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Abstract—In a recent paper, Leroux et al. compared three
satellite soil moisture data sets (SMOS, AMSR-E, and ASCAT)
and ECMWF forecast soil moisture data to in situ measure-
ments over four watersheds located in the United States. Their
conclusions stated that SMOS soil moisture retrievals represent
“an improvement [in RMSE] by a factor of 2–3 compared with
the other products” and that the ASCAT soil moisture data are
“very noisy and unstable.” In this clarification, the analysis of
Leroux et al. is repeated using a newer version of the ASCAT data
and additional metrics are provided. It is shown that the ASCAT
retrievals are skillful, although they show some unexpected be-
havior during summer for two of the watersheds. It is also noted
that the improvement of SMOS by a factor of 2–3 mentioned by
Leroux et al. is driven by differences in bias and only applies
relative to AMSR-E and the ECWMF data in the now obsolete
version investigated by Leroux et al.
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I. INTRODUCTION

IN a recent study, Leroux et al. [1] validated four global soil
moisture data sets: 1) retrievals derived from L-band bright-

ness temperature observations acquired by the Soil Moisture
and Ocean Salinity (SMOS) mission [2]; 2) retrievals derived
from the X-band brightness temperature data of the Advanced
Microwave Scanning Radiometer—Earth Observing System
(AMSR-E) [3]; 3) retrievals derived from C-band backscatter
data acquired by the Advanced Scatterometer (ASCAT) [4]; and
4) model-based estimates produced by the European Centre for
Medium Range Weather Forecasts (ECMWF) [5].

The validation was carried out over four intensive ground-
based observing networks operated by theAgricultural Research
Service (ARS) of the United States Department of Agriculture
(USDA): Walnut Gulch (WG) in Arizona, Little Washita (LW)
in Oklahoma, Little River (LR) in Georgia, and Reynolds
Creeks (RC) in Idaho [6]. For each of these watersheds, area-
representative soil moisture values were derived by averaging
the measurements of several in situ sensors located at a depth
of about 5 cm. Based on these watershed averages, Leroux et al.
calculated the linear correlation coefficientR, the standard error
of estimate (SEE), the bias, and the root mean square error
(RMSE), where RMSE2 = SEE2 + bias2.

Given that the comparison of remotely sensed and modeled
soil moisture data with in situ measurements is an important
component of the overall validation effort, we regard the work
of Leroux et al. as a valuable contribution to the ongoing
validation efforts for global soil moisture data sets. However,
we feel that the statements regarding the skill of SMOS and
ASCAT given in the conclusions and abstract of Leroux et al.
can be misinterpreted and require some clarifications. The
analysis of Leroux et al. is repeated here for the same study
sites and time period but using a newer version of the ASCAT
data and after converting the ASCAT data to volumetric soil
moisture units (m3m−3) based on porosity values from a global
data set, thereby providing additional skill metrics for ASCAT
that were not given in [1]. Section II presents a brief discussion
of the data sets and methods used here, Section III discusses the
results of our analysis, and Section IV offers conclusions.
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II. DATA SETS AND METHODS

A. Data Set Versions

Like Leroux et al., we use the version of the SMOS soil
moisture data set available at that time from the operational
center (version 5.01) (The current operational version is 5.51).
To avoid a negative impact of radio frequency interference
(RFI) on the SMOS measurements, we screened the data with
the “RFI probability” flag (must be lower than 0.10) and the
“SM DQX” flag (must indicate a successful retrieval, i.e., must
not be−999; according to [7], a good value for filtering is DQX
< 0.07). For ASCAT, Leroux et al. used data processed with the
initial near-real-time processor implemented by EUMETSAT
[8]. Here, we use the ASCAT data set reprocessed with the latest
version of the software developed by TUWien (Water Retrieval
Package, version 5.5) which benefits from updates in the instru-
ment calibration, model parameters, and algorithms [9], [10].

