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Spatio-Temporal Video Segmentation With Shape
Growth or Shrinkage Constraint

Yuliya Tarabalka, Member, IEEE, Guillaume Charpiat, Ludovic Brucker, and Bjoern H. Menze

Abstract— We propose a new method for joint segmentation
of monotonously growing or shrinking shapes in a time sequence
of noisy images. The task of segmenting the image time series is
expressed as an optimization problem using the spatio-temporal
graph of pixels, in which we are able to impose the constraint
of shape growth or of shrinkage by introducing monodirectional
infinite links connecting pixels at the same spatial locations in
successive image frames. The globally optimal solution is com-
puted with a graph cut. The performance of the proposed method
is validated on three applications: segmentation of melting sea
ice floes and of growing burned areas from time series of 2D
satellite images, and segmentation of a growing brain tumor
from sequences of 3D medical scans. In the latter application,
we impose an additional intersequences inclusion constraint by
adding directed infinite links between pixels of dependent image
structures.

Index Terms— Video segmentation, shape growth, graph cut,
energy minimization, infinite links.

I. INTRODUCTION

AUTOMATIC segmentation of objects in videos is a diffi-
cult endeavor in computer vision [1]. This task becomes

even more challenging for image sequences with low signal-
to-noise ratio or low contrast between intensities of spatially
adjacent objects in the image scene. Such challenging data are
recorded frequently, for instance, in satellite remote sensing or
medical imaging.

Image segmentation methods applied independently to each
frame [2], [3] produce unstable results, while temporal coher-
ence in video sequences yields a lot of information not
available for a single image. There are two main categories
of approaches for the spatio-temporal segmentation of image
sequences. Causal, or feedforward, techniques consider only
past data for segmenting each next frame [4], [5]. Omniscient
approaches take advantage of both past and future data by
analyzing the video as a 2D+T = 3D spatio-temporal pixel
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volume [6]–[8]. In this case, the segmentation of the entire
image set supports each of the individual segmentations.
Graph-based methods gained popularity among omniscient
approaches, in particular those using hierarchical model [8],
normalized cuts [6] or graph cuts [9]. These techniques do
not impose any shape prior knowledge. It was proven that
introducing shape priors into image segmentation, i.e. favoring
segmentations similar in some sense to a given shape, allows
to drastically improve segmentation of objects in the presence
of strong noise and occlusions [10], [11]. However, impos-
ing shape priors increases significantly both algorithmic and
computational complexity of segmentation algorithms [12].
Schoenemann and Cremers proposed to compute minimal ratio
cycles in a large product graph spanned by the image and
the shape template for finding globally optimal segmentations,
which are consistent both with edge information and with a
shape prior [13], [14]. In order to speed up the algorithm,
they implemented it in parallel on graphics hardware. This
algorithm can be applied for segmenting shapes in time series
in a causal way, so that the template determined for the last
frame is matched to the next. However, it does not guarantee
globally optimal solution over the whole temporal sequence.

In this paper, we focus on segmenting shapes which only
grow or shrink in time, from sequences of extremely noisy
images. Examples of growing shapes are forest fires or
expanding cities in satellite images and organ development in
medical imaging. In the image sequences we consider, both
foreground and background intensity distributions can vary
significantly over time: foreground can be heavily occluded
or undistinguishable from a part of the background, and data
for some pixels can be missing (see Figs. 2 and 7 for exam-
ples of such sequences). Most of previously-proposed spatio-
temporal methods rely on coherence of foreground/background
intensity distributions in successive image frames, and are
therefore not suited for segmenting such noisy data sets.
Few approaches have been specifically designed for spatio-
temporal segmentation of magnetic resonance image (MRI)
sequences with low signal-to-noise ratio [9], [15]. Applied to
multi-temporal time series that show a monotonously growing
or shrinking structure, however, these smoothing methods
bias results towards the mean shape obtained from averaging
consecutive segmentations and, hence, underestimate rapid
growth or shrinkage events.

To address this issue, we propose a new omniscient seg-
mentation framework based on graph cuts for the joint seg-
mentation of a multi-temporal image sequence. It introduces
growth or shrinkage constraint in graph cuts by using directed
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infinite links, which connect pixels at the same spatial loca-
tions in successive image frames. By minimizing a submodular
energy computed on the resulting spatio-temporal graph of the
image sequence, the proposed method yields a globally opti-
mal solution. Differently from the state-of-the-art omniscient
techniques, it does not rely on the coherence of the intensity in
time, but only on the coherence of the shape. To summarize,
the main contribution we make in this paper is:

1) a new framework for segmentation of 2D/3D image time
series with the constraint of shape growth/shrinkage,

2) in order to be able to segment extremely noisy/
low-contrast/incomplete data,

3) in a very low computational time (see Fig. 5: linear time
in the number of frames in practice).

We validate the performance of the proposed framework on
three applications with very noisy image sequences. The first
one deals with the segmentation of multiyear sea ice floes in
a set of satellite images acquired through different satellite
sensors. The new method returns accurate melting profiles
of sea ice, which is important for building climate models.
The second application segments growing burned areas from
time series of optical satellite images with missing data. The
third application addresses the segmentation of brain tumors
from longitudinal sets of multimodal MRI volumes, where
we impose additional inter-modal inclusion constraints for the
joint segmentation of different image structures (brain tissues).

