 and 1 respectively. Each would need to
be a member of a valid row pair to get the other half of its ID.
This spacing is illustrated in Figure 4.

If after this first pass there are fiducials which were not
deemed to be members of any valid pairs, they are discarded.
Usually these were false-positives from the previous stage.
Tight thresholds were necessary on allowable row/column
distances to prevent false positives, since false positives had
the potential to adversely affect the mapping generated in the
next stage. For this reason it was preferable to potentially
have more missed detections as opposed to false positives.

After attempting to ID all the fiducials present, and dropping
those without even a partial ID, there still are likely some
with half of a valid ID pair. These are fiducials which only
belonged to one pair, or to two co-linear pairs. To attempt
to get around these partial IDs, fiducials missing say a row

Figure 7. Fiducial Spacing. Fixed spacing is marked ‘b’
down the rows of fiducials. ID spacing is shown between
columns.,

ID can take the value of an adjacent fiducials row ID if the
two are in a column pair, and vice versa. Propagating IDs
like this does have a drawback because a single incorrectly
identified fiducial has the potential to corrupt the IDs of
adjacent fiducials. It is also possible for adjacent fiducials to
disagree over which row/column a common neighbor belongs
to. In cases like these it is almost guaranteed that one of the
adjacent fiducials has an invalid ID, but it is impossible to
tell from this dispute alone which of the two is incorrectly
identified. At absolute most there were only ever 12 fiducials
visible, and often this number was closer to 4 or 5. With
so few, it becomes very difficult to use any kind of majority
vote to determine which fiducials were identified correctly.
Ultimately the simplest strategy was taken for any disputes
over ID of a given fiducial: if full ID for a fiducial could not
be determined, the fiducial was simply ignored.

The pseudocode below summarizes the logic used when
identifying fiducial markers. As input it takes simply the
locations, in pixel space, of identified fiducials. Also required
at this point are the actual spacings for the fiducial grid. The
FixedSpacing is the vertical spacing between adjacent pixels
on the same row, or vice versa for columns. The IdSpacings
are the spacing between rows or columns of fiducials. In
addition to this information, we add a tol variable, to capture
how close to the expected distances pairs need to be.

Output here are two lists, one of fiducials, and the other a list
of equal length with corresponding fiducial IDs. The list of
fiducials is ideally identical to the one given as input, but in
the event that any fiducial was not able to be identified in the
previous step, it is removed from the list. As with previous
stages, these outputs need to be vetted before continuing to
use them to generate a mapping, and mapping the solar center
to screen coordinates. To generate a mapping, there should be
at least 3 fiducials in the list, and their IDs should indicate that
they are not co-linear: all three IDs should not belong to the
same row or column. As long as this holds true, then it should
be possible to map from pixel space to screen coordinates
given the fiducials and IDs found here.

7

Algorithm 3 IdentifyFiducials

Require: Fiducials, T ol, F ixedSpacing, IdSpacings
Ensure: FiducialIDs

AllPairs ← all pairs of fiducials in Fiducials
for each Pair in AllPairs

if (RowSpacing(Pair)FixedSpacing) < Tol
ColPairs ← Pair

if (ColSpacing(Pair)FixedSpacing) < Tol
RowPairs ← Pair

for each Axis in [Row,Column]
for each Pair in AxisPairs

for each IdSpacing at Id in IdSpacings
if (AxisSpacing(Pair) IdSpacing) ¡ Tol

for each Fiducial in Pair
F iducial.AxisVotes ← Id

for each Fiducial in Fiducials
if mode(Fiducial.AxisVotes) is unique

Fiducial.ID(Axis) =
mode(Fiducial.AxisVotes)

else
Fiducial.ID(Axis) = UNKNOWN

for each Axis in [Row,Column]
for each Pair in OtherAxisPairs

if Pair(Member).ID(Axis) is unknown
if Pair(OtherMemeber).ID(Axis) is

known
Pair(Member).ID(Axis) ←

Pair(OtherMember).ID(Axis)

for each Fiducial in Fiducials
if Fiducial.ID(Axis) is unknown

if mode(Fiducial.AxisVotes) is unique
Fiducial.ID(Axis) =
mode(Fiducial.AxisVotes)

for each Fiducial in Fiducials
if ((Fiducial.ID(Row) is unknown —

(Fiducial.ID(Col) is unknown))
Remove Fiducial from Fiducials

Transform Sun Center

Once fiducials are identified, their true location in screen
coordinates can be generated from calibration data. Their
locations on the screen are known from the printing pro-
cess, and calibrations before flight. The transformation from
screen coordinates to gondola coordinates was also measured
pre-flight. The goal at this stage is to generate a mapping
from pixel to screen coordinates and to apply this mapping to
the sun location found in the first stage. The assumption that
mapping from plate to sensor is a scale and shift is used in this
stage. This means that a simple linear fit can be used in each
axis independently to model the change in coordinates from
pixel space to fiducial screen. The only requirement levied on
the previous stage is that there be a sufficient number of pairs
to do a proper fit.

