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Abstract —Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely
been made using spectral Vegetation Indices (VIs) over the past two decades. The Normalized
Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band
Wide Dynamic Range Vegetation Index (WDRV lgren), and the green band Chlorophyll Index
(Clgreen) have been employed to estimate GPP under the assumption that GPP is proportional to
the product of VI and photosynthetically active radiation (PAR) (where V1 is one of four VIs:
NDVI, EVI, WDRV lgreen, or Clgreen). However, the empirical regressions between VI*PAR and
GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for
regressions). Therefore they are somewhat difficult to interpret and apply. This study
investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts)
between the fraction of PAR absorbed by chlorophyll of a canopy (FAPAR) and the VIs, and (2)
whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy
of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of
which are irrigated and one is rainfed. The four Vs and fAPAR, of the fields were computed
with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP
estimation performance for the scaled VIs was compared to results obtained with the original Vs
and evaluated with standard statistics: the coefficient of determination (R?), the root mean
square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EV1 obtained the
best performance. The performance of the scaled NDVI, EVI and WDRV | geen Was improved
across sites, crop types and soil/background wetness conditions. The scaled Clgree, did not
improve results, compared to the original Clgeen. The scaled green band indices (WDRV lgreen,
Clgreen) did not exhibit superior performance to either the scaled EVI or NDVI in estimating crop

daily GPP at these agricultural fields. The scaled VIs are more physiologically meaningful than
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original un-scaled VIs, but scaling factors and offsets may vary across crop types and surface

conditions.

Key Words — Daily GPP, MODIS, Vegetation Index, fAPAR

I. INTRODUCTION

Atmospheric general circulation models require quantification of land-atmosphere
exchanges of energy, water and momentum, including CO, fluxes which can be provided by land
surface process models (Bonan et al., 2011; Dickinson et al., 1993; Sellers et al., 1986). Satellite
remote sensing offers inputs such as land cover types and the Normalized Difference Vegetation
Index (NDVI) (Deering, 1978; Tucker, 1979) for use in the land surface modeling (Dickinson et
al., 1990; Sellers et al., 1994). Pioneering work (Asrar et al., 1992; Myneni et al., 1997; Running
et al., 2000; Sellers, 1987) has shown the fraction of photosynthetically active radiation (PAR)
absorbed by a canopy/vegetation (FPAR, i.e., FAPARcanopy) Can be approximated with NDVI
(Running et al., 2000). Therefore, NDVI has been employed to estimate vegetation Gross
Primary Productivity (GPP) in a variation (as GPP=¢*NDVI*PAR, Running et al., 2000),

inspired by the logic from the Light Use Efficiency (LUE) model (Monteith, 1972, 1977):

GPP = ¢ * fAPARpsy * PAR = £ *APARpgn, (1)

where € is LUE for vegetation photosynthesis (PSN) (Running et al., 2000) and fAPARpsy IS the
fraction of PAR absorbed for PSN (APARpsy). Monitoring changes in crop GPP with satellite
remote sensing data advances the capability to understand and manage global food security,
sustainability practices, and environmental impacts, and to study global carbon cycle and global

water cycle.
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The three-band Enhanced Vegetation Index (EVI) (Huete et al., 1997) and the two-band
EVI (called EVI2, Jiang et al., 2008) have also been utilized to predict terrestrial GPP in a
similar way as GPP=¢*EVI*PAR (Jin et al., 2013; Kalfas et al., 2011; King et al., 2011; Li et al.,
2007; Mahadevan et al., 2008; Schubert et al., 2012; Sjostrém et al., 2011; Wu et al., 2008, 2010,
2011, 2012; Xiao et al., 2004; Yan et al., 2009). In addition, Gitelson and colleagues also
explored the application of the green band Wide Dynamic Range Vegetation Index (WDRV lgreen)
and the green band Chlorophyll Index (Clgren) for crop GPP estimation, in addition to the NDVI

and EVI (Gitelson et al., 2008, 2012; Peng and Gitelson, 2011, 2012; Peng et al., 2011).