B. Spatial Interpolation

Leroux et al. reprojected the ASCAT, AMSR-E, and
ECMWF soil moisture data in their respective original spatial
resolutions onto the SMOS grid. Here, the SMOS and ASCAT
retrievals were interpolated to points located in the center of
the four USDA-ARS watersheds: WG (31.72◦ N, 110.02◦ W),
LW (34.95◦ N, 98.10◦ W), LR (31.65◦ N, 83.61◦ W), and RC
(43.15◦ N, 116.78◦ W). The interpolation was done using a
Hamming window with a radius of 41 km to ensure that both
satellite data sets have similar spatial resolutions.

C. Units

While SMOS, AMSR-E, and ECMWF data are expressed in
terms of the volumetric soil moisture content (given in m3m−3),
ASCAT surface soil moisture data are presented as a degree
of saturation (as a fraction or in percent). In order to visually
compare the ASCAT data with the in situ measurements (given
in m3m−3), Leroux et al. rescaled the ASCAT data between the
minimum and maximum values of the in situ data. Nonetheless,
in their Table II, they only reportedR values (and not SEE, bias,
or RMSE-values) because “by performing this rescaling, the
ASCAT statistical results are improved unfairly in comparison
with the other data sets because the bias is removed.”

An alternative objective approach is to rescale the ASCAT
surface soil moisture data ms into a volumetric soil moisture
content θ using the ancillary soil porosity φ (given in m3m−3)
[4], [11], [12]

θ = ms · φ (1)

where soil porosity data may, e.g., be estimated from available
global soil maps. This approach is used here to calculate SEE,
bias, and RMSE also for ASCAT. We estimated the porosity
values by applying the equations of Saxton and Rawls [13]
to the texture characteristics of the Harmonized World Soil
Database [14]. The resulting porosity values are as follows:
0.406 m3m−3 for WG, 0.456 m3m−3 for LW, 0.438 m3m−3 for
LR, and 0.456 m3m−3 for RC.

D. Masking

All soil moisture data are masked for the occurrence of
frost (minimum daily temperature recorded at the nearest me-
teorological station ≤ 0◦ C) and snow (ERA-Interim snow
water equivalent > 0). Precipitation (rainfall and snowfall) was
derived from the three hourly data generated by the Global Land
Data Assimilation System (GLDAS) [15].

E. Small Sample Size

As listed in their Table II, the sample sizes used by
Leroux et al. for calculating the error metrics ranged between
35 and 74 data pairs because data from only ten months
(January 1 to November 9, 2010) were used, with morning and
evening observations evaluated separately. Furthermore, they
required data from all five sources to be available on each date
to ensure a fair comparison. However, given the limited time
period of their study, a drawback of this approach is that the
resulting sample sizes were low, resulting in large statistical
uncertainties.

Therefore, unlike Leroux et al. we computed the statistics us-
ing all available SMOS and ASCATmeasurements (after mask-
ing for frost and snow) and without differentiating morning
from evening data. For this reason, instead of using only 50–70
measurements, we used at least 250 SMOS/ASCAT measure-
ments to calculate the metrics at each site. For ASCAT, we also
calculated the statistics after masking problematic time periods
for the WG and LR sites (see next section). Additionally, we
repeated all computations using only morning/evening passes
with both SMOS and ASCAT data, as was done by Leroux et al.
(not shown). This reduced the sample size by 35%–55%
depending on the site and sensor, but the general conclusions
drawn for the different sites and the two sensors did not change.

III. RESULTS AND DISCUSSION

A. Analysis of Time Series

Figs. 1–4 show the volumetric soil moisture data estimated
from ASCAT, SMOS, and the in situ measurements for the
four USDA-ARS watersheds. The figures indicate that both
SMOS and ASCAT exhibit a higher temporal variability than
the in situ data. This is partly due to the higher noise of the
satellite retrievals compared with the noise of the in situ data,
but it also has physical reasons: While the satellite estimates
represent the soil moisture content in the top few centimeters of
the soil, the in situ data represent the soil moisture content in
the subsurface soil layer centered at the installation depth of the
sensors (5 cm). Therefore, the satellite data are more sensitive to
atmospheric forcings (precipitation, radiation, and evaporative
demand) which, in addition to the noise, explains their higher
temporal variability and higher dynamic range.

