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The FOSS Team

Team member
Background/ 
experience

Contributions to Fiber Optics 
Team

Patrick Chan Optics Engineer Optics Development, laser 
research and development

Phil Hamory Electrical Engineer Advanced System Algorithm 
Development

Allen Parker Electrical Engineer
Systems design & development, 
data processing and 
visualization

Frank Pena Structures 
Engineer

Mechanical design & 
development, Structural 
Simulation and Testing

Anthony Piazza Instrumentation 
Specialist

Sensor characterization, 
application, & interpretation

Lance Richards Structures
Engineer

Aircraft structures, strain 
measurement 2
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Background
• AFRC initiated fiber-optic instrumentation 

development effort in the mid-90’s
– AFRC effort focused on atmospheric flight 

applications of Langley patented OFDR 
demodulation technique

• AFRC focused on developing system 
suitable for flight applications
– Previous system was limited due to laser 

technology
– System limited to 1 sample every 90 

seconds

• AFRC initiated a program to develop a more 
robust / higher sample rate fiber optic 
system suitable for monitoring aircraft 
structures in flight

• As a result, AFRC has developed a 
comprehensive portfolio of intellectual 
property that is now ready to be 
commercialized by the private sector.

Ground to Flight 
Fiber-Optic Sensing 

Technology Development

X-33 IVHM Risk 
Reduction Experiment
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• Advantages of FO sensors over conventional technology
• Light weight

− Increased payloads
− Increased range

• Serial multiplexibility
− Full-field strain mapping
− Reduced bundle sizes
− Reduced time to install/troubleshoot

• Small size (about the size of human hair)
• Embeddable

− Damage detection
− Internal health assessment

• Compatibility with telecom
• No sparking, no ground loops
• Chemically inert
• No EMI or EMP

• Wide application potential

Fiber Optic Sensor Advantages

Wiring for 32 
strain gages

Five optical 
fiber's with 32 
fiber optic 
sensors

X-33/SRA flight 
test fixture

Conventional 
strain gage Fiber optic

strain sensors

Fiber optic
strain sensors

Fiber optic
temperature
sensors
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Installation Advantages and Limitations
Installation Advantages
• Greatly reduced installation time compared to conventional strain gages 
– 2 man days for 40’ fiber (2000 strain sensors for a continuous surface run)
– Multiple sensors installed simultaneously
– Same surface preparation and adhesives as conventional strain gages
– Minimal time spent working on vehicle
– All connectors can be added prior to installation, away from part
– No soldering, no clamping pressure required

• Can be installed on aerodynamic surfaces with little to no impact on performance
Installation Limitations
• Optical fiber more fragile than conventional 

strain gages
• Some measurement locations not practical

due to fiber minimum bend radius
• Not practical if only interested in spot

measurements
Optical Fiber Paint

Primer
Wing Skin

Epoxy

~.005”

5
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Strain Sensing – Ground System
Current Capabilities

Current system specifications
• Sensor Range +/- 12,000 micro Strain
• Resolution 2 micro Strain
• Accuracy 5%
• Fiber count  8
• Max sensing length / fiber 40 ft
• Max sensors / fiber 2000
• Total sensors / system 16000
• Max sample rate 100 sps
• Power 110 VAC
• User Interface Ethernet 
• Weight ~20 lbs
• Size 7 x 12 x 11 in

Fiberr

System/Avionics
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Strain Sensing – Flight System
Current Capabilities

Current system specifications
• Sensor Range +/- 12,000 micro Strain
• Resolution 2 micro Strain
• Accuracy 5%
• Fiber count  8
• Max sensing length / fiber 40 ft
• Max sensors / fiber 2000
• Total sensors / system 16000
• Max sample rate 100 sps
• Power 28VDC @ 4.5 Amps 
• User Interface Ethernet 
• Weight ~30 lbs
• Size 7.5 x 13 x 13 in

Environmental qualification specifications for 
flight system

• Shock 8g
• Vibration 1.1 g-peak sinusoidal curve 
• Altitude 60kft at -56C for 60 min
• Temperature -56 < T < 40C