As mentioned previously, this stage accepts a list of fiducial
locations in pixel space and their corresponding IDs. The ID
locations on the fiducial screen, and therefore relative to the
gondola coordinate system, are pre-determined by calibration
on the ground. Mappings were generated with a simple linear
least squares fit.

This stage outputs the linear mappings generated, as well
as the sun center location in mils relative to the center of
the fiducial grid. The mappings are checked to verify that
the identified scale factor is approximately correct. The

Algorithm 4 TransformSunCenter

Require: Fiducials, FiducialIDs, ScreenLocations,
SunCenter

Ensure: Mappings, ScreenCenter
ScreenFiducials ← ScreenLocations(FiducialIDs)
for each Axis in [Row,Column]

Mappings(Axis) ←LinearFit(Fiducials(Axis),
ScreenFiducials(Axis))
ScreenCenter(Axis) ← Mappings(SunCenter)

ScreenCenter is passed to another module for final adjustment
into gondola coordinates, and then used to generate offset
from the desired solar target.

Summary

The PYAS algorithm outlined above was used to generate
pointing solutions for the HEROES balloon on its 2013 flight.
The basic flow was established early in development, and
functionality of each stage was fleshed out in sequence.
Changes were made to each stage to account for disturbances,
misalignments and the like as they were detected during
testing. Much of the code was prototyped in MATLAB, but
ultimately implemented in C++ using the OpenCV library.
The next section will go over testing of the algorithm against
artificial data in MATLAB, as well as performance and test-
ing pre-flight with the OpenCV implementation.

5. PERFORMANCE AND TESTING
The task of verifying PYAS performance is about as compli-
cated as the PYAS problem itself. Most of this arises from
difficulty in getting a ground-truth for the instrument. In the
case of the sun and fiducial finding, which were inspected
most heavily, artificially generated data offers the only chance
to test the algorithm against a known solution. The downside
is that it is difficult to generate good approximations of
the images actually generated by the PYAS. Verifying the
PYAS on actual test observations obviously does not have
this problem. On the other hand, while test observations are
obviously an excellent representative of what will be seen on
flight, they lack any ground truth at all. Inspection cant really
offer solutions to a sub-pixel level, which leaves either a priori
knowledge of the pointing of the PYAS system during a test,
or another algorithm which has already been proven to work.
The latter is impossible while only using images generated by
the PYAS, and the former is impossible without an elaborate
test setup able to adjust PYAS position relative to the sun in a
precise way.

To verify requirements for the algorithm, sun tracking and
fiducial detection are verified against synthetic test data.
Description of how this data was generated and how it was
used to test each segment of the algorithm is given as well. In
contrast, the effects of image registration will be considered
directly on data from full system tests. Finally, overall system
performance will be assessed based on data from the 2013
HEROES flight itself.

Synthetic Data

Sun Finding—In the case of the sun finder, artificial data was
created by drawing a filled circle at a scale of 1 arcseconds
per pixel then down-sampling the image by a factor 10.6 to
approximate the ideal PYAS image scale. After a simple
Gaussian blur and the addition of some white noise, these

8

Table 5. Parameters for synthetic sun test images

Parameter Value
Range of centers -5 to 5 arcseconds in each axis

Sun diameter 180 pixels

Oversampling factor 10.7

(arcsecond to pixels)

Table 6. Parameters for test of performance vs number
of chords

Parameter Value
Noise Std Dev 5 counts

Threshold 180 pixels

Number of Chords (N) 3 to 90 per axis

images are a fair approximation of actual PYAS images, with
ground truth given by the scaled coordinates of the sun center
in the original image. The PYAS sun tracking algorithm was
tested against these images, and performance was measured
against number of chords and level of white noise. Noise
level varied, but the parameters below describe the other
parameters of the set of test images.

