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Abstract –Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely 

been made using spectral Vegetation Indices (VIs) over the past two decades.  The Normalized 

Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band 

Wide Dynamic Range Vegetation Index (WDRVIgreen), and the green band Chlorophyll Index 

(CIgreen) have been employed to estimate GPP under the assumption that GPP is proportional to 

the product of VI and photosynthetically active radiation (PAR) (where VI is one of four VIs: 

NDVI, EVI, WDRVIgreen, or CIgreen).  However, the empirical regressions between VI*PAR and 

GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for 

regressions). Therefore they are somewhat difficult to interpret and apply.   This study 

investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts) 

between the fraction of PAR absorbed by chlorophyll of a canopy (fAPARchl) and the VIs, and (2) 

whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy 

of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of 

which are irrigated and one is rainfed. The four VIs and fAPARchl of the fields were computed 

with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP 

estimation performance for the scaled VIs was compared to results obtained with the original VIs 

and evaluated with standard statistics:  the coefficient of determination (R2), the root mean 

square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EVI obtained the 

best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved 

across sites, crop types and soil/background wetness conditions.  The scaled CIgreen did not 

improve results, compared to the original CIgreen. The scaled green band indices (WDRVIgreen, 

CIgreen) did not exhibit superior performance to either the scaled EVI or NDVI in estimating crop 

daily GPP at these agricultural fields. The scaled VIs are more physiologically meaningful than 



original un-scaled VIs, but scaling factors and offsets may vary across crop types and surface 

conditions.

Key Words – Daily GPP, MODIS, Vegetation Index, fAPARchl

I. INTRODUCTION 

Atmospheric general circulation models require quantification of land-atmosphere 

exchanges of energy, water and momentum, including CO2 fluxes which can be provided by land 

surface process models (Bonan et al., 2011; Dickinson et al., 1993; Sellers et al., 1986). Satellite 

remote sensing offers inputs such as land cover types and the Normalized Difference Vegetation 

Index (NDVI) (Deering, 1978; Tucker, 1979) for use in the land surface modeling (Dickinson et 

al., 1990; Sellers et al., 1994). Pioneering work (Asrar et al., 1992; Myneni et al., 1997; Running 

et al., 2000; Sellers, 1987) has shown the fraction of photosynthetically active radiation (PAR) 

absorbed by a canopy/vegetation (FPAR, i.e., fAPARcanopy) can be approximated with NDVI 

(Running et al., 2000).  Therefore, NDVI has been employed to estimate vegetation Gross 

Primary Productivity (GPP) in a variation (as GPP=ε*NDVI*PAR, Running et al., 2000), 

inspired by the logic from the Light Use Efficiency (LUE) model (Monteith, 1972, 1977): 

GPP =  * fAPARPSN * PAR =  *APARPSN,      (1) 

where ε is LUE for vegetation photosynthesis (PSN) (Running et al., 2000) and fAPARPSN is the 

fraction of PAR absorbed for PSN (APARPSN).  Monitoring changes in crop GPP with satellite 

remote sensing data advances the capability to understand and manage global food security, 

sustainability practices, and environmental impacts, and to study global carbon cycle and global 

water cycle. 



The three-band  Enhanced Vegetation Index (EVI) (Huete et al., 1997) and the two-band 

EVI (called EVI2, Jiang et al., 2008) have also been utilized to predict terrestrial GPP in a 

similar way as GPP=ε*EVI*PAR (Jin et al., 2013; Kalfas et al., 2011; King et al., 2011; Li et al., 

2007; Mahadevan et al., 2008; Schubert et al., 2012; Sjöström et al., 2011; Wu et al., 2008, 2010, 

2011, 2012; Xiao et al., 2004; Yan et al., 2009).  In addition, Gitelson and colleagues also 

explored the application of the green band Wide Dynamic Range Vegetation Index (WDRVIgreen) 

and the green band Chlorophyll Index (CIgreen) for crop GPP estimation, in addition to the NDVI 

and EVI (Gitelson et al., 2008, 2012; Peng and Gitelson, 2011, 2012; Peng et al., 2011).  

However, since the empirical regressions between the VI*PAR products and GPP 

measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for 

regressions) and produce offsets,  they are somewhat difficult to interpret and apply (Gitelson et 

al., 2012; Sims et al., 2006; Zhang et al., 2014b). This is considered to be a source of error 

affecting the accuracy and reliability of remote sensing GPP estimates based on VIs. In the 

literature, there is no paper that presents how to scale the VIs in space and time to solve the 

problem. 

The standard MODerate resolution Imaging Spectroradiometer (MODIS) 8-day GPP 

product (MOD17A2 GPP) uses the MOD15A2 FPAR (a fAPARcanopy) product as a model input 

(Running et al., 2004; Zhao and Running, 2008). Investigations to find the scaling factor and 

offset of NDVI through fAPARcanopy – NDVI functions have been conducted, where fAPARcanopy

=a0*NDVI+b0 (a0 is the scaling factor or slope, and b0 is y intercept or offset) (Fensholt et al., 

2004; Goward and Huemmrich, 1992; Knyazikhin et al., 1998, 2002; Potter et al., 1993; Prince 

and Goward, 1995; Randerson et al., 1996; Sellers et al., 1996; Sims et al., 2005). However, the 

MOD15A2 FPAR product overestimates in-situ fAPARcanopy during spring greenup and fall 



senescent periods, and underestimates in-situ fAPARcanopy in mid-summer during peak GPP 

activity at the agricultural fields we selected [see (Zhang et al., 2014a) for details].  