Flight System

Predator -B in Flight

Fligght Syystem

Fiber Installed on Wing
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Strain and Applied Loads
Aluminum Flat Plate Validation Testing

Applied Loads Results

8
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ENGINEERING PROPERTIES OF COMPOSITE MATERIALS.
Material 

Properties
Woven fabric
Toray-T700G

Unidirectional 
fabric

Toray-T700S

Foam core DIAB
Divinycell HT 50

E11, GPa 5.54 x 101 1.19 x 102 8.50 x 10-2

E22, GPa 5.54 x 101 9.31 x 100 --
G12, GPa 4.21 x 100 4.21 x 100 --

ν12 3.00 x 10-2 3.10 x 10-1 3.20 x 10-1

ρ, kg/m3 1.49 x 103 1.52 x 103 4.95 x 10-1

Strain and Applied Loads
Large-Scale Composite Wings - Mississippi State Univ

9
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Strain Sensing
Composite Crew Module

• Four fibers were installed 
around the module’s three 
windows and one hatch

• 3300 real-time strain 
measurements were collected at 
30Hz as the module underwent 
200%DLL pressurization testing

• Measured strains were 
compared and matched well to 
predicted model results

• Project concluded:
• “Fiber optics real-time 

monitoring of test results 
against analytical 
predictions was essential in 
the success of the full-scale 
test program.” 

• “In areas of high strain 
gradients these techniques 
were invaluable.” Inner Hatch FBG Strains, Max Pressure

M
ic

ro
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Temperature Sensing
Current Capabilities

Current system specifications
• Sensor Range - 425 deg F to 550 deg F
• Resolution 1 deg F
• Accuracy 5%
• Fiber count  8
• Max sensing length / fiber 40 ft
• Max sensors / fiber 2000
• Total sensors / system 16000
• Max sample rate 100 sps
• Power 110 VAC
• User Interface Ethernet 
• Weight ~20 lbs
• Size 7 x 12 x 11 in

Fiberr

System/Avionics
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Temperature Conversion

12
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Test Notes
Eleven FO FBG’s, decoupled from 
substrate in polyimide tubes, were 
averaged to generate coefficient to 
convert strain to Fahrenheit
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2D Shape Sensing
Current Capabilities

Flight SystemFligght Syystem

Current system specifications
• Max sensing length / fiber 40 ft
• Resolution ~ ¼ in.
• Accuracy 2%
• Max sensing fibers 8
• Max sensors / fiber 1000
• Total sensors / system 8000
• Max sample rate   100 sps
• Power (flight) 28VDC @ 4.5 Amps
• Power (ground) 110 VAC
• User Interface Ethernet 
• Weight (flight, non-optimized) 27 lbs
• Weight (ground, non-optimized) 20 lbs
• Size (flight, non-optimized) 7.5 x 13 x 13 in
• Size (ground, non-optimized) 7 x 12 x 11 in

Environmental qualification specifications for 
flight system

• Shock 8g
• Vibration 1.1 g-peak sinusoidal curve 
• Altitude 60kft at -56C for 60 min
• Temperature -56 < T < 40C

Ground System

Requires knowledge Requires knowledge 
of the structures the structure

centroid 
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2D Strain-Based Deflection Methods

2D Shape Sensing Method
• Uses structural strains to get 

deflection in one direction
• Fibers on top and bottom surface 

of a structure (e.g. wing)

d
t 

rface

14
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F, N Measured δL, m Calculated δL, m Error, %
1373 -0.184 -0.178 3.02
1592 -0.209 -0.205 2.29
1837 -0.241 -0.231 4.08
2036 -0.265 -0.257 3.23
2269 -0.295 -0.284 3.75

MEASURED AND CALCULATED WING TIP DEFLECTIONS

Applied Load, N Calculated Load, N Error, % Difference, N
-185.5 -178.8 3.60 6.7
-194.4 -210.0 7.98 15.5
-241.5 -252.0 4.35 10.5
-288.5 -291.5 1.05 3.0
-333.3 -332.9 0.12 0.4
-378.1 -381.1 0.80 3.0
-422.9 -435.9 3.07 13.0
-472.2 -486.4 3.01 14.2

Average EI=98728.2-N*m2

OUT-OF-PLANE APPLIED LOAD

Test Procedure for displacement
• Collect FBG strain data
• Use displacement Eq. and Strain 

data to calculate deflection Test procedure for out-of-plane loads
• Determine EI for the wing
• Determine moment acting on wing
• Determine Load applied

Strain, Applied Loads, and 2D Shape 
Large-Scale Composite Wings - Mississippi State Univ.

