NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

Lance Richards, Allen. R. Parker, Jr., Anthony Piazza, Patrick Chan, Phil Hamory, and Frank Pena

> NASA Armstrong Flight Research Center Edwards, CA

> > Information Updated

November, 2014

The FOSS Team

	Team member	Background/ experience	Contributions to Fiber Optics Team
	Patrick Chan	Optics Engineer	Optics Development, laser research and development
	Phil Hamory	Electrical Engineer	Advanced System Algorithm Development
	Allen Parker	Electrical Engineer	Systems design & development, data processing and visualization
	Frank Pena	Structures Engineer	Mechanical design & development, Structural Simulation and Testing
NA	Anthony Piazza	Instrumentation Specialist	Sensor characterization, application, & interpretation
	Lance Richards	Structures Engineer	Aircraft structures, strain measurement

Background

- AFRC initiated fiber-optic instrumentation development effort in the mid-90's
 - AFRC effort focused on atmospheric flight applications of Langley patented OFDR demodulation technique
- AFRC focused on developing system suitable for flight applications
 - Previous system was limited due to laser technology
 - System limited to 1 sample every 90 seconds
- AFRC initiated a program to develop a more robust / higher sample rate fiber optic system suitable for monitoring aircraft structures in flight
- As a result, AFRC has developed a comprehensive portfolio of intellectual property that is now ready to be commercialized by the private sector.

X-33 IVHM Risk Reduction Experiment

Fiber Optic Sensor Advantages

- Advantages of FO sensors over conventional technology
 - Light weight
 - Increased payloads
 - Increased range
 - Serial multiplexibility
 - Full-field strain mapping
 - Reduced bundle sizes
 - Reduced time to install/troubleshoot
 - Small size (about the size of human hair)
 - Embeddable
 - Damage detection
 - Internal health assessment
 - Compatibility with telecom
 - No sparking, no ground loops
 - Chemically inert
 - No EMI or EMP
- Wide application potential

Fiber optic strain sensors

Conventional strain gage

Five optical

fiber optic

sensors

fiber's with 32

Fiber optic temperature sensors

Fiber optic strain sensors

Strain sensor comparison

Wiring for 32 strain gages

X-33/SRA flight test fixture

Installation Advantages and Limitations

Installation Advantages

- Greatly reduced installation time compared to conventional strain gages
 - 2 man days for 40' fiber (2000 strain sensors for a continuous surface run)
 - Multiple sensors installed simultaneously
 - Same surface preparation and adhesives as conventional strain gages
 - Minimal time spent working on vehicle
 - All connectors can be added prior to installation, away from part
 - No soldering, no clamping pressure required
- Can be installed on aerodynamic surfaces with little to no impact on performance

Installation Limitations

- Optical fiber more fragile than conventional strain gages
- Some measurement locations not practical due to fiber minimum bend radius
- Not practical if only interested in spot measurements

Strain Sensing – Ground System Current Capabilities

Current system specifications Sensor Range +/- 12,000 micro Strain Resolution 2 micro Strain System/Avionics 5% Accuracy Fiber count 8 ٠ Max sensing length / fiber 40 ft • Max sensors / fiber 2000 • Total sensors / system 16000 Max sample rate 100 sps ۲ **Power 110 VAC** • **User Interface** Ethernet ~20 lbs Weight 7 x 12 x 11 in Size Fiber Broadband **Reflector Box** (BBR) **Sensing Fiber** & Attachment

Strain Sensing – Flight System Current Capabilities

Current system specifications

•	Sensor Range	+/- 12,000 micro Strain
٠	Resolution	2 micro Strain
•	Accuracy	5%
•	Fiber count	8
•	Max sensing length / fiber	40 ft
•	Max sensors / fiber	2000
•	Total sensors / system	16000
•	Max sample rate	100 sps
•	Power	28VDC @ 4.5 Amps
•	User Interface	Ethernet
•	Weight	~30 lbs
•	Size	7 5 x 13 x 13 in

Environmental qualification specifications for flight system

- Shock
- Vibration
- Altitude
- Temperature

8g

- 1.1 g-peak sinusoidal curve
 - 60kft at -56C for 60 min -56 < T < 40C

Fiber Installed on Wing

Strain and Applied Loads Aluminum Flat Plate Validation Testing

Applied Loads Results

Strain and Applied Loads Large-Scale Composite Wings - Mississippi State Univ

ENGINEERING PROPERTIES OF COMPOSITE MATERIALS.