Figure 8. Cropped PYAS image from sun test data (left).
Synthetic sun image used in testing (right)

This stage of the PYAS algorithm has two parameters which
can be tuned to affect response: threshold level K and number
of chords N. In all tests the threshold K was set to 50% of max
brightness. In this test, N was varied to see the effect of the
number of chords on accuracy. The standard deviation of the
white noise used in this portion of the test was held fixed at
a level similar to that of ground test data. The parameters for
this test are listed in Table 6.

The results are shown in Figure 5. The center determined
by this algorithm was compared to the ideal center, and the
magnitude of this error was used to measure performance.
The plot below shows the 3σ error in arcseconds over all
positions for a given number of chords. Theres clearly a sharp
improvement in performance initially, which starts to flatten
out after 10 chords per axis. Based on this test the number of
chords to be used in flight was set at 10.

The next test used a fixed number of chords and varied the
noise level to see how sensitive this method is to increased
noise. A range of values were used for the noise σ: from
noise-free to an order of magnitude worse than the expected
noise level. Parameters for this test are listed in the table 7.

As before, performance can be measured in terms of 3σ error

Figure 9. Performance vs. number of chords. Error shown
is 3σ of error values for each parameter value.

Table 7. Parameters for test of chord finding vs noise

Parameter Value
Noise Std Dev .01 to 100 counts

Threshold 105 counts

Number of Chords (N) 10 per axis

versus noise level. Also of interest, however, is number of
chords dropped. The likelihood of a chord failing to meet
the criteria listed above for a valid chord increases with noise
level. At a certain point no valid chords will be found in
the image. Although it is unlikely that such a high level of
noise would be encountered on flight, it was of interest in
development to see how robust this method is to high levels
of noise. Plots of both error vs. noise and dropped chords vs.
noise are shown in Figure 5.

Figure 10. Plots of error and percentage of dropped chords
vs. noise level. Noise level is measured in bits in the intensity,
and chords are dropped when they fail to meet the criteria
outlined in 4

The plot of error shows that beyond noise levels of 15 counts
the sun tracking algorithm fails to meet requirements at all.
At the even higher level of 30 counts the number of valid
chords plummets, corresponding to a spike in error. The
hope was that noise levels in flight data would be significantly
lower.

The last test of this algorithm was designed to see how it
behaves in the presence of fiducial markers. For this, a
simulated screen image was generated using the same method
used in generating the sun image: an image was generated at
higher scale and then scaled down to true size. Portions of
this screen were then “illuminated” by multiplying regions of

9

Table 8. Parameters for test of sun-detection in the
presence of fiducial markers

Parameter Value
Noise Std Dev 5 counts

Threshold 105 counts

Number of Chords (N) 10 per axis

Sun center (0 arcseconds, 0 arcseconds)

Background One of 81 subsets of

fiducial pattern

Trials per background 10

the screen image with the synthetic solar image, giving test
images like the one shown in the Figure 5.

Figure 11. Test image containing fiducial markers

The parameters for this battery of testing are listed in the
Table 8. The goal here was to see how well this algorithm
can handle encountering fiducial markers. While certainly
not perfect, comparing this to the flight data at the start of
this section shows that it is a reasonable approximation of
what true PYAS images look like.

The bulk of values fall below this threshold, but it is clear
that there is a subset of frames where this algorithm fails to
meet the requirement. Even though most values fall below
the threshold, the bound on error here is much higher than
what was seen in tests without fiducials present. The reason
for this is visible in the example frame shown above, and
was overlooked in the planning stages of the PYAS code.
Looking at the top left fiducial in the sample image above,
it is clear that if a chord were to fall horizontally across the
fiducial it would be impossible to tell where the true edge
of the sun was. The right edge of the horizontal arm of that
fiducial would be detected as the edge of the sun, while the
actual edge lies closer to the left edge of the marker. This
chord would introduce an offset, and given that there are only
10 chords at most through the whole image, one error can
introduce a significant pull on the estimate of the center.

Fiducial Detection—Artificial fiducial marker data was de-
scribed briefly in the previous section, where an artificial

Figure 12. Histogram of error levels for trials in the
test of chord-based sun-detection in the presence of fiducial
markers. Almost all tests fell within the 10 arcseconds
requirement.