First, we consider whether ASCAT exhibits a more dynamic
and/or noisier behavior than SMOS. This could be expected
given that the penetration depth of the C-band ASCAT data is
shallower than that of the L-band SMOS data. However, in our
view, Figs. 1–4, do not show the ASCAT data to be obviously
noisier, and so, we performed a spectral analysis (not shown) to
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Fig. 1. Comparison of (blue dotted line) SMOS and (red line) ASCAT volumetric soil moisture (m3m−3) with (green thick line) in situ measurements over the
WG observation network for the year 2010. The top panel shows GLDAS precipitation (in millimeters). The time periods when the satellite data were potentially
affected by frost and/or snow cover are indicated by the shaded light-blue lines. The problematic summer period, as discussed in the text, is indicated by the gray
horizontal bar.

Fig. 2. Same as for Fig. 1 but for LW.

Fig. 3. Same as for Fig. 1 but for LR.

determine the stochastic component of the SMOS and ASCAT
data [16]. This analysis showed that the stochastic component
of ASCAT is slightly larger than for SMOS over LW and RC
and slightly lower overWG, while for LR, the results are similar
for both satellites. In other words, our analysis did not reveal
any evidence that ASCAT is noisier than SMOS. The higher

noise of ASCAT noted by Leroux et al. may be due to the fact
that they linearly interpolated the 25-km ASCAT data to the
SMOS grid, while here, the ASCAT data were aggregated to
roughly the SMOS spatial resolution using a Hamming window
approach (Section II). Recall also that a newer version of the
ASCAT data was used here.
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Fig. 4. Same as for Fig. 1 but for RC.

Next, we examine the seasonal behavior of the two satellite
data sets. Overall, SMOS retrievals follow the seasonal evo-
lution of the in situ data quite well. This is also the case for
ASCAT retrievals at LW and RC. Over WG and LR, however,
there are some problematic time periods when the ASCAT soil
moisture values are consistently higher than what would be
expected from the in situ and the SMOS data.

Over WG, ASCAT shows somewhat elevated soil moisture
levels in the dry period from the beginning of May to mid-
July (Fig. 1). Such behavior has been observed in other arid
and semi-arid regions as well and is hypothesized to be due
to volume scattering effects from dry subsurface soil layers
[4]. Given that to date there is no solution to this problem,
Wagner et al. [4] recommended that under completely dry
conditions in arid environments, SMOS, AMSR-E, or other
passive microwave soil moisture data (which are less affected
by this phenomenon) should be used. Additional research is
needed, however, to better identify the conditions under which
the passive microwave data are preferable and to provide more
reliable guidance to users.

Over LR, the problematic time period for ASCAT is from
mid-June to the end of September (Fig. 3). One potential reason
for the high ASCAT soil moisture data in summer may be that
the parameterization of the vegetation correction term in the
ASCAT retrieval is not optimal over this area (the seasonal
behavior of the vegetation correction term looks reasonable but
the magnitude may not be large enough). However, we do not
exclude the possibility that the increased ASCAT signal during
this period is also partly due to enhanced backscatter over wet
soil surfaces and wetlands. As described by Jackson et al. [6],
the LR region “is typified by broad floodplains with very poorly
defined stream channels and gently sloping uplands.” A visual
inspection of optical images (e.g., on Google Maps) shows that
there are hundreds of small lakes in this area. Furthermore, as
can be seen in Fig. 3, according to GLDAS, rainfall occurred
frequently during this period. Additional research that inves-
tigates, e.g., the backscatter behavior at a scale of 50–100 m
using synthetic aperture radar data is needed to confirm or
refute the aforementioned hypotheses. Note that SMOS also
overestimates soil moisture slightly at LR during the same

TABLE I
ERROR METRICS OF A COMPARISON OF SMOS AND ASCAT SOIL

MOISTURE DATA WITH IN SITU MEASUREMENTS OVER FOUR USDA
WATERSHEDS. FOR THE WG AND LR WATERSHEDS, THE ASCAT
RESULTS ARE ALSO SHOWN AFTER MASKING THE PROBLEMATIC

SUMMER PERIODS (SEE THE ROW DENOTED BY ASCAT∗). R IS THE

CORRELATION AND N IS THE NUMBER OF DATA PAIRS. THE SEE,
THE BIAS, AND THE RMSE ARE ALL GIVEN IN m3m−3. ALL RESULTS

ARE STATISTICALLY SIGNIFICANT WITH A P-VALUE LESS THAN 0.01

period, which may similarly be related to the presence of water
bodies or temporary standing water.