Material	Woven fabric	Unidirectional	Foam core DIAB	
Properties	Toray-T700G	fabric	Divinycell HT 50	
		Toray-T700S		
E ₁₁ , GPa	$5.54 \ge 10^{1}$	$1.19 \ge 10^2$	8.50 x 10 ⁻²	
E ₂₂ , GPa	$5.54 \ge 10^{1}$	9.31 x 10 ⁰		
G ₁₂ , GPa	4.21 x 10 ⁰	4.21 x 10 ⁰		<
v_{12}	3.00 x 10 ⁻²	3.10 x 10 ⁻¹	3.20 x 10 ⁻¹	
ρ , kg/m ³	$1.49 \ge 10^3$	$1.52 \ge 10^3$	4.95 x 10 ⁻¹	

Strain Sensing Composite Crew Module

- Four fibers were installed around the module's three windows and one hatch
- 3300 real-time strain measurements were collected at 30Hz as the module underwent 200%DLL pressurization testing
- Measured strains were compared and matched well to predicted model results
- Project concluded:
 - "Fiber optics real-time monitoring of test results against analytical predictions was essential in the success of the full-scale test program."
 - "In areas of high strain gradients these techniques were invaluable."

Inner Hatch FBG Strains, Max Pressure

Temperature Sensing

Current Capabilities

Temperature Conversion

Test Notes

Eleven FO FBG's, decoupled from substrate in polyimide tubes, were averaged to generate coefficient to convert strain to Fahrenheit

2D Shape Sensing

Current Capabilities

Current system specifications Max sensing length / fiber **40 ft** Resolution ~ 1/4 in. Accuracy 2% • Max sensing fibers 8 • Max sensors / fiber 1000 • 8000 Total sensors / system Max sample rate 100 sps • **Power (flight)** 28VDC @ 4.5 Amps ۲ **Power (ground) 110 VAC** • **User Interface** Ethernet • Weight (flight, non-optimized) 27 lbs ٠ Weight (ground, non-optimized) **20 lbs** • Size (flight, non-optimized) 7.5 x 13 x 13 in • Size (ground, non-optimized) 7 x 12 x 11 in •

Environmental qualification specifications for flight system

- Shock
- Vibration
- Altitude
- Temperature

1.1 g-peak sinusoidal curve 60kft at -56C for 60 min -56 < T < 40C

8g

Requires knowledge of the structures centroid

Ground System

2D Strain-Based Deflection Methods

2D Shape Sensing Method

- Uses structural strains to get
 deflection in one direction
- Fibers on top and bottom surface of a structure (e.g. wing)

Strain, Applied Loads, and 2D Shape Large-Scale Composite Wings - Mississippi State Univ.

MEASURE	D AND CALCULATE	ED WING TIP DEF	FLECTIONS
<u>F, N</u>	<u>Measured δ_L, m</u>	<u>Calculated δ_L, m</u>	Error, %
<u>1373</u>	<u>-0.184</u>	<u>-0.178</u>	<u>3.02</u>
<u>1592</u>	-0.209	<u>-0.205</u>	<u>2.29</u>
<u>1837</u>	-0.241	<u>-0.231</u>	<u>4.08</u>
<u>2036</u>	<u>-0.265</u>	-0.257	<u>3.23</u>
2269	<u>-0.295</u>	<u>-0.284</u>	<u>3.75</u>

Test Procedure for displacement

- Collect FBG strain data
- Use displacement Eq. and Strain data to calculate deflection

OUT-OF-PLANE APPLIED LOAD

Applied Load, N	Calculated Load, N	<u>Error, %</u>	Difference, N
<u>-185.5</u>	<u>-178.8</u>	<u>3.60</u>	<u>6.7</u>
<u>-194.4</u>	<u>-210.0</u>	<u>7.98</u>	<u>15.5</u>
<u>-241.5</u>	<u>-252.0</u>	<u>4.35</u>	<u>10.5</u>
<u>-288.5</u>	<u>-291.5</u>	<u>1.05</u>	<u>3.0</u>
<u>-333.3</u>	<u>-332.9</u>	<u>0.12</u>	<u>0.4</u>
<u>-378.1</u>	<u>-381.1</u>	<u>0.80</u>	<u>3.0</u>
-422.9	<u>-435.9</u>	<u>3.07</u>	<u>13.0</u>
<u>-472.2</u>	-486.4	<u>3.01</u>	<u>14.2</u>
Average EI=98728.	2-N*m ²		
Twendge EI=90720.	2-1\ III		

Test procedure for out-of-plane loads

- Determine El for the wing
- Determine moment acting on wing
- Determine Load applied

Strain and 2D Shape Sensing Global Observer UAS

- Validate strain predictions along the wingspan
- Measured strain distribution along the centerline top and bottom as well as along the trailing edge top and bottom.
- FO Strain distribution measurements are being used to interpret shape using AFRC's 2D shape algorithm
- A 24-fiber system was designed of which 18, 40ft fibers (~17,200 gratings) were used to instrument both left and right wings

Strain and 2D Shape Sensing Global Observer UAS

Proof-load testing of components and large-scale structures

2D Shape Sensing Results Global Observer UAS

Strain and 2D Shape Sensing Global Observer UAS - Flight Testing

- Validate strain predictions along the left wing in flight using 8, 40ft fibers (~8000 strain sensors)
- An aft fuselage surface fiber was installed to monitor fuselage and tail movement
- Strain distribution were measured along the left wing centerline top and bottom as well as along the trailing edge top and bottom.
- 8 of the 9 total fibers are attached to the system at any give time
- The system performed well and rendered good results