Note that the preliminary results related to this research
have been presented in the conference paper [16]. The rest
of the paper is organized as follows. In the next section, the
proposed graph-cut-based segmentation framework is
presented. Experimental results are discussed in Sec. III and
conclusions are drawn in Sec. IV.

II. ENFORCING SHAPE GROWTH/SHRINKAGE

IN GRAPH CUTS

Graph cut is an optimization tool coming from graph theory,
based on the rewriting of image segmentation problems as
(s,t)-min-cuts in graphs, on the equivalence of (s,t)-min-cut
and max-flow problems, and on the existence of efficient
algorithms to solve the latter ones [17]–[19]. In practice in
computer vision, it can be used to find the globally optimal
binary segmentation of images where the segmentation crite-
rion is related to a Markov Random Field with submodular
interaction terms, i.e. a criterion E of the form:

E(L) =
∑

pixels i

Vi (Li ) +
∑
i∼ j

Wi, j (Li , L j ), (1)

where L is the binary labelling function to be found (Li is
the label of pixel i ), individual potentials Vi are any binary
real-valued functions measuring the disagreement between
a prior probabilistic model and the observed data, i ∼ j
denotes a pair of neighboring pixels (any neighborhood system
can be used), and Wi, j are any real-valued interaction terms
between neighboring pixels expressing spatial coherency of
labels, satisfying

Wi, j (0, 0) + Wi, j (1, 1) � Wi, j (0, 1) + Wi, j (1, 0). (2)

A directed infinite link between two pixels expresses
precisely the constraint that this pair of pixels cannot have
the pair of labels (0,1), by assigning an infinite cost to such
an interaction. The remaining possible pairs of labels are thus
(0,0), (1,1) and (1,0), which means that either both pixels have
the same label, or the order of labels is predefined (1 for first
pixel and 0 for the second one). In the case of image binary
segmentation, if 0 stands for the background and 1 for the
foreground object, then this means that the second pixel may
belong to the foreground only if the first one already does.

A. Related Works

Extensions of graph cuts to multi-label problems
(i.e. multi-class segmentation) have been proposed but
generally do no guarantee optimal solutions, except e.g.
in the case of Ishikawa’s construction [20], which requires
labels to be ordered and the interaction term to be a convex
function of their differences, i.e. Wi, j (Li , L j ) = g(Li − L j )
with g convex. This graph construction makes intensive
use of infinite links to constrain the min-cut solutions to
satisfy desired properties required to interpret them as image
segmentation solutions. This was the source of inspiration for
our work.

A study related to shape constraints can be found in [21],
where one image has to be segmented in several possibly-
overlapping objects. Infinite links are used for imposing com-
mon boundaries, inclusion or exclusion conditions between
objects in a same single image. A similar approach [22]
segments jointly two surfaces in a same volumic image, under
the constraint that they should be separated by a given minimal
margin. There is however no work related to shape growth or
shrinkage in time series.

Wolz et al. [9] applied graph cuts for simultaneous
segmentation of serially acquired MRI volumes. They defined
temporal edge weights as the intensity differences of voxels
at the same spatial locations. The same smoothness constraint
was applied both in space and time, and the segmentations
at different timepoints were forced to be consistent in areas
where a small intensity difference between the images exist.
This type of temporal constraint is suboptimal in image series
where intensity distributions of foreground and background
vary significantly over time. To the best of our knowledge,
our work is the first to use infinite links to enforce a temporal
growth constraint, and we illustrate in Sec. III the advantage
of the new method over previous approaches such as [9].

B. Growth/Shrinkage Constraint

Given a sequence of images I (t) preliminarily aligned,
shape growth can be easily expressed as the property that the
foreground object cannot lose any pixel when time advances.
Otherwise said, if a pixel belongs to the foreground object
at time t1, then it belongs also to the foreground object
for all times t2 > t1. Equivalently, and simpler: a pair of
pixels ((x, y, t), (x, y, t + 1)), sharing the same location and
immediately successive in time, cannot have the pair of labels
(1,0), with the same binary segmentation notations as above.
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Fig. 1. (a) Enforcing shape growth in an image sequence. (b) Segmenting jointly two sequences S1 and S2, by enforcing the foreground of S1 to contain
the foreground of S2, with directed infinite links from S1 towards S2, between all pixels of coordinates (x, y, t, s1) and (x, y, t, s2).

This can be enforced by setting monodirectional infinite links
from all pixels to their immediate predecessor in time.

Given T images I (t), with t ∈ [1, T ], and as many
associated submodular segmentation criteria Et , we transform
the problem of segmenting independently each image I (t)
according to its criterion Et , into a joint segmentation of all
images together, by enforcing the shape growth constraint with
directed infinite links (see Fig. 1(a)). Thus, instead of applying
graph cut T times independently to planar grids of the size
of the images W × H , we apply graph cut once to a 3D grid
W × H × T , consisting of the same nodes and edges, but with
additional monodirectional infinite links in time. The criterion
to be minimized is then E = ∑

t Et under the constraint of
shape growth:

E(L) =
∑

pixels i

Vi (Li ) +
∑
i∼ j

Wi, j (Li , L j )

+ ∞
∑

t

δLt
i>Lt+1

i
. (3)

Since the problem is binary and submodular, the solution
found by graph cut is globally optimal.