B. Error Metrics

The error metrics for SMOS and ASCAT from our analysis
are summarized in Table I. For reference, this table also shows
the ASCAT error metrics after masking the problematic time
periods (May to mid-July for WG and mid-June to September
for LR).

Overall, the correlations obtained by using morning and
evening data for many more dates are somewhat smaller than
those reported by Leroux et al. in their Table II, likely related
to the differences in data versions and processing (Section II).
With the exception of the ASCAT data over LR where the
correlation is very low in our case (R = 0.21), we find that
the correlations obtained for ASCAT are comparable with those
obtained for SMOS and are within the expected statistical
uncertainties for the sample sizes ([1, Fig. 6] provides error
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bars). These findings confirm the conclusion of Leroux et al.
that “all products are equivalent in terms of correlation.”

Finally, we now analyze the SEE, bias, and RMSE metrics
that were not provided by Leroux et al. for ASCAT. The values
for SMOS, as listed in Table I, agree reasonably well with
those reported by Leroux et al. in their Table II, which suggests
that these three metrics are somewhat less sensitive than the
correlation to the selection and preprocessing of the data.
Comparing the SEE, bias, and RMSE values for ASCAT with
those for SMOS, Table I shows no clear advantage of SMOS
over ASCAT to within the expected statistical uncertainties,
again with the exception of the LR site when the problematic
summer period is not masked. Over the WG site, the SEE,
bias, and RMSE values for ASCAT are better than for SMOS,
independent of whether the problematic time period for ASCAT
from May to mid-July is masked or not.

Moreover, our Table I and Table II of Leroux et al. suggest
that the differences in the RMSE values across the data sets are
largely driven by differences in the bias, while the SEE values
are roughly of the same order of magnitude. The statement
in the abstract of Leroux et al. that SMOS “represents an
[RMSE] improvement by a factor of 2–3 compared with the
other products” must therefore be interpreted accordingly.

IV. CONCLUSION

In this clarification on the study by Leroux et al. [1], we have
demonstrated how the ASCAT data can be assessed quantita-
tively in the same manner as the SMOS data by using ancil-
lary porosity data to convert the ASCAT degree of saturation
index into volumetric soil moisture units. Our results show that
ASCAT data are skillful and that there is no indication that the
ASCAT soil moisture data are “very noisy” (as stated in the
Abstract and Conclusions of Leroux et al.). While the ASCAT
data clearly exhibit some unexpected behavior over the semi-
arid WG site during extremely dry conditions and over the hu-
mid LR site during the wet summer period, there is no evidence
that ASCAT is “unstable” (as was stated in Leroux et al.) or two
to three times more biased than the SMOS soil moisture data.

Furthermore, when the R and SEE values are considered
the skill values for all data sets (including the AMSR-E and
ECMWF products considered only by Leroux et al.) are similar
(to within the statistical uncertainties and within the framework
of this comparison). The statement in Leroux et al. that SMOS
“represents an improvement by a factor of 2–3 compared with
the other products” is therefore valid only for the bias and only
applies relative to AMSR-E and the ECWMF data in the now
obsolete version investigated in [1].

More generally, the comparison of our results with those
obtained by Leroux et al. illustrates how different choices in the
selection, processing, and interpretation of the data may lead to
different conclusions and rankings of soil moisture data sets.
Despite the vast body of literature that deals with the validation
of satellite soil moisture data, there is still a need for scientific
studies that investigate different assumptions and choices made
in the validation process (selection of study sites, screening and
pre-processing of data sets, sample size, use of different error
metrics, etc.). Additionally, future evaluation efforts for re-

motely sensed soil moisture products could benefit from novel
statistical approaches such as the triple collocation method [17],
[18], the R-metric [19] or the use of alternative error metrics
[12], [20]. However, we must recognize that the assessment of
products also needs to consider the intended application and
that different users may value a particular product and metric
more than another. Thus, providing alternative metrics is a
desirable goal.
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