We developed an algorithm to retrieve the fraction of PAR absorbed by chlorophyll 

throughout the canopy (fAPARchl) from actual MODIS observations or from synthesized 30 m 

MODIS-spectral-like observations simulated with EO-1 Hyperion images (Zhang, 2003; Zhang 

et al., 2005, 2009, 2012, 2013,2014c).  We found that fAPARchl   fAPARcanopy, and that the 

fraction of PAR absorbed by foliage non-chlorophyll components (fAPARnon-chl) varies with 

types and  seasonally (Zhang et al., 2013). Zhang et al. (2014a) presented the performance of 

fAPARchl and MOD15A2 FPAR in crop GPP estimation, and concluded that fAPARchl is 

superior to MOD15A2 FPAR. Zhang et al. (2014b) investigated the performance of original un-

scaled VIs in GPP estimation, and suggested that further investigation on the performance of 

scaled VIs should be carried out. 

The objectives of this paper are straightforward: 1] to explore how surface conditions 

affect the scaling factors (“a”) and offsets (“b”) derived through regression analysis of fAPARchl

vs. the four VIs: fAPARchl =a*VI+b for each crop type (corn, soybean) per field; 2] to investigate 

how much the scaled VIs can improve the prediction accuracy of GPP estimates compared to the 

prediction of original un-scaled VIs. 

II. METHODS 

II.1 Study sites and tower data 

The three AmeriFlux crop sites for corn, or maize (Zea mays L.) and soybean (Glycine 

max [L.] Merr.) used in this study are located at the University of Nebraska–Lincoln (UNL) 



Agricultural Research and Development Center near Mead, Nebraska (US-NE1, US-NE2 and 

US-NE3). The first two fields are circular (radius ~ 390 m) and equipped with center-pivot 

irrigation systems (US-NE1, 41 09’54.2”N, 96 28’35.9”W; US-NE2, 41 09’53.6”N, 

96 28’07.5”W).   The third is a 790 m long square field (US-NE3, 41 10’46.7”N, 

96 26’22.4”W) that relies entirely on rainfall. Each field is equipped with an eddy covariance 

flux tower (Gitelson et al., 2012; Gitelson et al., 2006; Peng et al., 2013). The first field (US-NE1) 

is a continuous maize field while the other two fields are maize-soybean rotation fields (soybean 

is planted in even years). 

Tower eddy-covariance carbon exchange, PAR, and GPP measurements in growing 

season from 2001- 2006 are publically available and can be downloaded from 

ftp://cdiac.ornl.gov/pub/ameriflux/data. The nighttime ecosystem respiration/temperature Q10

relationship was used to estimate the daytime ecosystem respiration (Baldocchi, 2003). Daily 

GPP was computed by subtracting respiration (R) from net ecosystem exchange (NEE), i.e., 

GPP=NEE-R (Suyker et al., 2005). These sites provided the opportunity to examine the semi-

empirical relationships between fAPARchl versus VIs for both C4 (maize) and C3 (soybean) 

crops in both irrigated and non-irrigated ecosystems, and to investigate the benefits of employing 

the scaled relationships to estimate GPP. 

II.2 Remote sensing data processing and GPP estimation 

Six years (2001-2006) of MODIS L1B calibrated radiance data (MOD021KM and 

MOD02HKM) and geolocation data (MOD03) covering the three study sites were downloaded 

from https://ladsweb.nascom.nasa.gov:9400/data/ Two of the MODIS bands have a nadir spatial 

resolution of 250 m: B1 (red, 620 – 670 nm) and B2 (near infrared, NIR1, 841 – 876 nm). The 

MODIS land bands 3 - 7 have a nadir spatial resolution of 500 m: B3 (blue, 459 – 479 nm), B4 



(green, 545 – 565 nm), B5 (NIR2, 1230 – 1250 nm), B6 (shortwave infrared, SWIR1, 1628 – 

1652 nm) and B7 (SWIR2, 2105 – 2155 nm). The centers of the original 500 m grids defined in 

the standard surface reflectance product (MOD09) that encompass the three tower sites are not 

the centers of the three fields and vegetation in each of the original 500 m grids is not 

homogeneous [see Figure 2 of (Guindin-Garcia et al., 2012)]. The MODIS gridding procedure 

for the standard MOD09 product does not ensure the gridded surface reflectance covers the 

entire grid (Wolfe et al., 1998). A modified gridding procedure was used for this study (Zhang et 

al., 2014b), whereby the centers of the three 500 m grids were matched to the centers of the three 

fields, respectively. The L1B radiance data from each swath were gridded at 500 m resolution for 

MODIS bands 1-7 with area weight of each MODIS observation. This modified gridding 

processing was incorporated into the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) algorithm (Lyapustin et al., 2008, 2011a, b, 2012). MAIAC is an advanced algorithm 

which uses time series analysis and a combination of pixel-based and image-based processing to 

improve cloud/snow detection, and to achieve more accurate aerosol retrievals and atmospheric 

correction, based on the bidirectional reflectance distribution function (BRDF) model of the 

surface.  

Derived bidirectional reflectance factors (BRF, also called directional surface reflectance) 

in MODIS bands 1-7 were used for this study. The impact of MODIS observation footprint size 

resulting from variable view zenith angle (VZA) on crop daily GPP estimation for these sites 

was recently reported elsewhere (Zhang et al., 2014b). In order to eliminate the potential bias due 

to large VZAs, only observations with VZA  35o were included in this study. The surface 

reflectance data (ρ) were used to calculate the following indices (Deering, 1978; Gitelson, 2004; 

Gitelson et al., 2007, 2012; Huete et al., 1997, 2002; Tucker, 1979):



                                                                                                      (2) 

                                                                          (3) 

                                                                                                       (4) 

                                                                                 (5) 

We used the PROSAIL2 model (Jacquemoud and Baret, 1990; Baret and Fourty, 1997; 