15
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Strain and 2D Shape Sensing
Global Observer UAS

• Validate strain predictions along the wingspan

• Measured strain distribution along the centerline top and 
bottom as well as along the trailing edge top and bottom.

• FO Strain distribution measurements are being used to 
interpret shape using AFRC’s 2D shape algorithm 

• A 24-fiber system was designed of which 18, 40ft fibers 
(~17,200 gratings) were used to instrument both left and 
right wings



Armstrong Flight Research Center

Strain and 2D Shape Sensing
Global Observer UAS

• Proof-load testing of components and large-scale structures

Wing Span: 175 ftGlobal Observer Wing Loads Test

17

Whiffletree Whiffletree 
Loading System
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2D Shape Sensing Results
Global Observer UAS
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Over the entire wing span, the predicted displacements of 
fiber 3 closely match the actual for every load condition.

1 2

3 4FWD AFT

18
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Strain and 2D Shape Sensing
Global Observer UAS - Flight Testing

• Validate strain predictions along the 
left wing in flight using 8, 40ft fibers 
(~8000 strain sensors)

• An aft fuselage surface fiber was 
installed to monitor fuselage and tail 
movement

• Strain distribution were measured 
along the left wing centerline top and 
bottom as well as along the trailing 
edge top and bottom.

• 8 of the 9 total fibers are attached to 
the system at any give time

• The system performed well and 
rendered good results

1199
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Ikhana in Flight

• 18 flights tests conducted; 36 flight-hours logged
• Conducted first flight validation testing April 28, 2008
• Believed to be the first flight validation test of FBG strain and wing shape 

sensing
• Multiple flight maneuvers performed
• Total of 6 fibers (~3000 strain sensors) installed on left and right wings
• Fiber optic and conventional strain gages show excellent agreement
• FBG system performed well throughout entire flight program

Strain and 2D Shape Sensing
Predator-B UAS - Flight Testing

Video clip of flight data superimposed on Ikhana photograph 
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3D Shape Sensing
Current Capabilities

Flight SystemFligght Syystem

Current system specifications
• Max sensing length / fiber 40 ft
• Resolution ~ ¼ in.
• Accuracy 5%
• Max sensing fibers 8
• Max sensors / fiber 1000
• Total sensors / system 8000
• Max sample rate   100 sps
• Power (flight) 28VDC @ 4.5 Amps
• Power (ground) 110 VAC
• User Interface Ethernet 
• Weight (flight, non-optimized) 27 lbs
• Weight (ground, non-optimized) 20 lbs
• Size (flight, non-optimized) 7.5 x 13 x 13 in
• Size (ground, non-optimized) 7 x 12 x 11 in

Environmental qualification specifications for 
flight system

• Shock 8g
• Vibration 1.1 g-peak sinusoidal curve 
• Altitude 60kft at -56C for 60 min
• Temperature -56 < T < 40C

Ground System
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3D Strain-Based Deflection Methods

x

2 3 

12 13 

a r 

3D Shape Sensing Method
• Uses strains on a cylindrical 

structure to get 3D deflections
• 3 fibers 120 deg apart on a 

structure or a lumen

22
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3D Shape Sensing
Prototype Quiet Spike Testing

• Fibers are installed on the prototype of 35ft quiet 
spike at Gulfstream in Savannah GA

• Performed tests to determined benefits of 
deploying FOSS on Low Boom Experimental 
Vehicle

• Installed a total of 5 fibers measuring strain at 
½” increments (2,570 strain sensors) 