Table 9. Performance of various fiducial location
methods

Method 3σ RSS error
No Refinement 4.2 arcseconds

Centroid (FLIGHT) 1.55 arcseconds

Centroid (Improved) .68 arcseconds

fiducial screen was used to test the sun tracker. In this section
rather than the entire screen, only images of a single fiducial
will be considered. With the threshold set properly, the
fiducial detection was able to determine fiducial location to a
pixel level for fully-illuminated fiducials without any issues.
Of interest here is how accurately the refinement method
described in Section 4 can resolve sub-pixel locations.

Figure 13. Example of a fiducial test image, and the
corresponding correlation image

To test this, a set of test images was generated where the lo-
cation of the fiducial mark varied across 6 different locations
in mils on the fiducial screen in each axis. All 36 of these
locations would produce a peak in the correlation response at
the same pixel. The error in fiducial location without any
refinement is listed in the table below. Also included are
the results of refining with a centroid, which was the method
taken with this algorithm.

Error for taking no action is what would be expected, the
equivalent of about half a pixel. Refining the location of the
peak with a centroid was able to cut that value in half. Cen-
troiding to determine correlation peak was chosen because

10

the method is fast, and because during development there
were problems forming a well-conditioned paraboloid fitting
problem. Paraboloid fitting would have been the preferred
approach here, and was shown in the literature to perform
nearly an order of magnitude better than the performance seen
here. The reason for poor performance of the centroid is a
systematic error described below.

Figure 14. At left, true fiducial locations are shown in
black, all corresponding to the same integer pixel location.
Attempts to refine fiducial location to sub-pixel are shown in
red. Clearly there is systematic error present. At right, the
same is shown for a single point.

The graph on the left of 5 shows a plot of predicted locations
in red vs. true locations in blue for all the locations tested.
The right shows an example for a single point. Part of this
seems to be intrinsic to using a centroid to refine position
of a peak, but there is also a component here caused by not
removing the threshold value from the pixel values before
computing the centroid. Points farther from the center have a
greater moment on the resulting solution, and by not subtract-
ing the threshold, they also have more “mass.” The results of
subtracting this value when computing centroid are shown in
Figure 5.

Figure 15. An improvement on the method fiducial detection
used on flight.

Although clearly an improvement, there is still systematic
error in this estimate. Several alternate methods for refining
fiducial locations were considered earlier, and one of these
would likely be a better candidate than the centroid-based
refinement described here.

Test Data

Several tests were done of the PYAS system before flight, the
vast majority of which were performed while attached to the
HEROES payload. Performance of the sun tracking portion
of the code cannot readily be assessed because the PYAS is
folded into the larger HEROES control loop. On the other

hand, the fiducial plate and camera are fixed relative to each
other, so performance of the mapping computation can be
assessed directly. For the fiducial location and identification,
inspection shows that missed detections and false-positives
are uncommon, but quantifying these values would require
inspection of every frame. Instead, this section will look
at the jitter in fiducial locations and at how jitter in fiducial
locations propagates through to the final aspect solution.

Fiducials—Although the sun may move while the gondola
pans to track a solar target, the fiducial pattern is fixed relative
to the camera. Therefore motion of the pattern relative to
the camera should be fairly small. Although some of the
jitter on fiducials may come from motion of the gondola or
flex of the PYAS, assuming all noise present is due to the
detection algorithm is a fair worst-case assumption. The plots
below show scatter of fiducial measurements and RSS error
vs. the mean fiducial location for what should have been a
static observation.

Figure 16. Spread of fiducial locations from a test of the
PYAS system

Figure 17. Fiducial location from a ground test, in a single
dimension, plotted as a time series

It is interesting to see that there is some structure to the data.
The quantization seen in the 2D scatter is likely a result of the
systematic error shown to be present in the centroid method
for refining fiducial location. This same quantization is even
visible in the time series data after 800s, where there the
data is clearly bimodal. As for the periodic nature of the
time series, a 25s cadence could reasonably be motion of the
gondola.

Registration—In tests with synthetic data it was concluded
that the sun tracking algorithm in the presence of fiducials and
noise is only trustworthy to about a pixel, or 10 arcseconds.
This is an approximation which does not factor in effects
of mapping from pixel space to the coordinate space of the
fiducial screen. The effect of the mapping could be computed
analytically, either assuming a Gaussian distribution on the
location of the fiducials, or approximating one by computing
the standard deviation of the jitter plotted above. Instead,

11

Table 10. Measured noise values for image registration
parameters

Variance
σ2
m1

1.045 (mils/pixel)2

σ2
m2

1.579 (mils/pixel)2

σ2
b1

5.089 mils2

σ2
b2

3.111 mils2

σ2
x, σ

2
y .0978 pixels2

however, direct measurements of jitter on the parameters of
the fit can be used. The mapping in question takes the form
of two linear fits, one in each axis. The parameters of these
fits were computed for every frame in an observation of a
fixed target, and their variances are given in the Table 10,
along with an estimate of the variance of the points in the sun
center.