Braswell et al., 1996; Verhoef, 1984, 1985; Zhang et al., 2005, 2009, 2012, 2013), a coupled 

soil-canopy-leaf radiative transfer model, to retrieve fAPARchl, the fraction of PAR absorbed by 

the foliage of the canopy (fAPARfoliage), and the fraction of PAR absorbed by the non-

photosynthetic foliage components (fAPARnon-chl)(Zhang et al., 2014a). A pixel is composed of 

canopy and soil (Zhang et al., 2009, 2012, 2013). The canopy is partitioned into foliage and stem 

(including branch), and the foliage component is further partitioned into chlorophyll (chl) and 

non-chlorophyll (non-chl) components, where non-chl is composed of non-photosynthetic 

pigments (referred to as brown pigment) and dry matter (Baret and Fourty, 1997). The surface 

reflectances of MODIS bands 1 – 7 are used for retrieval of fAPAR variables (Zhang et al., 2009, 

2012, 2013, 2014c): 

matterdrypigmentbrownchlnon fAPARfAPARfAPAR __ +=−        (6) 

chlnonchlfoliage fAPARfAPARfAPAR −+=       (7) 

stemfoliagecanopy fAPARfAPARfAPAR +=       (8) 



The scaling factors (“a”) and offsets (“b”) of VIs were derived from linear regression through 

fAPARchl – VI functions for each crop type per field, where fAPARchl =a*VI+b (VIs=NDVI, 

EVI, WDRVIgreen, and CIgreen). 

The product of VIs and tower daily PAR (VI*PAR) and the product of scaled VIs and 

daily PAR (scaled VI*PAR) were compared against the tower daily GPP for each crop type per 

field (GPP= *VI*PAR or GPP= *scaled VI*PAR). The coefficients “ ” and “ ” were 

computed with a least squares best fit algorithm. The  computed values for  and   were then 

used to predict GPP, and coefficient of determination (R2), the root mean square error (RMSE, g 

C m-2 d-1) and coefficient of variation (CV, %) was calculated. The average light use efficiency 

at chlorophyll level (LUEchl, i.e., ) was computed using GPP=LUEchl*fAPARchl*PAR with a 

least squares best fit algorithm. Improvements of crop daily GPP estimation using scaled VIs 

were assessed. 

III. RESULTS 

The scaling factor (“a”, also called slope) and offset (“b”, also called y-intercept) 

obtained through the regression functions fAPARchl =a*VI+b for each crop per field are listed in 

Table 1, where the statistics for the R2, RMSE and x-intercept are also summarized. The x-

intercepts of fAPARchl =a*VI+b give minimum VI values at zero fAPARchl. The 95% confidence 

intervals of slope, y-intercept and x-intercept for each crop per field are reported, too. The CIgreen

is a simple ratio index while the other three VIs include consideration of normalization. The 

confidence intervals for CIgreen are different from those for other three VIs for each type per field. 

For each crop type in irrigated fields USNE1 and USNE2, the confidence intervals of y-

intercepts and x-intercepts for NDVI, EVI and CIgreen are different from each other. For each 



crop type in rainfed field USNE3, the confidence intervals of y-intercepts and x-intercepts for 

NDVI and CIgreen overlap each other, but are different from those for EVI. Mean values of the 

confidence intervals of the slopes, y-intercepts and x-intercepts vary with VIs, sites, crop types 

and irrigation options. None of the y-intercepts or x-intercepts for NDVI, EVI or WDRVIgreen is 

close to the origin (i.e., zero X-Y point).  

The functions in Tab. 1 were used to compute the scaled values of NDVI, EVI, 

WDRVIgreen and CIgreen for each crop type per field. For instance, for the NDVI at US-NE1: 

scaled NDVI = 1.11*NDVI-0.29. The coefficients  and  and LUEchl of each crop per field are 

listed in Table 2. Corn LUEchl is ~1.6 times of soybean LUEchl (Tab. 2), which agrees with the 

expectation that C4 plants have higher LUE than C3 plants (e.g., Prince, 1991), and explains why 

maize displays a wider daily GPP range (~34 g C m-2 d-1) than soybean ( (~19 g C m-2 d-1)(Zhang 

et al., 2014b). The coefficients  and  were applied to estimate crop daily GPP.  

Figure 1 shows the estimated soybean daily GPP for the rainfed field US-NE3 using the 

four original VIs with  and the scaled VIs with , compared to tower daily GPP. The scaled 

NDVI, EVI and WDRVIgreen combined with  had better GPP estimation performance than the 

original counterparts, respectively, demonstrating higher R2 and lower RMSE. Compared to the 

original counterparts, the (scaled NDVI)*PAR, the (scaled EVI)*PAR and the (scaled 

WDRVIgreen)*PAR values were closer to 0 when GPP=0. The scaled CIgreen did not provide 

better GPP estimation than the original CIgreen. In order to save pages, similar figures for US-NE1, 

US-NE2 and figures for maize in US-NE3 are not presented in this paper. 

Table 3 summarized the statistics (R2, RMSE and CV) for estimating crop daily GPP 

using the original VIs with  and the scaled VIs with , respectively. These statistics show that 



the best performance was obtained with the scaled EVI while the least successful performance 

among the four scaled VIs was obtained with CIgreen across the sites, crop types and irrigation/ 

rainfed options. For example at the US-NE1 site, scaled EVI and scaled CIgreen had contrasting 

best/worst performances in GPP estimation: R2: 0.88/ 0.77, RMSE: 2.92/4.05 g C m-2 d-1, and 

CV: 19%/ 26% (Tab. 3). GPP estimates for corn had better performance than for soybean using 

scaled NDVI and EVI for sites US-NE2 and US-NE3. Better results might be achieved for the 

sites examined in other studies (King et al., 2011; Sjöström et al., 2009) if the scaled EVI 

(through coefficients obtained from the regression of fAPARchl vs. EVI) had been utilized. 

