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The NMC method has proven utility for prescribing approximate background-error
covariances required by variational data assimilation systems. Here, untuned NMC method
estimates are compared with explicitly determined error covariances produced within an
OSSE context by exploiting availability of the true simulated states. Such a comparison
provides insights into what kind of rescaling is required to render the NMC method
estimates usable. It is shown that rescaling of variances and directional correlation lengths
depends greatly on both pressure and latitude. In particular, some scaling coefficients
appropriate in the Tropics are the reciprocal of those in the Extratropics. Also, the degree
of dynamic balance is grossly overestimated by the NMC method. These results agree with
previous examinations of the NMC method which used ensembles as an alternative for
estimating background-error statistics.
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1. Introduction

Modern data assimilation systems (DASs) require estimates of
background-error covariances to determine an approximately
statistically optimal analysis given imperfect and incomplete
observations (Tarantola, 1987; Courtier, 1997). Such covariances
cannot be determined from differences between fields of
background and truth, since datasets representing truth, especially
globally, generally are not much more accurate than a good DAS
background. More indirect methods are therefore required for
computing the desired covariances. Early methods generally relied
on assumptions that statistics estimated for a data-rich region (e.g.
as in Hollingsworth and Lönnberg, 1986) or from longer-term
forecast error (e.g. as in Parrish and Derber, 1992) provide
good starting estimates for the required statistics. Most recently,
ensemble techniques (e.g. Bonavita et al., 2012) have been used
for this purpose.

The NMC method was introduced at the US National
Meteorological Center (now replaced by the National Centers for
Environmental Prediction, NCEP) for estimating background-
error variances in terms of spherical harmonic coefficients
(Parrish and Derber, 1992). It began with global fields of
differences between 24 h forecasts and corresponding verifying
analyses projected onto the harmonics. Variances of the
coefficients determined over a month were then rescaled, by
manual tuning, to reflect a 6 h rather than 24 h forecast error.
Later, differences between pairs of forecasts valid at the same
time (e.g. 48 and 24 h forecasts) were similarly used. One reason

for using such a long lag was to mitigate diurnal signals which
otherwise appeared present.

Many reasons can be cited for disclaiming that the statistics
determined by the NMC method, prior to tuning, provide a good
estimate for what is required. One obvious example is that, if
some regions are poorly observed, the differences between lagged
forecats or forecasts and corresponding analysis will tend to be
small since such differences vanish in the absence of observations,
whereas the background error should tend to be large without
observations to constrain them. Other reasons are offered in the
following or appear in the literature to be cited. Neverthless,
the background-error covariance models derived using the NMC
method have been shown to be useful, and the technique is still
used at some operational centres, including the Global Modeling
and Assimilation Office (GMAO) and NCEP (Kleist et al., 2009).
However, this utility does not imply that other techniques cannot
produce much better and much more useful characterizations of
the required statistics.

The use of powerful adjoint model tools (Errico, 1997a) has
changed our understanding of how forecast errors grow early in a
forecast (Langland et al., 1995; Gelaro et al., 2002). In particular,
singular vector (SV) analysis has revealed that the structures which
grow the greatest as measured by error energy norms (Talagrand,
1981; Errico, 2000a) begin as structures with small vertical and
horizontal scale but quickly attain larger scales, becoming almost
barotropic throughout the troposphere after 12 h (Farrell, 1989;
Palmer et al., 1998). In the Extratropics, they also change in the
character of their geostrophy (Errico, 2000b). This suggests that
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not only the variances but also correlations may be very different
for short-term forecast errors and differences of forecasts at longer
time periods. In particular, background errors may be much less
barotropic and geostrophic than those inferred from the NMC
method.