Manifestly, one can enforce shape shrinkage instead of
shape growth, by reversing the direction of the infinite
links. Another straightforward extension, needed in Sec. III-C,
consists in applying this approach to the case of sequences of
3D images. The directed infinite links are then set for all pairs
of voxels of the form

(
(x, y, z, t), (x, y, z, t − 1)

)
to enforce

3D shape growth.
In some applications, it may happen that growth (or shrink-

age) is only very probable, but not with probability 1, i.e.
growth should be considered as a probable hint but should not
be enforced strictly at all locations at all times. In that case,
one may replace directed infinite links by directed finite links:
the weights of these links will encourage growth (more or less
strongly depending on the weight), but sufficiently disagreeing
potentials Vi may make the shape locally shrink instead. Thus,
shrinkage would be discouraged but not forbidden.

C. Inter-Sequences Inclusion Constraint

It is also possible to segment jointly several image
sequences I (s)(t) with the constraint that the foreground
object in some sequences should be included in the foreground

object of some other sequences. This can be done similarly by
considering together the graphs associated to all sequences,
and, for each inclusion constraint, by adding directed infinite
links between pixels of the desired sequences s1 and s2,
sharing same location and time: such links from (s1, x, y, t)
to (s2, x, y, t) for all x, y, t will force the foreground object in
sequence s1 to contain the one of sequence s2 (see Fig. 1(b)).
An example of such application is given in Sec. III-C, where
image sequences correspond to four different MRI modalities,
aligned both in space and time.

Naturally, instead of imposing an inclusion constraint over
the whole time span and the whole image space, it is possible
to specify spatio-temporal domains of constraints, for instance
to express that the inclusion property between two sequences
has to be satisfied inside a pre-defined region and/or during a
pre-defined time span [t1, t2] only, by adding directed infinite
links in these sets only.

D. Weighting Frames by Reliability

As presented earlier, enforcing shape growth explicitly is
particularly important when facing noisy sequences of images,
as a joint segmentation incorporates information from different
frames. With our approach, a fully noisy frame in the middle
of several good-quality frames will be automatically ignored
in practice, because statistically the (bad) potentials Vi at any
pixel i in that frame will be neglectable with respect to all
other (correct) potentials at the same pixel in other frames.
Hence, the solution we bring will be strongly robust to any
kind of noise, provided that the noise is not coherent in time
during long time spans.

The quantity of noise that the method can handle depends
on the number of neighboring frames with good-quality infor-
mation at the same spatial location. One way to increase
even more the trade-off between admissible level of noise
and quantity of good information consists in estimating the
reliability of the information given, in each image or even
at each pixel, and in weighting accordingly the associated
energies : E = ∑

t wt Et . For instance, if a strong level
of noise is detected globally in one image I (t), one may
multiply the corresponding energy Et by a small reliability
factor wt < 1, in order to make it less influential than
other frames. Such a reliability factor could be computed
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for instance from preliminary image processing steps
(for example, correlation between an image I (t) and its
neighboring ones

{
I (t ′) ; 0 < |t − t ′| � δt

}
).

E. Complexity

The precise theoretical worst case complexity depends on
the graph cut algorithm used, and is the same as for usual
single-image graph cuts, but with T times more nodes and
edges. Denoting by N the number of nodes and M the number
of edges, this worst case complexity is O(N M 2) for the
Edmonds-Karp algorithm, O(N2M) for the Dinitz blocking
flow algorithm, which goes down to O(N M log(N)) using
dynamic trees. However, the computational time observed in
practice is known to be much faster on typical image segmen-
tation problems. We applied the binary graph-cut algorithm of
Boykov and Kolmogorov [17], and we report a linear observed
complexity with the total number of pixels T × W × H
(see for instance Fig. 5 for experiments of section III-A). As a
consequence, enforcing shape growth on a long sequence, or
on complementary shorter bits of the same sequence, will take
approximately the same time.

In the case of long sequences of big images, the memory
space required may exceed the capacities of a computer. This
is however not an issue, as there exist graph cut implemen-
tations for massive grids [23] meant for such cases, where
all information is not stored in the memory at all times. This
was not required for the experiments presented in this paper
though.

F. Rewriting as a Multi-Label Problem

We show now another point of view on sequence segmen-
tation with growth constraint. The successive labels Li (t) of a
given pixel i over time might change only once, and only
from 0 (background) to 1 (foreground object). Hence, this
vector of labels Li (t) is of the form (0, 0, . . . , 0, 1, . . . , 1, 1)
and can be represented by just the time index τi of the first 1,
i.e. the earliest time at which the pixel starts belonging to the
object. This time τi is in [1, T +1], with T+1 meaning “never.”
We have thus transformed a binary optimization problem on
a sequence of images with shape growth constraint into a
multi-label problem defined on one single image, without any
constraint. This new problem can be expressed in the Markov
Random Field form (1) with

Vi (τi ) :=
∑
t<τi

V t
i (0) +

∑
t�τi

V t
i (1)

and

Wi, j (τi , τ j ) : =
∑

t<min(τi ,τ j )

W t
i, j (0, 0) +

∑
τi �t<τ j

W t
i, j (1, 0)

+
∑

τ j �t<τi

W t
i, j (0, 1) +

∑
t�max(τi ,τ j )

W t
i, j (1, 1)

where (V t
i ) and (W t

i, j ) define the energy Et at time t , and
where sets of summation may be empty (note that any time t
appears in exactly one summation set only). The submodular-
ity of the binary interaction terms W t in each frame implies

the submodularity of the multilabel interaction term W , i.e.