For each crop in any field, the scaled NDVI, EVI and WDRVIgreen improved the 

prediction performance of crop daily GPP while the scaled CIgreen did not, compared to the 

original un-scaled VIs.  GPP improvements for the three that benefited from scaling, ranked from 

most to least were the NDVI, WDRVIgreen, EVI, for which the R2 increased ( : 0.16, 0.13, 0.09), 

RMSE decreased ( :0.95, 0.78, 0.65 g C m-2 d-1), and the CV also decreased ( :8%, 6%, 5%). 

The improvements also varied with crop types and irrigation conditions. For example, the NDVI 

improvement for soybean (R2,  0.20; CV,  9%) was better than for corn (R2, 0.13;  CV, 7%), 

and the average improvement for the rainfed field (R2, 0.21; RMSE, 1.10 g C m-2 d-1; and CV, 

10% ) was better than for the irrigation fields (R2, 0.12; RMSE, 0.85 g C m-2 d-1; and 

CV, 6%).  

IV. DISCUSSION 

The PSROAIL2 model well distinguishes vegetation from soil and fAPARchl retrieved 

with the PROSAIL2 model excludes the impact of soil/background (Zhang et al., 2012, 2013). 



The fAPARfoliage comprises chlorophyll and non-chlorophyll foliage fractions (fAPARchl,

fAPARnon-chl). Therefore, the PAR absorbed by non-photosynthetic vegetation components (NPV) 

of the canopy is excluded from APARchl since APARchl=fAPARchl*PAR. This is the theoretical 

basis for potential improvement of GPP estimation using the scaled VIs. The x-intercept values 

of the semi-empirical linear functions of fAPARchl vs. VI in Table 1 have an important 

biophysical meaning: there is not any chlorophyll showing up at the pixel when its un-scaled VI 

is less than its x-intercept value. Gitelson and colleagues (Gitelson et al., 2007) reported that, 

before green-up when green leaves do not appear, MODIS 250 m NDVI values for the fields 

could be greater than 0.2, which is close to the minimum x-intercepts of NDVI (0.23, Tab. 1) we 

found with MODIS 500 m images. In irrigated fields, the mean values of the x-intercept 

confidence intervals for EVI were about half of those for NDVI, and about 1/3 as large as those 

for WDRVIgreen (Tab. 1). In rainfed fields, the mean values of the x-intercept confidence 

intervals for EVI were about half of those for both NDVI and WDRVIgreen (Tab. 1). 

Soil/background wetness has less impact on EVI than on NDVI which is consistent with the 

original idea that inspired the development of EVI (Huete, 1988; Huete et al., 1997). Daughtry et 

al. (2000) has expressed that VIs combined with NIR and red bands are less impacted by 

background than VIs combined with NIR and green bands. Earlier studies (Sims et al., 2006, 

2008) have shown that GPP drops to zero at variable EVI values (i.e., x-intercept EVI values) in 

their selected flux sites, and have found the minimum x-intercept value is ~0.1. So Sims et al. 

(2008) has developed a GPP model using EVI – 0.1 instead of the original EVI. The x-intercept 

confidence intervals  of EVI in the three fields (US-NE1, US-NE2 and US-NE3) ranged from 

(0.12, 0.13), (0.14, 0.15) to (0.16, 0.18). Our findings are consistent with earlier empirical studies 

(Daughtry et al., 2000; Huete, 1988; Huete et al., 1997; Sims et al., 2006, 2008). Furthermore, 



the scaled VIs with scaling factors and offsets using the semi-empirical relationships between 

fAPARchl vs. VIs for each crop type per field are more physiologically meaningful (Tab. 1) than 

the original un-scaled VIs. 

The  estimates for all scaled VIs are close to the relevant LUEchl values for each crop 

type per field.  In contrast, the  estimates associated with the original un-scaled NDVI and 

WDRVIgreen are lower than the relevant LUEchl values. The  estimates for CIgreen are much 

lower than the relevant LUEchl values because the original un-scaled CIgreen range (~1 to 10) is 

much wider than the scaled CIgreen range (~0 to~1).  It is worth noting that both the  and the 

estimates for the original EVI and the scaled EVI are close to the physiologically relevant LUEchl

values. This partly explains the reasonableness and success of the Vegetation Photosynthesis 

Model (VPM) (Xiao et al., 2004) which assumes GPP=ε*EVI*PAR. This study suggests that the 

GPP estimation made with the VPM may be improved by replacing the original EVI with 

fAPARchl, or by scaling the EVI using the relationship between fAPARchl and EVI. 

The R2 between tower daily GPP and estimated GPP with scaled VIs for all cases ranges 

from 0.66 to 0.88 while the RMSE (CV) between them ranges from 4.37 to 2.11 g C m-2 d-1 

(from 31% to 17%). Although the R2 between fAPARchl and scaled VI is high for all cases (0.73 

– 0.97), the RMSE between fAPARchl and scaled VI varies with crop type, irrigation/rainfed 

options, and VI options, which caused the variation of the performance of estimated GPP with 

scaled VIs. Among the four scaled VIs, the RMSE between fAPARchl and the scaled EVI is 

smallest and the R2 is highest for all study sites. For US-NE2 and US-NE3, the RMSE between 

fAPARchl and scaled CIgreen is biggest and the R2 is lowest.  



V. CONCLUSION 

This study exhibited improvement in the performance of crop daily GPP estimation using 

scaled NDVI, EVI and WDRVIgreen, compared to their original un-scaled counterparts. However, 

performance improvement of crop daily GPP estimation using scaled CIgreen was not observed. 

The irrigated fields have better performance, as compared to the rainfed field. The performance 

also varied with crop types and VI options. The scaled EVI provided the best performance 

among all cases. This study does not find that the scaled WDRVIgreen or the scaled CIgreen is 

superior to the scaled NDVI or scaled EVI in predicting crop daily GPP. 