Combining all these values together is a requiers an expres-
sion for the covariance matrix of a noisy point mapped with a
noisy transformation H, which is given in [29]. The worst
case estimate of covariance for the coordinates of the sun
center is 14.4mils2. Adjusting for plate scale the total error
estimated to have standard deviation of 6.512 arcseconds.
Comparing to the 3σ bounds being used earlier, that puts the
estimate for error in the computed solution at 19.5 arcsec-
onds, just barely under the 20 arcsecond requirement.

Summary and Flight Performance

To review, there were a handful of requirements levied on the
SAS which were relevant to the PYAS algorithm. Accuracy
was the driving requirement and has been the focus of this
chapter. Software also had a direct impact on cadence, and
this requirement has been qualitatively addressed throughout
this work. The design of the algorithm was made with ca-
dence in mind, which helped in making image saving, rather
than processing, the tall pole from a cadence standpoint.
Finally FOV was mentioned as a requirement but also not
addressed explicitly. The PYAS frame was sized so that the
entire sun was fully visible anywhere in a +/-1 degree range.
Outside of this range the chord-finding method will return a
degraded solution, and it becomes increasingly unlikely to
have sufficient fiducials to register the PYAS frame to the
fiducial screen.

Ideally the flight processing algorithm would have enough
margin to double as post-flight algorithm as well. Unfor-
tunately the PYAS flight algorithm overshot its target accu-
racy level and appears to only barely meet the knowledge
requirement for flight. The flight was successful however, and
lessons learned in development and testing of the algorithm
apply directly to the post-flight data processing. Recommen-
dations for improved accuracy when processing PYAS frames
will be described in the next and last chapter.

As for the flight, the HEROES payload had a successful
launch in September of 2013 [30]. The flight lasted over 24
hours, and the payload was at float for 21 of those. Solar
pointing time was 7 hours, and the PYAS system provided
aspect solutions for the duration. During these observations,
the HEROES control loop was required to point the payload
with pitch-yaw jitter having a 50th percentile of 1 arcminute.
Measurements taken by the PYAS-F show that over the
duration of the solar pointing period, the HEROES payload

was within 10 arcseconds of the target in elevation and 30
arcseconds of the target in azimuth 50% of the time. Even
factoring in 20 arcseconds of potential error in aspect knowl-
edge, the HEROES payload still meets pointing requirements.
The flight knowledge requirement levied on the PYAS-F is
rolled into this jitter requirement, and meeting it means the
HEROES telescope was pointed successfully.

6. CONCLUSIONS
Software

Lessons learned from the flight processing algorithm for
the PYAS could be applied to the post-processing of data
on the ground, and possibly to future systems based on or
similar to the PYAS. For the ground processing, this could
be as little as making minor tweaks to the flight code or as
much as a completely new algorithm. Some aspects of the
flight algorithm worked adequately: fiducial identification
and mapping from pixels to screen for example. However the
algorithm would benefit from a major change to its overall
structure, and then adjustments to the first two stages.

First and simplest, the method for refinement of fiducial
locations needs to be changed. The systematic error present
in the correlation centroid could be eliminated by switching
to a parabolic surface fit to the correlation peaks. Outside
of that systematic error, however, the matched filter approach
worked quite well for locating fiducials. Next to be modified
would be the sun finding method. The Average Intersection
was attractive because of its nature as a heritage approach,
being very similar to the method used by RHESSI in its
SAS. RHESSI did not have to contend with fiducial marks,
however, which can corrupt the solar limb and provide a
disturbance when they occur on the body of the sun. They
will affect any edge-based approach, meaning either their
locations need to be predicted and masked out, or a different
approach to sun detection has to be considered.