Wi, j (τ1, τ2) + Wi, j (τ
′
1, τ

′
2) � Wi, j (τ1, τ

′
2) + Wi, j (τ

′
1, τ2)

for all labels satisfying τ1 � τ ′
1 and τ2 � τ ′

2 (proof in
Appendix). Thus, this energy can be minimized globally effi-
ciently with now standard techniques (see [24]). Note that in
the particular case where interaction terms W t do not depend
on t , the interaction term W of this multi-label energy above
can be rewritten as a convex function g of (τi − τ j ), and then
Ishikawa’s construction [20] can be applied. It turns out that
the graph built this way is precisely the graph that we built in
our initial binary multi-frame problem. Our initial formulation
is however more flexible, in that interaction terms can depend
on t , and more natural, in that inclusion constraints can easily
be enforced in spatial or/and time subregions only, while this
would not be expressible with the multi-label formulation.

III. EXPERIMENTAL RESULTS

We applied the proposed method to three different applica-
tions, in order to validate its use to enforce shape shrinkage
or growth, for 2D or 3D image sequences:

(Application 1) We impose shrinkage constraint for a
2D sequence, to segment a melting multiyear ice from a time
series of satellite measurements.

(Application 2) We enforce shape growth for a 2D sequence,
to segment burned areas from optical satellite images.

(Application 3) We use growth constraint for 3D image
sequences, to segment growing brain tumors from multimodal
MRI volumes.

The performance of our framework with monodirectional
links, [Mono=const], is compared with other graph-cut-based
methods:

• [w/o]: Graph cut with no temporal links, i.e. independent
segmentation of each frame.

• [Feedforward]: After segmenting the first frame with
graph cut approach, foreground/background pixels are
marked as seeds with infinite unary costs in the next frame
for enforcing shape growth/shrinkage.

• [Bi=const]: Smoothing by introducing bidirectional tem-
poral links, i.e. links in both directions (from t to t + 1
and from t + 1 to t), with a constant weight (finite or
infinite).

• [Bi=variable]: As proposed in [9], bidirectional temporal
links are computed based on intensity differences between
pixels in successive image frames, i.e. in the same way
as spatial links.

For comparison between the methods we used the Dice
score [25], D = (2|M̂ ∩ M|)/(|M̂ | + |M|), where M̂ and M
are manually and automatically segmented foreground regions,
respectively.

A. Application 1: Melting Sea Ice in Satellite Images

The melting of sea ice is correlated to the increases in sea
surface temperature and to associated climatic changes. Thus
it is very important to monitor sea ice evolution and to develop
methods for automated analysis of satellite measurements.
Previous works on ice floe segmentation attempted to extract
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Fig. 2. (a, b) Reprojected MODIS images captured on the 244th and 252th
days, respectively. (c, d) Corresponding AMSR-E images.

temporal information by using ice percentages, area and shape
parameters of the ice floes at the previous time moments
as prior information to segment the floe at the next time
moment [5], [26]. These feed-forward approaches were unable
to accurately estimate melting ice profiles because of the low
signal-to-noise ratio and of the lack of contrast in satellite data,
producing area estimations that are noisy in time, while a
multiyear ice floe can actually only melt in the summer
period.

We aimed at segmenting a multiyear ice floe from a
45-day sequence (summer period from the 227th to 271th
day of 2008) of measurements over the polar regions by
two Aqua satellite sensors: Advanced Microwave Scanning
Radiometer - Earth Observing System (AMSR-E, 89 GHz,
6.25 km spatial resolution) and Moderate-Resolution Imaging
Spectroradiometer (MODIS, band 1, 0.620−0.670 μm, 250 m
spatial resolution). Fig. 2 shows MODIS and AMSR-E images
at two time moments from the considered data set. The floe
was tracked from the AMSR-E data, where multiyear ice has
a low microwave emissivity (dark area in Fig. 2), and is in
this way distinguishable from clouds and younger ice which
has a higher emissivity (white area in Fig. 2). However, the
low spatial resolution of these data does not allow to quantify
the ice floes areas accurately. In accordance with the tracking
measurements, a time series of T = 75 MODIS and upscaled
AMSR-E images with the ice floe was built, with spatial
dimensions of 800 × 800 pixels. We denote each MODIS
image by I t , and each upscaled AMSR-E image smoothed
by Gaussian filter by At , t = 1, . . . , T .

The objective is to compute T segmentation maps Lt , where
each pixel (x, y) has label Lt

(x,y ) = 1 if it belongs to the floe
at time t , and 0 otherwise. In order to apply the proposed
method with a shrinkage constraint to the selected time series,
the images must be aligned, so that the property that the floe
in the image I t+1 is included in the floe of the image at the
previous time moment I t can be expressed directly in terms
of pixel locations.

∀t, x, y, Lt+1
(x,y) = 1 �⇒ Lt

(x,y) = 1.

For this purpose, we estimated a reliable region of the fore-
ground (i.e., a region which can be considered with high
probability as a part of the floe), RF , and a reliable region
of the background, RB , from the AMSR-E images, where
a multiyear ice floe is darker than water, young ice and
clouds. From the AMSR-E tracking measurements, we derived
a foreground seed point and an approximate area of the floe
for each time moment t . We then grew a reliable region of
the floe RF in each At from the foreground seed point, until
it reached approximately half of the size of the floe. Another
region, RB , was grown in At from the same foreground seed
point, but until an area half larger than the approximate floe
size. The complementary region RB , of pixels not in RB , was
considered with high probability as part of the background.