Compared to the original VIs, the scaled VIs developed with the semi-empirical 

relationships between fAPARchl and VIs are more physiologically meaningful. However, the 

scaling factors and offsets (and x-intercepts) vary field by field, and vary type by type. 

Investigations to explore the scaling factors and offsets of these VIs using fAPARchl for other 

plant functional types should be carried out in the future. We will explore how the scaling factors 

and offsets change over space and time, and vary with climate. Investigations on whether scaled 

EVI is best for all fields and all types among the four scaled VIs are also needed. We suggest an 

approach whereby MODIS-derived VIs are scaled pixel by pixel. This approach provides scaled 

VIs for use when fAPARchl is unavailable. We expect that future research on GPP simulation 

based on the biochemical or land surface modeling (Bounoua et al., 2000; Potter et al., 2003; 

Sellers et al., 1994, 1996) will achieve reduced uncertainty and improved accuracy when the 

scaled MODIS VIs  replace the original VIs. 

ACKNOWLEDGMENTS 



This study was supported by NASA Terrestrial Ecology project (Grant No., NNX12AJ51G; PI, 

Q. Zhang) and NASA Science of Terra and Aqua project (Grant No., NNX14AK50G; PI, Q. 

Zhang) (Dr. Diane Wickland, manager). We would like to thank the support and the use of 

facilities and equipment provided by the Center for Advanced Land Management Information 

Technologies and the Carbon Sequestration program, University of Nebraska–Lincoln. Site-

specific climate and CO2 flux data are distributed by AmeriFlux network 

(http://public.ornl.gov/ameriflux), supported by Carbon Dioxide Information Analysis Center at 

the Oak Ridge National Laboratory of the Department of Energy. We are grateful to anonymous 

reviewers whose comments helped improve the paper. 

References: 

Asrar, G., Myneni, R.B., & Choudhury, B.J. (1992). Spatial Heterogeneity in Vegetation 
Canopies and Remote-Sensing of Absorbed Photosynthetically Active Radiation - a 
Modeling Study. Remote Sensing of Environment, 41, 85-103 

Baldocchi, D.D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide 
exchange rates of ecosystems: past, present and future. Global Change Biol., 9, 479-492 

Bonan, G.B., Lawrence, P.J., Oleson, K.W., Levis, S., Jung, M., Reichstein, M., Lawrence, D.M., 
& Swenson, S.C. (2011). Improving canopy processes in the Community Land Model 
version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. 
Journal of Geophysical Research, 116, G02014 

Baret, F., & Fourty, T. (1997). Radiometric estimates of nitrogen status in leaves and canopies. 
In G. Lemaire (Ed.), Diagnosis of the nitrogen status in crops (pp. 201–227). Berlin, 
Springer. 

Bounoua, L., Collatz, G.J., Los, S.O., Sellers, P.J., Dazlich, D.A., Tucker, C.J., & Randal, D.A. 
(2000). Sensitivity of Climate to Changes in NDVI. Journal of Climate, 13, 2277-2292 

Braswell, B. H., Schimel, D. S., Privette, J. L., Moore, B., Emery, W. J., Sulzman, E. W., et al. 
(1996). Extracting ecological and biophysical information from AVHRR optical data: An 
integrated algorithm based on inverse modeling. Journal of Geophysical Research-
Atmospheres, 101, 23335–23348 

Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B., & McMurtrey, J.E. (2000). 
Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote 
Sensing of Environment, 74, 229-239 

Deering, D.W. (1978). Rangeland reflectance characteristics measured by aircraft and spacecraft 
sensors. In, College Station (p. 338). TX: Texas A&M University 



Dickinson, R.E., A. Henderson-Sellers, & Kennedy, P.J. (1993). Biosphere-atmosphere transfer 
scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. 
Tech.Note NCAR/TN-387+STR, Natl. Center for Atmos. Res., Boulder,Colo. 

Dickinson, R.E., Pinty, B., & Verstraete, M.M. (1990). Relating Surface Albedos in Gcm to 
Remotely Sensed Data. Agricultural and Forest Meteorology, 52, 109-131 

Fensholt, R., Sandholt, I., & Rasmussen, M.S. (2004). Evaluation of MODIS LAI, fAPAR and 
the relation between fAPAR and NDVI in a semi-arid environment using in situ 
measurements. Remote Sensing of Environment, 91, 490–507 

Gitelson, A.A. (2004). Wide dynamic range vegetation index for remote quantification of 
biophysical characteristics of vegetation. Journal of Plant Physiology, 161, 165-173 

Gitelson, A.A., Peng, Y., Masek, J.G., Rundquist, D.C., Verma, S., Suyker, A., Baker, J.M., 
Hatfield, J.L., & Meyers, T. (2012). Remote estimation of crop gross primary production 
with Landsat data. Rem. Sens. Environ., 121, 404-414 

Gitelson, A.A., Viña, A., J.G., M., Verma, S.B., & Suyker, A.E. (2008). Synoptic Monitoring of 
Gross Primary Productivity of Maize Using Landsat Data. IEEE Geoscience and Remote 
Sensing Letters, 5, 133-137 

Gitelson, A.A., Viña, A., Verma, S.B., Rundquist, D.C., Arkebauer, T.J., Keydan, G., Leavitt, B., 
Ciganda, V., Burba, G.G., & Suyker, A.E. (2006). Relationship between gross primary 
production and chlorophyll content in crops: Implications for the synoptic monitoring of 
vegetation productivity. J. Geophys. Res., 111, D08S11 

Gitelson, A.A., Wardlow, B.D., Keydan, G.P., & Leavitt, B. (2007). An evaluation of MODIS 
250-m data for green LAI estimation in crops. Geophys. Res. Lett., 34, L20403 