Strain and 2D Shape Sensing Predator-B UAS - Flight Testing

- 18 flights tests conducted; 36 flight-hours logged
- Conducted first flight validation testing April 28, 2008
- Believed to be the first flight validation test of FBG strain and wing shape sensing
- Multiple flight maneuvers performed
- Total of 6 fibers (~3000 strain sensors) installed on left and right wings
- Fiber optic and conventional strain gages show excellent agreement
- FBG system performed well throughout entire flight program

Video clip of flight data superimposed on Ikhana photograph

3D Shape Sensing

Current Capabilities

Current system specifications

٠	Max sensing length / fiber	40 ft
•	Resolution	~ ¼ in.
•	Accuracy	5%
•	Max sensing fibers	8
٠	Max sensors / fiber	1000
٠	Total sensors / system	8000
٠	Max sample rate	100 sps
٠	Power (flight)	28VDC @ 4.5 Amps
•	Power (ground)	110 VAC
٠	User Interface	Ethernet
٠	Weight (flight, non-optimized)	27 lbs
٠	Weight (ground, non-optimize	d) 20 lbs
•	Size (flight, non-optimized)	7.5 x 13 x 13 in
•	Size (around, non-optimized)	7 x 12 x 11 in

Environmental qualification specifications for flight system

- Shock
- Vibration
- Altitude
- Temperature

1.1 g-peak sinusoidal curve 60kft at -56C for 60 min -56 < T < 40C

8g

Ground System

3D Shape Sensing Method

- Uses strains on a cylindrical structure to get 3D deflections
- 3 fibers 120 deg apart on a structure or a lumen

3D Shape Sensing Prototype Quiet Spike Testing

- Fibers are installed on the prototype of 35ft quiet spike at Gulfstream in Savannah GA
- Performed tests to determined benefits of deploying FOSS on Low Boom Experimental Vehicle
- Installed a total of 5 fibers measuring strain at ¹/₂" increments (2,570 strain sensors)
- Deflection shape of the Quiet Spike evaluated through the 3D shape algorithm

3D Shape Sensing Quiet Spike Testing Results – lateral deflection

Liquid Level & Cryogenic Liquid Level Sensing Current Capabilities

Current system specifications

•	Max sensing length / fiber	40 ft
٠	Resolution	~ ¼ in.
•	Accuracy	~ ¼ in.
•	Max sensing fibers	8
•	Max sensors / fiber	2000
•	Total sensors / system	16000
•	Max sample rate	0.5 Hz
•	Power	110 VAC
•	User Interface	Ethernet
•	Weight	~ 20 lbs
•	Size	7 x 12 x 11 in

Cryogenic Liquid Level-Sensing

The Challenge

- The transitional phase between liquid and gas of cryogenics is difficult to discriminate while making liquid level measurements
- Using discrete cryogenic temperature diodes spaced along a rake yields course spatial resolution of liquid level along with high wire count

FOSS Approach

- While using a uniquely developed fiber optic structure (CryoFOSS), the transitional phase can be mapped more accurately
- Using a single continuous grating fiber, a high degree of spatial resolution can be achieved, as low as 1/16"

LH₂ Testing of CryoFOSS at MSFC

Cryo-FOSS

Objective

 Experimentally validate CryoFOSS using AFRC's FOSS technology

Test Details

- Dewar dimensions: 13-in ID x 37.25-in
- Fill levels of 20%, 43%, and 60% were performed
- Instrumentation systems
 - Video boroscope with a ruler (validating standard)
 - Cyrotracker (ribbon of 1-in spaced silicon diodes)
 - MSFC Silicon diode rake
 - Fiber optic LH₂ liquid level sensor(CryoFOSS)

Results

- CryoFOSS sensor discerned LH₂ level to ¼" in every case
- Excellent agreement achieved between CryoFOSS, boroscope, and silicon diode Cryotracker

Bottom line

 Validated concept for a lightweight, accurate, spatially precise, and practical solution to a very challenging problem for ground and in-flight cryogenic fluid management systems

LH₂ Liquid Level Results

hyFOSS Current Capabilities

Current system specifications

•	Sensor Range	+/- 12,000 micro Strain
•	Resolution	2 micro Strain
•	Accuracy	5%
•	Fiber count	8
•	Max sensing length / fiber	40 ft
•	Max sensors / fiber	2000
•	Total sensors / system	16000
•	Max sample rate	100 sps
•	Power	110 VAC
•	User Interface	Ethernet
•	Weight	~20 lbs
•	Size	7 x 12 x 11 in

HyFOSS Open Plate test article

Experimental setup

- 7 Accelerometers are mounted to the structure to monitor structure mode shapes
- OFDR and WDM sensors (3) are bonded to the plate

HyFOSS Sensor Installation

- 5,000 Hz (WDM)

 \cap

HyFOSS Plate – WDM & Accelerometer Frequency Sweep 475 Hz to 525 Hz

Evaluation & Licensing Opportunities

Contact Information