We then computed the histograms of the intensities I t of the
floe, pt (I |F), and of the background, pt (I |B), respectively,
and a map of floe probabilities as

pt (F |I ) = pt (I |F)Pt (F)

pt (I |F)Pt (F) + pt (I |B)Pt (B)
, (4)

Pt (B) =
At − min

x,y
At

(x,y)

max
x,y

At
(x,y) − min

x,y
At

(x,y)

, Pt (F) = 1 − Pt (B).

The quantities above depend on the pixel location. The
images I t were aligned by exhaustive searching over rigid
motions (rotations and translations) to maximize the correla-
tion between maps of foreground probabilities at the current
and previous moments. This search is largely affordable given
the low frame rate. We computed potentials and interaction
terms between neighboring pixels as:

V t
i (1) = −ln[pt(F |I )], V t

i (0) = −ln[pt (B|I )], (5)

W t
i, j = δLi 
=L j β exp

[
− (I t

i − I t
j )

2

2σ 2

]
, (6)

where σ is a standard deviation of I t , β is a parameter that
controls the importance of the spatial interaction energy term.
We found experimentally that setting β = 2 yields robust
results. The proposed method was applied with monodirec-
tional temporal links to enforce floe shrinkage, as described
in Sec. II. We performed several experiments, with different
values of the constant w standing for the temporal link
weight, from 0.25 to ∞. The results [Mono = 0.25 . . .∞]
are compared with those obtained with other graph-cut-based
approaches (listed in the beginning of Sec. III) in Table I
and in Fig. 3–4. Both graph-cut with no temporal links and
feedforward approaches show the worst performances, and
prove to be not well suited for segmenting such noisy data
sets. When a feedforward method encounters a frame with the
part of the floe obscured by clouds and thus undistinguishable
from the background, it segments only the visible part of the
foreground, and then is trapped in a non-sense segmentation
for the rest of future times. The method using gradient-based
temporal links [Bi = variable] [9] also yields poor segmen-
tation accuracies, because it is sensitive to both noise and
variation of foreground/background intensities in consecutive
frames.



3834 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2014

TABLE I

RESULTS FOR APPLICATION 1. MEAN AND STANDARD DEVIATIONS OF THE DICE SCORES FOR THE PROPOSED METHOD

[Mono = ∞] AND GRAPH-CUT-BASED APPROACHES USED FOR COMPARISON

Fig. 3. (From top to bottom) Aligned images and segmentation contours (red) for four time moments (days 230, 233, 235 and 267, respectively) computed by
the graph-cut methods: (From left to right) Aligned image, [Feedforward], [w/o], [Bi = variable], [Bi = 4], [Bi = 16], proposed method with monodirectional
infinite links. Manual segmentation is shown in green. The rightmost part of the white area in the third row is not part of the object, but another ice floe who
temporarily collided.

We explain in Fig. 3–4 the advantage of using monodirec-
tional infinite links versus bidirectional links in the temporal
dimension. Bidirectional edges with low values of w enforce
only smoothness of variation of the contour in time, and yield
segmentation errors in the case of low foreground/background
contrast. For example, in the third image of Fig. 3 (day 235),
the floe of interest collided temporarily with another ice floe.
When using a weak smoothness constraint (see segmentation
contour [Bi = 4]), the small encountered floe collided with
the floe of interest during a certain number of consecutive
frames would be considered as a part of the foreground.
Enforcing more smoothness in space-time to avoid this has
the undesirable effect of smoothing the foreground shape, so
that the segmented foreground area is lower (underestimated)
than the ground-truth for the first frames, and higher (over-
estimated) for the last frames (see results [Bi = 16] in
Fig. 3 and-4(b)). With the increase of w, the estimated
foreground tends to the constant shape for all time moments,
and the Dice score decreases.

When the proposed shrinkage constraint is used instead,
the segmentation accuracy increases with w, and w = ∞
yields results with monotonous shrinkage of the shape area
(see Fig. 4(a)). Moreover, the proposed method copes well

with rapid shrinkage events, without underestimating pre-
ceding images, or overestimating the event itself at onset.
Another advantage of using monodirectional infinite links is
that there are no additional parameters to quantify temporal
coherency.

Fig. 5 depicts the computational time for the proposed
graph-cut-based optimization as a function of the number
of frames. The total computational time grows linearly with
the number of frames, and is approximately twice the time
that would be taken by the independent segmentation of each
frame.

B. Application 2: Growing Burned Areas in
Satellite Observations

Biomass burning has a significant impact on the Earth’s
climate system. Satellite remote sensors acquire data for the
continuous monitoring of burned areas at both regional and
global scales. Thus, there is a need to develop methods for
automated fire mapping. While most of the existing techniques
for mapping burned areas analyze temporal evolution of each
pixel in an image scene [27], recent studies have proved the
advantage of considering spatial contextual classification for
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Fig. 4. Results for Application 1. (a) Mean and standard deviation for the
dice score as a function of the temporal link’s weight, when using mono-
(green) and bidirectional (red) temporal links. (b) Area of a multiyear ice floe
as a function of time, computed by using mono- and bidirectional links with
different weights.