Moving away from edge-based methods to something like
circle-enclosing instead [22]. Fiducials effectively subtract
portions of the sun, but enough of the edge is present that an
enclosing method should give a good estimate of the center.
Another alternative would be to revisit the use of a simple
centroid. Centroids were ruled out early in the development
of the PYAS algorithm partly because fiducial markers would
occlude portions of the sun and affect the centroid. This
may have been more of a problem if large convex shapes
like circles or diamonds were used as marks, but the cross
marks used in the PYAS darken at worst 56 pixels per mark.
At most that means about 3% of the sun might be occluded.
Its possible that the effect of this on the centroid of the sun
would be minimal. Converting to a binary image and using
a morphological closing could further reduce the impact of
fiducials on a centroid estimate.

Hardware

In addition to direct changes to the PYAS algorithm, it would
indirectly benefit from changes to hardware, specifically the
SAS computer and the fiducial pattern. The first of these
would be to try to upgrade the SAS computer. The initial
goal of a 10 Hz cadence proved to be impossible with the
selected hardware. A faster processor would certainly help
here, and there are certainly processors more powerful than
the Atom. Additionally, more time needs to be devoted to the
problem of storing images. Images in the SAS were stored
as uncompressed FITS files, and file I/O ended up being a

12

major bottleneck in the processing pipeline. PYAS frames
have a great deal of empty space, and if not video, even
lossless image compression would cut down on raw file size
and might help to improve file write times.

The fiducial pattern could stand to be changed as well.
Cross-shaped fiducial markers are easy for humans to locate,
but circular markers may be more suited to machine vision
applications. They are easier to locate precisely via a simple
centroid, and although the PYAS did not encounter problems
with rotations, circular marks would be much more robust
to potential rotation between the camera and screen. The
method of encoding fiducial ID in inter-fiducial distances
should also be re-addressed. The current method is very
sensitive to changes in scale, and required adjustment to pa-
rameters in the identification code between test configuration
and mounting on the gondola. Augmented reality literature
is full of fiducial markers that carry information payloads,
and there are even patterns of relatively small marks that still
carry information without relying on inter-fiducial distance.
For example, the fiducial marks used in the 2-axis encoder
described in [23] rely on a pattern of small marks which can
deliver position knowledge when only part of the pattern is
visible.

The PYAS system successfully provided fine pitch-yaw
knowledge to the HEROES pointing control system during
solar observation. It exceeded cadence requirements, and
analysis shows that it managed to meet pointing knowledge
requirements, if barely. Solar pointing data from flight
appears to have met jitter requirements in both axes as well.
Because it was being developed in parallel with the PYAS
hardware, the PYAS algorithm had to be capable of handling
a wider array of possible scenes. Now that the PYAS op-
tics, fiducial pattern, and camera are finalized, however, and
the concerns about processing time have been completely
removed, it should be possible to extract much finer pitch
and yaw knowledge from the recorded PYAS frames. Further
systems based on a PYAS would also benefit from a more
powerful computer and a modified fiducial pattern.

REFERENCES
[1] T. T. Tarshis and G. T. Sakoda, “A Second Generation

Sun Sensor for Sounding Rocket Applications,” pp. 85–
90, 1979.

[2] P. Ortega, G. López-rodrı́guez, J. Ricart,
M. Domı́nguez, L. M. Castañer, S. Member, J. M.
Quero, C. L. Tarrida, J. Garcı́a, M. Reina, and A. Gras,
“A Miniaturized Two Axis Sun Sensor for Attitude
Control of Nano-Satellites,” IEEE Sensors Journal,
vol. 10, no. 10, pp. 1623–1632, 2010.

[3] N. Xie and A. J. P. Theuwissen, “A Miniaturized Micro-
Digital Sun Sensor by Means of Low-power Low-noise
CMOS Imager,” IEEE Sensors Journal, vol. 14, no. 1,
pp. 96–103, 2014.

[4] S. Mobasser, C. Liebe, and J. Naegle, “Flight Qualified
Micro Sun Sensor for Mars Applications,” Proceedings
of 2nd International Conference on Recent Advances in
Space Technologies, 2005. RAST 2005., vol. 3, pp. 234–
239, 2005.

[5] R. Henneck, J. Bialkowski, F. Burri, M. Fivian, W. Ha-
jdas, A. Mchedlishvili, P. Ming, K. Thomsen, J. Welte,
A. Zehnder, B. Dennis, G. Hurford, D. Curtis, and
D. Pankow, “The Solar Aspect System (SAS) for the
High Energy Solar Spectroscopic Imager HESSI,” SPIE

Conference on EUV, X-Ray and Gamma-Ray Instrumen-
tation for Astronomy, vol. 3765, no. July, pp. 771–776,
1999.