However, since the empirical regressions between the VI*PAR products and GPP
measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for
regressions) and produce offsets, they are somewhat difficult to interpret and apply (Gitelson et
al., 2012; Sims et al., 2006; Zhang et al., 2014b). This is considered to be a source of error
affecting the accuracy and reliability of remote sensing GPP estimates based on VIs. In the
literature, there is no paper that presents how to scale the VIs in space and time to solve the

problem.

The standard MODerate resolution Imaging Spectroradiometer (MODIS) 8-day GPP
product (MOD17A2 GPP) uses the MOD15A2 FPAR (a fAPARcanopy) product as a model input
(Running et al., 2004; Zhao and Running, 2008). Investigations to find the scaling factor and
offset of NDVI through fAPARcaopy — NDVI functions have been conducted, where fAPAR anopy
=ap*NDVI+by (ag is the scaling factor or slope, and bg is y intercept or offset) (Fensholt et al.,
2004; Goward and Huemmrich, 1992; Knyazikhin et al., 1998, 2002; Potter et al., 1993; Prince
and Goward, 1995; Randerson et al., 1996; Sellers et al., 1996; Sims et al., 2005). However, the
MOD15A2 FPAR product overestimates in-situ FAPARcaopy during spring greenup and fall

4
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senescent periods, and underestimates in-situ fAPARcanopy in mid-summer during peak GPP

activity at the agricultural fields we selected [see (Zhang et al., 2014a) for details].

We developed an algorithm to retrieve the fraction of PAR absorbed by chlorophyll
throughout the canopy (FAPARp) from actual MODIS observations or from synthesized 30 m
MODIS-spectral-like observations simulated with EO-1 Hyperion images (Zhang, 2003; Zhang
etal., 2005, 2009, 2012, 2013,2014c). We found that fAPARcn # FAPAR canopy, and that the
fraction of PAR absorbed by foliage non-chlorophyll components (FAPARnon-chi) Varies with
types and seasonally (Zhang et al., 2013). Zhang et al. (2014a) presented the performance of
fAPAR and MOD15A2 FPAR in crop GPP estimation, and concluded that fAPAR, is
superior to MOD15A2 FPAR. Zhang et al. (2014b) investigated the performance of original un-
scaled Vs in GPP estimation, and suggested that further investigation on the performance of

scaled Vs should be carried out.

The objectives of this paper are straightforward: 1] to explore how surface conditions
affect the scaling factors (“a”) and offsets (“b”) derived through regression analysis of fAPAR
vs. the four VIs: fAPAR.y =a*VI+b for each crop type (corn, soybean) per field; 2] to investigate
how much the scaled VIs can improve the prediction accuracy of GPP estimates compared to the

prediction of original un-scaled VIs.

Il. METHODS
I1.1  Study sites and tower data
The three AmeriFlux crop sites for corn, or maize (Zea mays L.) and soybean (Glycine

max [L.] Merr.) used in this study are located at the University of Nebraska—Lincoln (UNL)



121 Agricultural Research and Development Center near Mead, Nebraska (US-NE1, US-NE2 and

122 US-NE3). The first two fields are circular (radius ~ 390 m) and equipped with center-pivot
123 irrigation systems (US-NE1, 41°09°54.2”N, 96°28°35.9”W; US-NE2, 41°09°53.6”N,
124  96°28°07.5”W). The third isa 790 m long square field (US-NE3, 41°10°46.7”N,

125  96°26°22.4”W) that relies entirely on rainfall. Each field is equipped with an eddy covariance
126 flux tower (Gitelson et al., 2012; Gitelson et al., 2006; Peng et al., 2013). The first field (US-NE1)
127 s a continuous maize field while the other two fields are maize-soybean rotation fields (soybean
128 is planted in even years).

129 Tower eddy-covariance carbon exchange, PAR, and GPP measurements in growing

130  season from 2001- 2006 are publically available and can be downloaded from

131  ftp://cdiac.ornl.gov/pub/ameriflux/data. The nighttime ecosystem respiration/temperature Q1
132 relationship was used to estimate the daytime ecosystem respiration (Baldocchi, 2003). Daily
133 GPP was computed by subtracting respiration (R) from net ecosystem exchange (NEE), i.e.,

134  GPP=NEE-R (Suyker et al., 2005). These sites provided the opportunity to examine the semi-
135  empirical relationships between fAPAR.n versus VIs for both C4 (maize) and C3 (soybean)

136 crops in both irrigated and non-irrigated ecosystems, and to investigate the benefits of employing
137  the scaled relationships to estimate GPP.