Revealing theoretical and experimental examinations of the
reliability of the NMC method to characterize background error
are provided in Berre et al. (2006). It shows that there are three
mechanisms in the method that can lead to radically different
statistics compared to what is desired. One is the use of a longer
forecast period than the relevant 6 h, as previously described.
Another is the accumulation of several analysis increments used
to produce the initial condition for the shorter forecast. Third
are the potentially very different natures of analysis increments
and analysis errors: the analysis increment may be considered as
a response to a low-pass filter whereas the analysis error responds
to a high-pass filter. Berre et al. (2006) should be consulted for
elaboration of these properties. The profound impact of these
mechanisms is revealed experimentally in the same reference and
in Belo Pereira and Berre (2006) by using an ensemble to make a
different, more direct, estimate of background error (but without
consideration of model error).

At NASA’s GMAO, a framework for carefully validating and
conducting an observing system simulation experiment (OSSE)
has been developed (Errico et al., 2013; Privé et al., 2013a). Within
that framework, background error can be precisely calculated
because the truth is known explicitly. Covariances inferred from
these errors apply to assimilation for the real atmosphere to the
degree that the OSSE validates. Although it is not possible to
explicitly validate the OSSE with respect to background-error
statistics since these are explicitly unavailable in the real context,
the GMAO OSSE has been validated with respect to many other
metrics in the two cited references. These demonstrate that the
OSSE framework performs realistically in the troposphere except
for a small but significant diminution of effects of forecast-
model error. Thus, OSSE background error may be reasonably
considered as representative of realistic background error, albeit
with some caution.

In this article, some variances and correlations are determined
for both explicit 6 h background errors and subsequent 48 h minus
24 h forecasts verifying at the same time. The GMAO OSSE is
briefly described in section 2. Results are presented in section 3.
Their implications are described in section 4.

2. The GMAO OSSE

The general GMAO OSSE development and validation efforts are
described in Errico et al. (2013) and Privé et al. (2013a). Some
improvements and the use of the OSSE to estimate analysis error
are presented in Errico and Privé (2014). Only a brief summary
of the most current OSSE framework is reported here.

The simulation of ‘truth’ for the OSSE is provided by a nature
run (NR) produced by the European Centre for Medium Range
Weather Forecasts (ECMWF) using version cy31r1 (ca. 2005)
of its forecast model. It is a ‘free-running’ solution in the sense
that its only constraint regarding the real weather specifically
occurring during its year-long period of simulation was through
its prescribed sea surface temperature, sea ice fraction, and initial
conditions. The latter constraint, however, is effectively ‘forgotten’
due to the chaotic atmospheric dynamics (Lorenz, 1963). The NR
fields are specified on 91 atmospheric levels, in addition to the
surface, on a reduced Gaussian grid (Hortal and Simmons, 1991)
having 512 latitudes and between 18 and 1024 longitudes, with
the smaller numbers near the poles.

Although the ECMWF NR for these months was produced
using analyzed sea surface temperature and ice fractions for 2005,
the observation locations and types considered by the current
OSSE are from the corresponding months of 2011, unlike for
the original GMAO OSSE described in Errico et al. (2013).
They are drawn from the NR as described in Errico et al.

(2013) and Errico and Privé (2014). Also included are Global
Positioning System radio occultation (GPSRO) observations.
These are produced by interpolating NR fields to the planes
defined by the locations, azimuths, and times of corresponding
real observations for the assimilation period and then generating
bending angles using the two-dimensional mode of the Radio
Occultation Processing Package (ROPP version 6.0; Healy et al.,
2007; Culverwell et al., 2013). This observation operator differs
from the one-dimensional observation operator used in the
GMAO DAS which is described in Cucurull et al. (2013). This
difference in operators serves as one source of partial observation
representativeness error in the OSSE.

Random errors are added to all observations as described in
Errico et al. (2013) and Errico and Privé (2014) to account
for otherwise missing instrument or processing errors and
deficient representativeness errors. As such, random vertically
correlated errors are added to the GPSRO observations. The error
variances are tuned so that innovations for OSSE and real DAS
observations at similar elevations have matching variances. The
vertical correlation is defined by a Gaussian-shaped function such
that the correlation drops to 0.1 at a distance of 500 m.