Fig. 5. Computational time for the proposed segmentation of the ice floe set
as a function of the number of frames.

accurate fire classification [28], [29]. Both works [28], [29]
map fires from MODIS data by detecting and classifying
persistent changes in a daily vegetation-index time series.
Giglio et al. [29] exploit the closest fixed pixel’s neighbor-
hood to refine fire classification. Lewis [28] segments and
analyzes change detection maps between two consecutive
time moments. Manual post-processing is needed to correct
classification errors, which are a consequence of either a
cloud cover, or low contrast between burned and unburned
areas.

In our study we analyzed two time series of Terra MODIS
atmospherically-corrected Level 2G daily surface reflectance
measurements over the tropical savannas in the Northern
Australia (“MOD09GA” product, tile h31v10), each of the
data sets being acquired during forty days of the dry season
in September-October (days 244–283) of 2011 and 2013,
respectively. Wildfires in this region of Australia are frequent
and extensive. We used MODIS band 5 (1.240 μm) 500-m
land surface reflectance data as they provide the highest
burned-unburned separability and are largely insensitive to
smoke aerosols [27]. Each time series comprised a set of

Fig. 6. Flowchart of the segmentation algorithm applied for Application 2.

T = 40 images with spatial dimensions W × H =
400 × 400 pixels. Fig. 7(a) shows three images from each
of the considered sets, where black pixels denote missing
data (MODIS does not provide 100% daytime coverage of
the terrestrial surface every day).

We used MODIS Collection 5.1 Direct Broadcast Monthly
Burned Area Product (MCD64A1, see Fig. 7(b)) [29] for
learning and testing the proposed method, i.e. for computing
an initial histogram of burned areas and comparing fire maps,
respectively. The MCD64A1 product contains fire classifi-
cation maps, where each pixel is associated with either an
estimated day of burn, or an unburned flag, or an unmapped
flag due to insufficient data. These maps are computed by
applying the approach from [29] on two 500-m MODIS
channels coupled with 1-km MODIS active fire observations.

We segmented each of the considered image time series
[t1, . . . , tT ] by applying the following iterative procedure
(the flowchart is shown in Fig. 6):

Initialization: k := 0. The initial training mask of burned
areas RB

k is built using MCD64A1 product, by selecting the
pixels burned during the days [t1 − D, t1 − 1]. This mask can
also be created based on ground observations of the considered
area on the day (t1 − 1).

1. The training mask of unburned areas RU
k is constructed

by dilating RB
k with a disk of radius r [30] and selecting

the complementary of the resulting image.
2. For a subset of T ′ images t = [t1+kT ′, t1+(k+1)T ′−1],

intensity histograms of the MODIS band 5 for burned
pt (I |B) and unburned pt (I |U) areas are computed,
using the masks RB

k and RU
k , respectively. If the data for

some pixels is missing, these pixels are not considered
when computing histograms.
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Fig. 7. Two time series of MODIS images acquired in 2011 and 2013 (left and right, respectively). (a) MODIS band 5 images for three time moments: days
251, 265 and 279. Black pixels denote missing data. (b) Maps from the MCD64A1 product of areas burned during the days 213–251, 213–265 and 213–279,
respectively (white pixels = burned areas). (c-d) Segmentation maps for images (a) computed by: (c) the proposed method with growth constraint; (d) [w/o]
method with no temporal constraints.

3. For the images [t1+kT ′, t1+(k+1)T ′−1], potentials are
computed, assuming equal priors pt (B) = pt (U) = 1/2:

V t
i (1)

= −ln[pt (B|I t
i )] = −ln

[
pt (I t

i |B)

pt (I t
i |B) + pt (I t

i |U)

]
, (7)

V t
i (0)

= −ln[pt (U |I t
i )] = −ln

[
pt (I t

i |U)

pt (I t
i |B) + pt (I t

i |U)

]
. (8)

If data I t
i is missing for pixel i at time t , we set

V t
i (1) = V t

i (0) = 0 (no prior). Interaction terms are
computed using Eq. 6.

4. The graph-cut optimization is applied on a joint graph
of the images [t1, t1 + (k +1)T ′ −1], yielding (k +1)T ′
segmentation maps.

5. If the whole set of T images is segmented, exit the
algorithm. Otherwise: k := k+1. The segmentation map
Lt1+kT ′−3 is used as the new training mask of burned
areas RB

k . We do not use the segmentation result of the
last frame (t1 + kT ′), because extreme frames benefit
from less information from neighboring frames, and are
therefore more subject to segmentation errors. Go to
step 1.

We applied the described algorithm with the parame-
ters empirically set as D = 31, r = 20, β = 2 and
T ′ = 20, and with different temporal regularizations, i.e.,
[w/o], [Mono = 0.25 . . .∞] and [Bi = 0.25 . . .∞]. Neither
[Feedforward] nor [Bi = variable] methods are suited for
segmenting image sequences with missing data. Fig. 8(a, c)
gives the resulting dice scores for both data sets. We find that

a weak temporal regularization (both bi-/monodirectional) out-
performs a segmentation without temporal constraint. Increas-
ing the bidirectional temporal regularization towards high
values, however, decreases the performance. On the opposite,
introducing monodirectional infinite links to impose shape
growth yields the most accurate results. As can be seen from
Fig. 7 and 8(b, d), the proposed approach achieves comparable
results with the method [29] by using only one MODIS
channel and no post-processing, while [29] used two MODIS
bands coupled with 1-km MODIS active fire observations and
post-processing. Furthermore, the new method copes better
with the missing or noisy data thanks to the introduced
spatio-temporal graph.