• Deflection shape of the Quiet Spike evaluated 
through the 3D shape algorithm

x

2 3 

12 13 

a r 

Fixture

Aft Segment Mid Segment Fwd Segment

23
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3D Shape Sensing
Quiet Spike Testing Results – lateral deflection

24
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Liquid Level & Cryogenic Liquid Level Sensing
Current Capabilities

Current system specifications
• Max sensing length / fiber 40 ft
• Resolution ~ ¼ in.
• Accuracy ~ ¼ in.
• Max sensing fibers 8
• Max sensors / fiber 2000
• Total sensors / system 16000
• Max sample rate   0.5 Hz
• Power 110 VAC
• User Interface Ethernet 
• Weight ~ 20 lbs
• Size 7 x 12 x 11 in
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Cryogenic Liquid Level-Sensing
The Challenge

• The transitional phase between 
liquid and gas of cryogenics is 
difficult to discriminate while 
making liquid level measurements

• Using discrete cryogenic 
temperature diodes spaced along a 
rake yields course spatial 
resolution of liquid level  along with 
high wire count

FOSS Approach
• While using a uniquely developed 

fiber optic structure (CryoFOSS), 
the transitional phase can be 
mapped more accurately

• Using a single continuous grating 
fiber, a high degree of spatial 
resolution can be achieved, as low 
as 1/16”
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1st Gen 
CryoFOSS

Test Results

26
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LH2 Testing of CryoFOSS at MSFC
Objective
• Experimentally validate CryoFOSS using AFRC’s 

FOSS technology
Test Details
• Dewar dimensions: 13-in ID x 37.25-in
• Fill levels of 20%, 43%, and 60% were performed
• Instrumentation systems

− Video boroscope with a ruler (validating standard)
− Cyrotracker (ribbon of 1-in spaced silicon diodes)
− MSFC Silicon diode rake
− Fiber optic LH2 liquid level sensor(CryoFOSS)

Results
• CryoFOSS sensor discerned LH2 level to ¼” in 

every case 
• Excellent agreement achieved between 

CryoFOSS, boroscope, and silicon diode 
Cryotracker

Bottom line
• Validated concept for a lightweight, accurate, 

spatially precise, and practical solution to a very 
challenging problem for ground and in-flight 
cryogenic fluid management systems 2727

Cryo-FOSS

s 
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s)



N
at

io
na

l A
er

on
au

tic
s 

an
d 

S
pa

ce
 A

dm
in

is
tra

tio
n

LH2 Liquid Level Results

CryoFOSS compared to BoroscopeCombined Results

28
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hyFOSS
Current Capabilities

Current system specifications
• Sensor Range +/- 12,000 micro Strain
• Resolution 2 micro Strain
• Accuracy 5%
• Fiber count  8
• Max sensing length / fiber 40 ft
• Max sensors / fiber 2000
• Total sensors / system 16000
• Max sample rate 100 sps
• Power 110 VAC
• User Interface Ethernet 
• Weight ~20 lbs
• Size 7 x 12 x 11 inSize 7 x 12 x 11 in

High speed sensor

Continuous grated ¼” 
spaced sensors
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HyFOSS Open Plate test article
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• 7 Accelerometers are mounted to the structure to monitor structure mode shapes
• OFDR  and WDM sensors (3) are bonded to the plate

WDM sensor

Accel 1 Accel 2 Accel 3 Accel 4 Accel 5 Accel 6 Accel 7

WDM 1
WDM 2

WDM 3
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HyFOSS Sensor Installation

Cut Top Dome to 
be Re-Welded
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- 100 Hz (OFDR)
- 5,000 Hz (WDM)
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HyFOSS Plate – WDM & Accelerometer
Frequency Sweep 475 Hz to 525 Hz
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Contact Information

Technology Transfer Office
Armstrong Flight Research Center
P.O. Box 273 M/S 1100
Edwards, CA 93523-0273

General Office Inquiries: 
Phone: (661) 276-3368

Technology or Licensing Inquiries: 
Phone: (661) 276-5743

Email: DFRC-TTO@mail.nasa.gov
Fax: (661) 276-3001