138 11.2  Remote sensing data processing and GPP estimation

139 Six years (2001-2006) of MODIS L1B calibrated radiance data (MOD021KM and

140 MODO02HKM) and geolocation data (MODO3) covering the three study sites were downloaded

141 from https://ladsweb.nascom.nasa.gov:9400/data/. Two of the MODIS bands have a nadir spatial

142 resolution of 250 m: B1 (red, 620 — 670 nm) and B2 (near infrared, NIR1, 841 — 876 nm). The

143 MODIS land bands 3 - 7 have a nadir spatial resolution of 500 m: B3 (blue, 459 — 479 nm), B4



144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

(green, 545 — 565 nm), B5 (NIR, 1230 — 1250 nm), B6 (shortwave infrared, SWIR;, 1628 —
1652 nm) and B7 (SWIR3, 2105 — 2155 nm). The centers of the original 500 m grids defined in
the standard surface reflectance product (MODOQ9) that encompass the three tower sites are not
the centers of the three fields and vegetation in each of the original 500 m grids is not
homogeneous [see Figure 2 of (Guindin-Garcia et al., 2012)]. The MODIS gridding procedure
for the standard MODOQ9 product does not ensure the gridded surface reflectance covers the
entire grid (Wolfe et al., 1998). A modified gridding procedure was used for this study (Zhang et
al., 2014b), whereby the centers of the three 500 m grids were matched to the centers of the three
fields, respectively. The L1B radiance data from each swath were gridded at 500 m resolution for
MODIS bands 1-7 with area weight of each MODIS observation. This modified gridding
processing was incorporated into the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm (Lyapustin et al., 2008, 2011a, b, 2012). MAIAC is an advanced algorithm
which uses time series analysis and a combination of pixel-based and image-based processing to
improve cloud/snow detection, and to achieve more accurate aerosol retrievals and atmospheric
correction, based on the bidirectional reflectance distribution function (BRDF) model of the
surface.

Derived bidirectional reflectance factors (BRF, also called directional surface reflectance)
in MODIS bands 1-7 were used for this study. The impact of MODIS observation footprint size
resulting from variable view zenith angle (VZA) on crop daily GPP estimation for these sites
was recently reported elsewhere (Zhang et al., 2014b). In order to eliminate the potential bias due
to large VZAs, only observations with VZA < 35° were included in this study. The surface
reflectance data (p) were used to calculate the following indices (Deering, 1978; Gitelson, 2004;

Gitelson et al., 2007, 2012; Huete et al., 1997, 2002; Tucker, 1979):
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We used the PROSAIL2 model (Jacquemoud and Baret, 1990; Baret and Fourty, 1997,
Braswell et al., 1996; Verhoef, 1984, 1985; Zhang et al., 2005, 2009, 2012, 2013), a coupled
soil-canopy-leaf radiative transfer model, to retrieve fAPAR, the fraction of PAR absorbed by
the foliage of the canopy (FAPARfiiage), and the fraction of PAR absorbed by the non-
photosynthetic foliage components (FAPARon-cni)(Zhang et al., 2014a). A pixel is composed of
canopy and soil (Zhang et al., 2009, 2012, 2013). The canopy is partitioned into foliage and stem
(including branch), and the foliage component is further partitioned into chlorophyll (chl) and
non-chlorophyll (non-chl) components, where non-chl is composed of non-photosynthetic
pigments (referred to as brown pigment) and dry matter (Baret and Fourty, 1997). The surface
reflectances of MODIS bands 1 — 7 are used for retrieval of fAPAR variables (Zhang et al., 2009,

2012, 2013, 2014c):

fAPARnon—chl = fAF)ARbrown_pigment + fAF)ARdry_matter (6)
fAPAR (e = TAPAR, + TAPAR (7)
fAPAR 0y = TAPAR (e + TAPAR 8)
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The scaling factors (“a”) and offsets (“b”) of VIs were derived from linear regression through
fAPARn — VI functions for each crop type per field, where fAPAR., =a*VI+b (VIs=NDVI,
EVI, WDRV lgreen, and Clgreen).