Goward, S.N., & Huemmrich, K.F. (1992). Vegetation Canopy PAR Absorptance and the 
Normalized Difference Vegetation Index - an Assessment Using the SAIL Model. 
Remote Sensing of Environment, 39, 119-140 

Guindin-Garcia, N., Gitelson, A.A., Arkebauer, T.J., Shanahan, J., & Weiss, A. (2012). An 
evaluation of MODIS 8- and 16-day composite products for monitoring maize green leaf 
area index. Agricultural and Forest Meteorology, 161, 15– 25 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002). Overview of 
the radiometric and biophysical performance of the MODIS vegetation indices. Remote 
Sensing of Environment, 83, 195-213 

Huete, A.R. (1988). A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 
25, 295-309 

Huete, A.R., Liu, H.Q., Batchily, K., & vanLeeuwen, W. (1997). A comparison of vegetation 
indices global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 
440-451 

Jacquemoud, S., & Baret, F. (1990). PROSPECT—a model of leaf optical properties spectra. 
Remote Sensing of Environment, 34, 75–91. 

Jiang, Z., Huete, A.R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced 
vegetation index without a blue band. Rem. Sens. Environ., 112, 3833-3845 

Jin, C., Xiao, X.M., Merbold, L., Arneth, A., Veenendaal, E., & Kutsch, W. (2013). Phenology 
and gross primary production of two dominant savanna woodland ecosystems in 
Southern Africa. Remote Sensing of Environment, 135, 189-201 

Kalfas, J., Xiao, X., Vanegas, D., Verma, S., & Suyker, A.E. (2011). Modeling gross primary 
production of irrigated and rain-fed maize using MODIS imagery and CO(2) flux tower 
data. Agricultural and Forest Meteorology, 151, 1514-1528 



King, D.A., Turner, D.P., & Ritts, W.D. (2011). Parameterization of a diagnostic carbon cycle 
model for continental scale application. Rem. Sens. Environ., 115, 1653-1664 

Knyazikhin, Y., Martonchik, J.V., Myneni, R.B., Diner, D.J., & Running, S.W. (1998). 
Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of 
absorbed photosynthetically active radiation from MODIS and MISR data. Journal of 
Geophysical Research, 103, 32257-32275 

Knyazikhin, Y., Zhao, M., Nemani, R., Privette, J.L., Shabanov, N., Myneni, R.B., & Running, 
S.W. (2002). MODIS LAI/FPAR Team Response to BigFoot Validation Results. 
http://cybele.bu.edu/modismisr/validation/response.pdf

Li, Z., Yu, G., Xiao, X., Li, Y., Zhao, X., Ren, C., Zhang, L., & Fu, Y. (2007). Modeling gross 
primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and 
climate data. Remote Sensing of Environment, 107, 510-519 

Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., & Korkin, S. (2011a). Multi-Angle 
Implementation of Atmospheric Correction (MAIAC): Part 1. Radiative Transfer Basis 
and Look-Up Tables. J. Geophys. Res., 116, D03210 

Lyapustin, A., Wang, Y., & Frey, R. (2008). An Automatic Cloud Mask Algorithm Based on 
Time Series of MODIS Measurements. J. Geophys. Res., 113 

Lyapustin, A., Wang, Y., Laszlo, I., Hilker, T., Hall, F., Sellers, P., Tucker, J., & Korkin, S. 
(2012). Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). 3: 
Atmospheric Correction. Rem. Sens. Environ., 127, 385-393 

Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R., & Reid, J.S. 
(2011b). Multi-Angle Implementation of Atmospheric Correction (MAIAC): Part 2. 
Aerosol Algorithm. J. Geophys. Res., 116, D03211 

Mahadevan, P., Wofsy, S.C., Matross, D.M., Xiao, X., Dunn, A.L., Lin, J.C., Gerbig, C., Munger, 
J.W., Chow, V.Y., & Gottlieb, E.W. (2008). A satellite-based biosphere parameterization 
for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model 
(VPRM). Global Biogeochemical Cycles, 22, GB2005 (2001-2017) 

Monteith, J.L. (1972). Solar-Radiation and productivity in tropical ecosystems. Journal of 
Applied Ecology, 9, 747-766 

Monteith, J.L. (1977). Climate and efficiency of crop production in Britain. Philosophical 
Transaction of the Royal Society of London B: Biological Sciences, 281, 277-294 

Myneni, R.B., Nemani, R.R., & Running, S.W. (1997). Estimation of global leaf area index and 
absorbed PAR using radiative transfer models. IEEE TRANSACTIONS ON 
GEOSCIENCE AND REMOTE SENSING, 35, 1380-1393 

Peng, Y., & Gitelson, A.A. (2011). Application of chlorophyll-related vegetation indices for 
remote estimation of maize productivity. Agricultural and Forest Meteorology, 151, 
1267- 1276 

Peng, Y., & Gitelson, A.A. (2012). Remote estimation of gross primary productivity in soybean 
and maize based on total crop chlorophyll content. Rem. Sens. Environ., 117, 440-448 

Peng, Y., Gitelson, A.A., Keydan, G.P., Rundquist, D.C., & Moses, W.J. (2011). Remote 
estimation of gross primary production in maize and support for a new paradigm based 
on total crop chlorophyll content. Remote Sensing of Environment, 115, 978-989 

Peng, Y., Gitelson, A.A., & Sakamoto, T. (2013). Remote estimation of gross primary 
productivity in crops using MODIS 250 m data. Rem. Sens. Environ., 128, 186-196 



Potter, C., Klooster, S., Myneni, R., Genovese, V., Tan, P.N., & Kumar, V. (2003). Continental-
scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem 
modeling 1982-1998. Global and Planetary Change, 39, 201-213 

Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., & 
Klooster, S.A. (1993). Terrestrial Ecosystem Production - a Process Model-Based on 
Global Satellite and Surface Data. Global Biogeochemical Cycles, 7, 811-841 

Prince, S.D. (1991). A Model of Regional Primary Production for Use with Coarse Resolution 
Satellite Data. International Journal of Remote Sensing, 12, 1313-1330 

Prince, S.D., & Goward, S.N. (1995). Global primary production: A remote sensing approach. 
Journal of Biogeography, 22, 815-835 

Randerson, J.T., Thompson, M.V., Malmstrom, C.M., Field, C.B., & Fung, I.Y. (1996). 
Substrate limitations for heterotrophs: Implications for models that estimate the seasonal 
cycle of atmospheric CO2. Global Biogeochemical Cycles, 10, 585-602 

Running, S., Nemani, R., Heinsch, F., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A 
continuous satellite-derived measure of global terrestrial primary production. Bioscience, 
54, 547-560 

Running, S.W., Thornton, P.E., Nemani, R., & Glassy, J.M. (2000). Global terrestrial gross and 
net primary productivity from the Earth Observing System. In O.E. Sala, R.B. Jackson, 
H.A. Mooney & R.W. Howarth (Eds.), Methods in Ecosystem Science (pp. 44-57). New 
York: Springer Verlag 

Schubert, P., Lagergren, F., Aurela, M., Christensen, T., Grelle, A., Heliasz, M., Klemedtsson, L., 
Lindroth, A., Pilegaard, K., Vesala, T., & Eklundh, L. (2012). Modeling GPP in the 
Nordic forest landscape with MODIS time series data—Comparison with the MODIS 
GPP product. Rem. Sens. Environ., 126, 136-147 

Sellers, P. (1987). Canopy reflectance, photosynthesis, and transpiration, II. The role of 
biophysics in the linearity of their interdependence. Rem. Sens. Environ., 21, 143-183 

Sellers, P.J., Los, S.O., Tucker, C.J., Justice, C.O., Dazlich, D.A., Collatz, G.J., & Randall, D.A. 
(1996). A revised land surface parameterization (SiB2) for atmospheric GCMs .II: The 
generation of global fields of terrestrial biophysical parameters from satellite data. 
Journal of Climate, 9, 706-737 

Sellers, P.J., Mintz, Y., Sud, Y.C., & Dalcher, A. (1986). A Simple Biosphere Model (SIB) for 
Use within General Circulation Models. J. Atmos. Sci., 43, 505-531 

Sellers, P.J., Tucker, C.J., Collatz, G.J., Los, S.O., Justice, C.O., Dazlich, D.A., & Randall, D.A. 
(1994). A global 1° by 1° NDVI data set for climate studies. Part 2: The generation of 
global fields of terrestrial biophysical parameters from the NDVI. International Journal 
of Remote Sensing, 15, 3519-3545 

Sims, D.A., Rahman, A.F., Cordova, V.D., Baldocchi, D.D., Flanagan, L.B., Goldstein, A.H., 
Hollinger, D.Y., Misson, L., Monson, R.K., Schmid, H.P., Wofsy, S.C., & Xu, L.K. 
(2005). Midday values of gross CO2 flux and light use efficiency during satellite 
overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest 
Meteorology, 131, 1-12 

Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Bolstad, P.V., 
Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel, 
W.C., Schmid, H.P., Wofsy, S.C., & Xu, L. (2008). A new model of gross primary 
productivity for North American ecosystems based solely on the enhanced vegetation 
index and land surface temperature from MODIS. Rem. Sens. Environ., 112, 1633-1646 



Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Flanagan, L.B., 
Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel, W.C., Schmid, H.P., 
Wofsy, S.C., & Xu, L. (2006). On the use of MODIS EVI to assess gross primary 
productivity of North American ecosystems. Journal of Geophysical Research, 111, 1-16 

Sjöström, M., Ard¨o, J., Eklundh, L., El-Tahir, B.A., El-Khidir, H.A.M., Hellstr¨om, M., Pilesj¨o, 
P., & Seaquist, J. (2009). Evaluation of satellite based indices for gross primary 
production estimates in a sparse savanna in the Sudan. Biogeosciences, 6, 129-138 

Sjöström, M., Ardö, J., Arneth, A., Boulain, N., Cappelaere, B., Eklundh, L., Grandcourt, A.d., 
Kutsch, W.L., Merbold, L., Nouvellon, Y., Scholes, R.J., Schubert, P., Seaquist, J., & 
Veenendaal, E.M. (2011). Exploring the potential of MODIS EVI for modeling gross 
primary production across African ecosystems. Rem. Sens. Environ., 115, 1081-1089 

Suyker, A.E., Verma, S.B., Burba, G.G., & Arkebauer, T.J. (2005). gross primary production and 
ecosystem respiration of irrigated maize and irrigated soybean during a growing season. 
Agricultural and Forest Meteorology, 131, 180-190 

Tucker, C.J. (1979). Red and Photographic Infrared Linear Combinations for Monitoring 
Vegetation. Remote Sensing of Environment, 8, 127-150 

Verhoef, W. (1984). Light-scattering by leaf layers with application to canopy reflectance 
modeling—the SAIL model. Remote Sensing of Environment, 16, 125– 141 

Verhoef, W. (1985). Earth observation modeling based on layer scattering matrices. Remote 
Sensing of Environment, 17, 165– 178 

Wolfe, R., Roy, D., & Vermote, E. (1998). The MODIS land data storage, gridding and 
compositing methodology: Level 2 Grid. IEEE Transactions on Geosciences and Remote 
Sensing, 36, 1324-1338 