[6] X. Fernàndez and J. Amat, “Research on Small Fiducial
Mark Use for Robotic Manipulation and Alignment
of Opthalmic Lenses,” IEEE Conference on Emerging
Technologies and Factory Automation, pp. 1143–1146,
1999.

[7] C. B. Bose and I. Amir, “Design of Fiducials for Accu-
rate Registration Using Machine Vision,” IEEE Trans-
actions on Pattern Anaylsis and Machine Intelligence,
vol. 12, no. 12, pp. 1196–1200, 1990.

[8] M. Tichem and M. Cohen, “Sub-micrometer Registra-
tion of Fiducial Marks Using Machine Vision,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 16, no. 8, pp. 6–9, 1994.

[9] H. Moon, R. Chellappa, and A. Rosenfeld, “Optimal
Edge-Based Shape Detection.” IEEE Transactions on
Image Processing, vol. 11, no. 11, pp. 1209–1226, 2002.

[10] R. C. Gonzalez and R. E. Woods, Digial Image Process-
ing. Upper Saddle River, NJ: Prentice Hall, 2008.

[11] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct Least
Square Fitting of Ellipses,” Pattern Analysis and Ma-
chine Intelligence, vol. 21, no. 5, pp. 476–480, 1999.

[12] W. Gander, G. H. Golub, and R. Strebel, “Least-squares
fitting of circles and ellipses,” BIT, vol. 34, no. 4, pp.
558–578, Dec. 1994.

[13] I. D. Coope, “Circle Fitting by Linear and Nonlinear
Least Squares,” Journal of Optimization Theory and
Applications, vol. 76, no. 2, pp. 381–388, Feb. 1993.

[14] D. Umbach and K. N. Jones, “A Few Methods for
Fitting Circles to Data,” IEEE Transactions on Instru-
mentation and Measurement, vol. 52, no. 6, pp. 1881–
1885, 2003.

[15] B. F. Alexander and K. C. Ng, “Elimination of System-
atic Error in Subpixel Accuracy Centroid Estimation,”
Optical Engineering, vol. 30, no. 9, pp. 1320–1331,
1991.

[16] S. S. Welch, “Effects of Window Size and Shape on
Accuracy of Subpixel Centroid Estimation of Target
Images,” NASA Technical Paper, no. 3331, 1993.

[17] S. Lee, “Pointing Accuracy Improvement using Model-
Based Noise Reduction Method,” Proceedings of SPIE,
pp. 65–71, Apr. 2002.

[18] D. K. Naidu and R. B. Fisher, “A Comparative Analysis
of Algorithms for Determining the Peak Position of a
Stripe to Sub-pixel Accuracy,” Procedings of the British
Machine Vision Conference 1991, pp. 28.1–28.9, 1991.

[19] Q. Tian and M. N. Huhns, “Algorithms for Subpixel
Registration,” Computer Vision, Graphics, and Image
Processing, vol. 35, pp. 220–233, 1986.

[20] S. S. Gleason, M. A. Hunt, and W. B. Jatko, “Subpixel
measurement of image features based on paraboiloid
surface fit,” vol. 1386, pp. 135–144, 1990.

[21] R. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd ed. Cambridge, UK: Cam-
bridge University Press, 2000.

[22] E. Welzl, “Smallest enclosing disks (balls and ellip-
soids),” New Results and Trends in Computer Science,
vol. 555, pp. 359–370, 1991.

[23] D. B. Leviton, T. Anderjaska, J. Badger, T. Capon,

13

C. Davis, B. Dicks, W. Eichhorn, M. Garza,
C. Guishard, S. Haghani, C. Hakun, P. Haney, D. Happs,
L. Hovmand, M. Kadari, J. Kirk, R. Nyquist, F. D.
Robinson, J. Sullivan, and E. Wilson, “Cryogenic op-
tical position encoders for mechanisms in the JWST op-
tical telescope element simulator (OSIM),” Proceedings
of SPIE, vol. 8863, Sep. 2013.

BIOGRAPHY[

Alex Cramer received B.S. degrees in
mathematics and electrical engineering
from UMD in 2009, and an M.S. degree
from the same in electrical engineering
in 2014, with a focus on computer vision.
He is currently an Electrical Engineer at
NASA Goddard Space Flight center in
the Electromechanical Systems branch.
He worked as the PYAS software engi-
neer on the HEROES mission.

14