The product of Vs and tower daily PAR (VI*PAR) and the product of scaled VIs and
daily PAR (scaled VI*PAR) were compared against the tower daily GPP for each crop type per
field (GPP=£,*VI*PAR or GPP=¢ *scaled VI*PAR). The coefficients “&,” and “&” were
computed with a least squares best fit algorithm. The computed values for &, and & were then
used to predict GPP, and coefficient of determination (R?), the root mean square error (RMSE, g
C m?d™) and coefficient of variation (CV, %) was calculated. The average light use efficiency
at chlorophyll level (LUE.,, i.e., €:,;) was computed using GPP=LUE,*fAPAR*PAR with a
least squares best fit algorithm. Improvements of crop daily GPP estimation using scaled VIs

were assessed.

1. RESULTS

The scaling factor (“a”, also called slope) and offset (“b”, also called y-intercept)
obtained through the regression functions fAPAR, =a*VI1+b for each crop per field are listed in
Table 1, where the statistics for the R, RMSE and x-intercept are also summarized. The x-
intercepts of fAPAR, =a*VI+b give minimum VI values at zero fAPAR. The 95% confidence
intervals of slope, y-intercept and x-intercept for each crop per field are reported, too. The Clgreen
is a simple ratio index while the other three VIs include consideration of normalization. The
confidence intervals for Clgeen are different from those for other three Vs for each type per field.
For each crop type in irrigated fields USNE1 and USNEZ2, the confidence intervals of y-

intercepts and x-intercepts for NDVI, EVI and Clgen are different from each other. For each
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crop type in rainfed field USNE3, the confidence intervals of y-intercepts and x-intercepts for
NDVI and Clgreen overlap each other, but are different from those for EVI. Mean values of the
confidence intervals of the slopes, y-intercepts and x-intercepts vary with Vs, sites, crop types
and irrigation options. None of the y-intercepts or x-intercepts for NDVI, EVI or WDRV lgreen iS

close to the origin (i.e., zero X-Y point).

The functions in Tab. 1 were used to compute the scaled values of NDVI, EVI,
WDRV lgreen and Clgreen for each crop type per field. For instance, for the NDVI at US-NEL1:
scaled NDVI = 1.11*NDVI-0.29. The coefficients'e, and € and LUE of each crop per field are
listed in Table 2. Corn LUEy is ~1.6 times of soybean LUE., (Tab. 2), which agrees with the
expectation that C4 plants have higher LUE than C3 plants (e.g., Prince, 1991), and explains why
maize displays a wider daily GPP range (~34 g C m?d™) than soybean ( (~19 g C m? d*)(Zhang

et al., 2014b). The coefficientse, and & were applied to estimate crop daily GPP.

Figure 1 shows the estimated soybean daily GPP for the rainfed field US-NE3 using the
four original Vs with "€, and the scaled VIs with’e, compared to tower daily GPP. The scaled
NDVI, EVI and WDRV lgeen combined with & had better GPP estimation performance than the
original counterparts, respectively, demonstrating higher R? and lower RMSE. Compared to the
original counterparts, the (scaled NDVI)*PAR, the (scaled EVI)*PAR and the (scaled
WDRV lgreen) *PAR values were closer to 0 when GPP=0. The scaled Clgree, did not provide
better GPP estimation than the original Clgeen. In order to save pages, similar figures for US-NE1,

US-NE2 and figures for maize in US-NE3 are not presented in this paper.

Table 3 summarized the statistics (R?, RMSE and CV) for estimating crop daily GPP

using the original Vs with g, and the scaled Vs with &, respectively. These statistics show that

10
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the best performance was obtained with the scaled EVI while the least successful performance
among the four scaled VIs was obtained with Clgeen across the sites, crop types and irrigation/
rainfed options. For example at the US-NEL1 site, scaled EVI and scaled Clgeen had contrasting
best/worst performances in GPP estimation: R*: 0.88/ 0.77, RMSE: 2.92/4.05 g C m?d™, and
CV: 19%/ 26% (Tab. 3). GPP estimates for corn had better performance than for soybean using
scaled NDVI and EV1 for sites US-NE2 and US-NE3. Better results might be achieved for the
sites examined in other studies (King et al., 2011; Sjostrém et al., 2009) if the scaled EVI

(through coefficients obtained from the regression of fAPAR. vs. EVI) had been utilized.