C. Application 3: Growing Tumor in 3D Medical Scans

Glioma is the most frequent primary tumor of the brain.
The tumor is known to grow steadily, and lesions are eval-
uated with respect to volume change in different magnetic
resonance image (MRI) modalities. In our experiment we
evaluated a set of 760 multimodal image volumes – each
comprising T1 MRI, contrast-enhanced T1 MRI (T1c), T2
MRI, and T2 FLAIR MRI – acquired from ten patients ini-
tially diagnosed with low grade glioma. The time series have
3–14 time points, with 3–6 months in between any two acqui-
sitions. All image volumes were rigidly registered and three
2D slices intersecting with the tumor center were manually
annotated through an expert in every volume, representing
an approximate truth. Full 3D segmentations for images of
each individual time point were obtained using a generative
model for multimodal brain tumor segmentation [31]. This
algorithm models the lesion with a latent atlas class [15]
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Fig. 8. Results for Application 2, for two MODIS time series acquired in 2011 (a–b) and 2013 (c–d), respectively. (a, c) Mean and standard deviation for
the dice score as a function of the temporal link’s weight, when using mono- (green) and bidirectional (red) temporal links. (b, d) Burned area as a function
of time, when using no temporal links (blue), monodirectional infinite links (green) and MCD64A1 product (red).

amending the tissue atlas of the standard EM segmenter
[32], [33]. We applied it to each multimodal data set of each
time point in an independent fashion. The segmentation model
delineates the lesion individually in each modality. It assumes
that changes of the core (visible in T1c) will occur within the
larger edema regions (visible in T2 or FLAIR) and, hence, to
only have class transitions from healthy to edema and from
edema to core. As the tumor grows steadily, we can assume
that negative volume changes stem from imaging artifacts,
such as local intensity changes, a common problem in MRI.
To this end we model the tumor to be either stable, in this
case regularizing the segmentation along time and suppressing
noise, or to expand in volume between any two time points.

We identified the foreground label F with tumor (edema
and core) and background B with healthy tissue. Then the
potential V s,t

i (Ls,t
i ) of label Ls,t

i at voxel i , time point t ,
and imaging sequence s is equal to V s,t

i (0) = ps,t(F |I s,t)

and V s,t
i (1) = ps,t(B|I s,t) = 1 − ps,t(F |I s,t ). The tumor

probabilities were calculated from image volumes I using the
generative model [31], and we identified tumor subclasses
with p(F |I s=T1,t ) for core, and p(F |I s=T2,t ) with edema.
We modeled the 3D spatial constraints through a 26 neigh-
borhood (N ) linking the central voxel with all its immediate
neighbors. Interaction terms W s,t

i, j (Ls,t
i , Ls,t

j ) between neigh-
boring voxels in each sequence s ∈ [T1, T2] are computed
from the channel-specific intensity differences as

δLi 
=L j β
α(i, j)

αtot
exp

(
−

(
I s,t (i) − I s,t ( j)

A

)2
)

with β = 0.5, α(p, q) = 1/distance(p, q), αtot =∑
q∈N (pixel p) α(p, q) and A = 1/3

(
max I s,t − min I s,t

)
.

We impose growth constraint in 3D+t as explained in

Sec. II-B, and inclusion constraints as in Sec. II-C: the fore-
grounds in T1 and T1c modalities are required to be included
in the one of T2, which is included in the one of FLAIR.

In our test we first segment the images from each time
point independently, and calculate Dice scores averaged
over all images of a time series as an estimate of the
baseline performance. Then we test different regularizations
in time, i.e., [w/o], [Mono] and [Bi], calculate Dice scores,
and compare them against the baseline results from the
unregularized segmentations. Fig. 9 shows results for two
exemplary time series, and Fig. 10(a) reports differences
between Dice scores of regularized segmentations and baseline
segmentations. In this experiment “weak” regularizations refer
to small regularization parameters (w � 1), while “strong”
regularizations refer to w � 1, representing the infinite
mono- and bi-directional links. Fig. 10(a) shows results for
all ten time series. As for the previous two applications, both
bi-/monodirectional temporal regularization with low values
of w yields better accuracies when compared to the results
without temporal links. Enforcing more smoothness with
bidirectional links decreases segmentation accuracies, while
introducing monodirectional “growth” regularization through
infinite links improves performance (Fig. 10(a)). The volume-
time graphs (Fig. 10(b)) of the segmented tumor structures
show as very regular pattern (red), even being smoother than
the manual segmentation (green). Moreover, the log(volume)-
time graph (Fig. 10(b), right) shows the exponential growth of
the tumor core (dotted lines) that is associated with this disease
[34], for this patient indicating a rapid tumor progression
starting at about day 500. Longitudinal image segmentation,
as obtained for the ten time series in our test, can be further
analyzed, for diagnosis and treatment monitoring, e.g., through
algorithms estimating the speed of the tumor outlines under
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Fig. 9. Two time series of T2 and FLAIR MR image volumes, each of which acquired about 3-6 months apart. The left case is rapidly growing between
the second and fourth scene, the right case displays intensity modifications in the last scene, leading to a suboptimal performance of the initial multimodal
segmentation (yellow) [31]. The proposed multi-temporal segmentation with growth constraints (green) delineates areas similar to the manual evaluation
(magenta), being more robust against intensity variations of the MR images. It does not smooth out outlines of rapidly growing tumors as conventional
bi-directional temporal constraints would do.