Wu, C., Chen, J.M., Desai, A.R., Hollinger, D.Y., Arain, M.A., Margolis, H.A., Gough, C.M., & 
Staebler, R.M. (2012). Remote sensing of canopy light use efficiency in temperate and 
boreal forests of North America using MODIS imagery. Remote Sensing of Environment, 
118, 60-72 

Wu, C., Chen, J.M., & Huang, N. (2011). Predicting gross primary production from the enhanced 
vegetation index and photosynthetically active radiation: Evaluation and calibration. Rem. 
Sens. Environ., 115, 3424-3435 

Wu, C., Niu, Z., & Gao, S. (2010). Gross primary production estimation from MODIS data with 
vegetation index and photosynthetically active radiation in maize. Journal of Geophysical 
Research, 115, 1-12 

Wu, W., Wang, S., Xiao, X., Yu, G., Fu, Y., & Hao, Y. (2008). Modeling gross primary 
production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS 
imagery and climate data. Science in China Series D: Earth Sciences, 51, 1-12 

Xiao, X.M., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q., & Moore, B. (2004). 
Satellite-based modeling of gross primary production in an evergreen needleleaf forest. 
Rem. Sens. Environ., 89, 519-534 

Yan, H., Fu, Y., Xiao, X., Huang, H.Q., He, H., & Ediger, L. (2009). Modeling gross primary 
productivity for winter wheat–maize double cropping system using MODIS time series 
and CO2 eddy flux tower data. Agriculture, Ecosystems and Environment, 129, 391-400 

Zhang, Q. (2003). Improving estimation of terrestrial gross primary productivity (GPP): retrieval 
of fraction of photosynthetically active radiation absorbed by chlorophyll (fAPARchl) 
versus FAPAR. NASA Earth System Science (ESS) Fellowship Program 



Zhang, Q., Cheng, Y.-B., Lyapustin, A.I., Wang, Y., Gao, F., Suyker, A., Verma, S., & 
Middleton, E.M. (2014a). Estimation of crop gross primary production (GPP): 
MOD15A2 FPAR versus fAPARchl. Remote Sensing of Environment, 153,1 - 6

Zhang, Q., Cheng, Y.-B., Lyapustin, A.I., Wang, Y., Xiao, X., Suyker, A., Verma, S., Tan, B., & 
Middleton, E.M. (2014b). Estimation of crop daily gross primary production (GPP): I. 
Impact of MODIS observation footprint area and Impact of vegetation BRDF 
characteristics. Agricultural and Forest Meteorology, 191, 51-63

Zhang, Q., Middleton, E.M., Cheng, Y.-B., & Landis, D.R. (2013). Variations of Foliage 
Chlorophyll fAPAR and Foliage Non-Chlorophyll fAPAR (fAPARchl, fAPARnon-chl) at 
the Harvard Forest. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, 6, 2254-2264 

Zhang, Q.,  E. M. Middleton, Y.-B. Cheng, K. F. Huemmrich, B. D. Cook, L. A. Corp, W. P. 
Kustas, A. L. Russ and J. H. Prueger (2014c). Remote estimation of corn daily gross 
primary production (GPP): integration of fAPARchl and PRI. Agricultural and Forest 
Meteorology, in review

Zhang, Q., Middleton, E.M., Gao, B.-C., & Cheng, Y.-B. (2012). Using EO-1 Hyperion to 
Simulate HyspIRI Products for a Coniferous Forest: the Fraction of PAR Absorbed by 
Chlorophyll (fAPARchl) and Leaf Water Content (LWC). IEEE Transactions on 
Geoscience and Remote Sensing, 50, 1844-1852 

Zhang, Q., Middleton, E.M., Margolis, H.A., Drolet, G.G., Barr, A.A., & Black, T.A. (2009). 
Can a MODIS-derived estimate of the fraction of PAR absorbed by chlorophyll 
(FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for 
a boreal aspen forest? Remote Sensing of Environment, 113, 880-888 

Zhang, Q., Xiao, X.M., Braswell, B., Linder, E., Baret, F., & Moore, B. (2005). Estimating light 
absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS 
data and a radiative transfer model. Remote Sensing of Environment, 99, 357-371 

Zhao, M., & Running, S.W. (2008). Remote Sensing of Terrestrial Primary Production and 
Carbon Cycle. In S. Liang (Ed.), Advances in Land Remote Sensing (pp. 423–444): 
Springer Science Business Media 



Figure captions 

Figure 1. Comparison between tower daily GPP vs. estimated daily GPP for the US-NE3 site 
(soybean): (a) NDVI; (b) EVI; (c) WDRVIgreen; and (d) CIgreen. Filled circles use original un-
scaled VIs while empty circles use scaled VIs. Only observations with VZA  35o are included.  

Table captions 

Table 1. List of relationships between fAPARchl and VIs for the three crop sites (y=ax+b, 
y:fAPARchl, x:VI). The 95% confidence intervals of slope (“a”), y-intercept (“b”), and x-
intercept are presented. Coefficients of determination (R2) and root mean square error (RMSE) 
are also presented.  

Table 2. List of the coefficient   in GPP= *VI*PAR, the coefficient   in GPP=  *scaled 
VI*PAR, and LUEchl in GPP=LUEchl*fAPARchl*PAR (unit: g C mol-1 PPFD) 

Table 3. Coefficients of determination (R2), root mean square errors (RMSE, g C m-2 d-1) and 
coefficients of variation (CV) for simulated GPP with the VIs using two options: original 
unscaled VIs versus scaled VIs, compared to tower daily GPP  



Figure 1. Comparison between tower daily GPP vs. estimated daily GPP for the US-NE3 site 
(soybean): (a) NDVI; (b) EVI; (c) WDRVIgreen; and (d) CIgreen. Filled circles use original un-
scaled VIs while empty circles use scaled VIs. Only observations with VZA  35o are included.  
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