For each crop in any field, the scaled NDVI, EVI and WDRV lgreen improved the
prediction performance of crop daily GPP while the scaled Clgreen did not, compared to the
original un-scaled VIs. GPP improvements for the three that benefited from scaling, ranked from
most to least were the NDVI, WDRV lgreen, EVI, for which the R?increased (1: 0.16, 0.13, 0.09),
RMSE decreased (]:0.95, 0.78, 0.65 g C m? d™), and the CV also decreased (|:8%, 6%, 5%).
The improvements also varied with crop types and irrigation conditions. For example, the NDVI
improvement for soybean (R?, 1 0.20; CV, | 9%) was better than for corn (R?, 10.13; CV,|7%),
and the average improvement for the rainfed field (R%10.21; RMSE, |1.10 g C m?d™; and CV,
110% ) was better than for the irrigation fields (R? 10.12; RMSE, |0.85g C m?d™; and

CV,|6%).

IV.DISCUSSION
The PSROAIL2 model well distinguishes vegetation from soil and fAPAR retrieved

with the PROSAIL2 model excludes the impact of soil/background (Zhang et al., 2012, 2013).

11



252 The fTAPARliage cOMprises chlorophyll and non-chlorophyll foliage fractions (FAPARch,

253 fAPARonchi). Therefore, the PAR absorbed by non-photosynthetic vegetation components (NPV)
254  of the canopy is excluded from APAR since APAR=fAPAR*PAR. This is the theoretical
255  basis for potential improvement of GPP estimation using the scaled VIs. The x-intercept values
256  of the semi-empirical linear functions of fAPARn vs. VI in Table 1 have an important

257  biophysical meaning: there is not any chlorophyll showing up at the pixel when its un-scaled VI
258 is less than its x-intercept value. Gitelson and colleagues (Gitelson et al., 2007) reported that,
259  before green-up when green leaves do not appear, MODIS 250 m NDVI values for the fields

260  could be greater than 0.2, which is close to the minimum x-intercepts of NDVI (0.23, Tab. 1) we
261 found with MODIS 500 m images. In irrigated fields, the mean values of the x-intercept

262 confidence intervals for EVI were about half of those for NDVI, and about 1/3 as large as those
263 for WDRVlgreen (Tab. 1). In rainfed fields, the mean values of the x-intercept confidence

264 intervals for EVI were about half of those for both NDVI and WDRV lgreen (Tab. 1).

265  Soil/background wetness has less impact on EVI than on NDVI which is consistent with the

266  original idea that inspired the development of EVI (Huete, 1988; Huete et al., 1997). Daughtry et
267 al. (2000) has expressed that VIs combined with NIR and red bands are less impacted by

268  background than VIs combined with NIR and green bands. Earlier studies (Sims et al., 2006,

269  2008) have shown that GPP drops to zero at variable EV1 values (i.e., x-intercept EVI values) in
270  their selected flux sites, and have found the minimum x-intercept value is ~0.1. So Sims et al.
271 (2008) has developed a GPP model using EVI - 0.1 instead of the original EVI. The x-intercept
272 confidence intervals of EVI in the three fields (US-NE1, US-NE2 and US-NE3) ranged from
273 (0.12,0.13), (0.14, 0.15) to (0.16, 0.18). Our findings are consistent with earlier empirical studies

274  (Daughtry et al., 2000; Huete, 1988; Huete et al., 1997; Sims et al., 2006, 2008). Furthermore,

12
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the scaled VIs with scaling factors and offsets using the semi-empirical relationships between
TAPAR vs. Vs for each crop type per field are more physiologically meaningful (Tab. 1) than

the original un-scaled VIs.