Fig. 10. Results for Application 3. (a) Boxplots report changes in the average
segmentation performance of the ten image sequences when testing different
regularization approaches. (The box indicated quartiles, the whiskers outliers.).
Using a strong monodirectional regularization acting as a growth prior yields
the best results. (b) Volume-time plot for a patient with 14 observations
(cmp. video in supplement). Solid lines indicate edema, dashed indicate
tumor core that starts growing with constant rate at around day 500. The
segmentation with growth constraint (red) returns results similar to the manual
segmentation (green). Segmentations obtained by evaluating image volumes of
each time point individually (blue) show significant variation, even obscuring
the overall trend.

anatomical constraints [35]. Extension of the current 5D seg-
mentation could integrate this speed estimation, or extend the
multimodal tumor segmentation [31] for longitudinal data sets.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the problem of shape segmen-
tation in 2D and 3D sequences of very noisy/low-contrast
images, where shapes monotonously grow or shrink in time.
In order to enforce shape growth or shrinkage, we pro-
posed a new graph-cut-based method for computing the

globally-optimal spatio-temporal segmentation satisfying that
constraint. The main idea was to introduce monodirectional
infinite links between pixels at the same spatial locations in
successive image frames, which prohibit a shape to shrink or
grow over time, and then to perform a graph cut optimization
on the constructed graph. The limitation of the proposed
method is that it can be applied only to a time series of images
on the same scale and perfectly aligned with respect to the
foreground object, so that in the case of shape growth the
foreground at the moment (t + 1) contains all the foreground
pixels at the previous moment t , sharing the same spatial
locations. Thus, if the foreground object moves over time,
images must be aligned before applying the new graph-cut-
based technique. We also demonstrated the possibility to
impose inter-sequences object inclusion constraints by adding
directed infinite links to the joint graph associated to all
sequences.

We validated the performance of the proposed approach for
the segmentation of growing (burned areas) and shrinking (ice
floe) shapes from 2D time series of satellite images, and for
the segmentation of growing 3D tumor volumes from MR
sequences. The new method proved to be robust to important
noise and low contrast, and to cope well with missing data.
Moreover, it showed linear complexity in practice, so that
globally optimal shape-consistent segmentations of image time
series are obtained in a matter of seconds.

We plan to apply the proposed framework to other appli-
cations, such as the segmentation of wrinkles during the
cosmetological treatment. We are also currently extending our
work on tumor segmentation to the case of several medically-
motivated classes Ci , expressing tumor evolution stages, that
satisfy an inclusion constraint Ci ⊂ Ci+1,∀i , considering
additional relations between tumor substructures.

APPENDIX

SUBMODULARITY PROOF

This proof is better viewed in colors.
Wi, j can be written as a sum of terms over time t , which is,

if τi � τ j :

Wi, j (τi , τ j )=
∑

t

⎧⎪⎨
⎪⎩

W t
i, j (0, 0) if t < min(τi , τ j ) (A)

W t
i, j (1, 0) if τi � t < τ j (B)

W t
i, j (1, 1) if t � max(τi , τ j ) (D)
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and

Wi, j (τi , τ j )=
∑

t

⎧⎪⎨
⎪⎩

W t
i, j (0, 0) if t < min(τi , τ j ) (A)

W t
i, j (0, 1) if τ j � t < τi (C)

W t
i, j (1, 1) if t � max(τi , τ j ) (D)

otherwise.
We can thus represent Wi, j (τi , τ j ) by the sequence of

cases A, B, C or D chosen for each t :

Now, to represent the submodularity condition, let τi , τ j , τ
′
i , τ

′
j

be any times, satisfying τi � τ ′
i and τ j � τ ′

j . We will suppose
moreover that τi � τ j : otherwise consider W j,i (τ j , τi ) instead
and reverse names i and j . Three cases are possible:

1) τi � τ ′
i � τ j � τ ′

j
2) τi � τ j � τ ′

i � τ ′
j

3) τi � τ j � τ ′
j � τ ′

i

In case (1), the terms of the submodularity condition write:

and the submodularity condition is satisfied if the sum of the
two first rows is less than or equal to the sum of the two last
rows. It turns out that in the particular case above, the sums are
equal for each instant t , and consequently the submodularity
condition is satisfied as being an equality.
In case (2), the terms of the submodularity condition write:

This time, the two sums, at any instant t , are equal if t < τ j or
t � τ ′

i . For other values of t , that is to say when τ j � t < τ ′
i ,

the sum A+D is to be compared with B+C, i.e. the question is
to compare W t

i, j (0, 0)+W t
i, j (1, 1) with W t

i, j (0, 1)+W t
i, j (1, 0).

As Et is binary submodular by hypothesis, and by definition
of binary submodularity in equation (2), we have A + D �
B + C , and thus the sum of the two first rows is less than or
equal to the sum of the two last ones, which means precisely
Wi, j (τi , τ j ) + Wi, j (τ

′
i , τ

′
j ) � Wi, j (τi , τ

′
j ) + Wi, j (τ

′
i , τ j ), and

thus the submodularity condition for E is checked.

Finally, in case (3), the terms of the submodularity condition
write:

The two sums are equal for all instants t < τ j or t � τ ′
j . When

τ j � t < τ ′
j , the sum A + D is to be compared with B + C ,

as previously, and consequently the submodularity condition
for E is checked again.

In all cases (1), (2) and (3), E is proven to be submodular,
and this concludes the proof.
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