The "¢ estimates for all scaled Vs are close to the relevant LUE values for each crop
type per field. In contrast, the “g, estimates associated with the original un-scaled NDVI and
WDRV lgreen are lower than the relevant LUEp values. The “g; estimates for Clgreen are much
lower than the relevant LUE. values because the original un-scaled Clgreen range (~1 to 10) is
much wider than the scaled Clgreen range (~0 to~1). It is worth noting that both the "€, and the &
estimates for the original EVI and the scaled EV1 are close to the physiologically relevant LUE,
values. This partly explains the reasonableness and success of the Vegetation Photosynthesis
Model (VPM) (Xiao et al., 2004) which assumes GPP=¢*EVI*PAR. This study suggests that the
GPP estimation made with the VPM may be improved by replacing the original EVI with

fAPARp;, or by scaling the EVI using the relationship between fAPARy, and EVI.

The R? between tower daily GPP and estimated GPP with scaled VIs for all cases ranges
from 0.66 to 0.88 while the RMSE (CV) between them ranges from 4.37 t0 2.11 g C m?d*
(from 31% to 17%). Although the R? between fAPAR., and scaled V1 is high for all cases (0.73
- 0.97), the RMSE between fAPAR and scaled VI varies with crop type, irrigation/rainfed
options, and VI options, which caused the variation of the performance of estimated GPP with
scaled VIs. Among the four scaled Vs, the RMSE between fAPAR, and the scaled EVI is
smallest and the R? is highest for all study sites. For US-NE2 and US-NE3, the RMSE between

fAPARn and scaled Clgren is biggest and the R?is lowest.
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V. CONCLUSION
This study exhibited improvement in the performance of crop daily GPP estimation using
scaled NDVI, EVI and WDRV lgeeen, compared to their original un-scaled counterparts. However,
performance improvement of crop daily GPP estimation using scaled Clgreen Was not observed.
The irrigated fields have better performance, as compared to the rainfed field. The performance
also varied with crop types and V1 options. The scaled EVI provided the best performance
among all cases. This study does not find that the scaled WDRV lgreen Or the scaled Clgreen IS

superior to the scaled NDVI or scaled EVI in predicting crop daily GPP.

Compared to the original VIs, the scaled VIs developed with the semi-empirical
relationships between fAPAR and Vs are more physiologically meaningful. However, the
scaling factors and offsets (and x-intercepts) vary field by field, and vary type by type.
Investigations to explore the scaling factors and offsets of these Vs using fAPAR., for other
plant functional types should be carried out in the future. We will explore how the scaling factors
and offsets change over space and time, and vary with climate. Investigations on whether scaled
EVI is best for all fields and all types among the four scaled Vs are also needed. We suggest an
approach whereby MODIS-derived Vs are scaled pixel by pixel. This approach provides scaled
Vs for use when fAPAR is unavailable. We expect that future research on GPP simulation
based on the biochemical or land surface modeling (Bounoua et al., 2000; Potter et al., 2003;
Sellers et al., 1994, 1996) will achieve reduced uncertainty and improved accuracy when the

scaled MODIS Vs replace the original VIs.
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Figure captions

Figure 1. Comparison between tower daily GPP vs. estimated daily GPP for the US-NE3 site
(soybean): (a) NDVI; (b) EVI; (c) WDRV lgreen; and (d) Clgreen. Filled circles use original un-
scaled VIs while empty circles use scaled VIs. Only observations with VZA < 35° are included.

Table captions

Table 1. List of relationships between fAPAR., and Vs for the three crop sites (y=ax+b,
y:fAPAR, X:V1). The 95% confidence intervals of slope (“a”), y-intercept (“b”), and x-
intercept are presented. Coefficients of determination (R?) and root mean square error (RMSE)
are also presented.

Table 2. List of the coefficient &, in GPP=£,*VI*PAR, the coefficient & in GPP=¢ *scaled
VI*PAR, and LUEg in GPP=LUE*fAPAR*PAR (unit: g C mol™ PPFD)

Table 3. Coefficients of determination (R?), root mean square errors (RMSE, g C m? d*) and

coefficients of variation (CV) for simulated GPP with the VIs using two options: original
unscaled Vs versus scaled Vs, compared to tower daily GPP
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Figure 1. Comparison between tower daily GPP vs. estimated daily GPP for the US-NE3 site
(soybean): (a) NDVI; (b) EVI; (¢) WDRVlgreen; and (d) Clgreen. Filled circles use original un-
scaled VIs while empty circles use scaled VIs. Only observations with VZA < 35° are included.
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