The current OSSE uses version 5.10.0 of the Goddard
Earth Observing System Model and DAS (GEOS-5; Rienecker
et al., 2008). The latter is based on the Grid-point Statistical
Interpolation (GSI) 3D-Var scheme used at the NCEP (Wu
et al., 2002). The incremental analysis update of Bloom et al.
(1996) is used for enhanced dynamical balance. Assimilations are
performed with a 6 h cycle. The background-error statistics it
requires are the same ones as derived for the operational GMAO
system in 2012 using a tuning of covariances estimated using a
previous application of the NMC method. The horizontal grid
for the global analysis and forecasts has 361 and 576 equally
spaced latitudes and longitudes, respectively. Vertically, there are
72 atmospheric levels in addition to the surface. The vertical
coordinate is a hybrid one: a sigma coordinate in the lowest few
levels, a pressure coordinate above 150 hPa, and a blending in
between. These levels will be designated by a value η that equals
the pressure that would be indicated if the surface pressure (ρs)
were 1000 hPa everywhere. Background error is determined by
differencing backgrounds with corresponding NR ‘truth’ that has
been projected onto the analysis grid as described in Errico and
Privé (2014).

The use of different models to produce the NR and to perform
the assimilation provides a source of simulated model error.
Examinations of the GMAO OSSEs indicate that this simulated
model error is a large contributor to analysis and forecast errors.
This is especially true in the Tropics as well as above the lower
stratosphere (Privé et al., 2013b).

3. Results

Although the NR includes a full year of data, our OSSE
validates very poorly for the Northern Hemisphere winter season.
Specifically, the OSSE analysis and forecasts are consistently
unrealistically accurate in the Northern Hemisphere during the
simulated January and February. It may be by chance that this
period has simulated weather that is simply more predictable
than usual, but with only one such winter season available in the
NR dataset, this possibility is difficult to test. For this reason, we
currently have restricted all our examinations to the period 1 July
to 31 August. All statistics presented here are for averages over
0000 and 1200 UTC during those days.

Attention in this article is focused on the troposphere for
reasons presented in Privé et al. (2013b). (Essentially, the climates
of the NR and GEOS-5 models are so different that observations
above η = 5 hPa cannot rectify their differences.) Fields of
background error and 48 minus 24 h forecast differences will
be denoted as BKGE and FD24, respectively. In order to limit
the amount of diagnostic calculation, some presented correlations
were computed only for each of the geographical regions described
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Table 1. Geographical regions for computing spatial correlations.

Latitude Longitude

Region Minimum Maximum Minimum Maximum

NPAC 35◦N 65◦N 130◦E 250◦E
TPAC 15◦S 15◦N 130◦E 250◦E
SPAC 35◦S 65◦S 130◦E 250◦E

in Table 1, representing the South, tropical, and North Pacific
Ocean denoted as SPAC, TPAC, and NPAC, respectively.

3.1. Comparison of variances

The FD24 fields are intended to represent forecast-error growth
over 24 h. What is desired, however, are error statistics for 6 h
forecasts. A rescaling of variances of FD24 fields to match those
of BKGE fields is therefore expected.

Ratios of zonal means of temporal variances of BKGE fields
with respect to those of FD24 fields are presented in Figure 1 as
functions of η-levels and latitudes. The fields are temperature T,
specific humidity q, zonal wind u, and meridional wind v. In the
extratropical troposphere, except near the surface, all fields show
ratios less than 1, with values aloft as small as 0.2. However, in the
Tropics ratios are typically larger than 1, with values 2 or larger
in some locations. In the Tropics, the FD24 fields underestimate
the background errors while in the Extratropics they are an
overestimate. So, the required rescaling varies greatly with both
pressure and latitude.

In the GMAO OSSE context, model error is implicitly
introduced as the difference in formulations of the NR and
DAS models. Results in Privé et al. (2013b) suggests that this error
is the dominant 6 h OSSE forecast-error source in the Tropics.
However, the FD24 results instead depend only on this model
error in so far as it affects the analysis increments used to create
the shorter of the forecasts. Thus, the character of the effects of
implicit model error in the FD24 results can be very different
from those in the BKGE results.

3.2. Comparison of vertical correlations

SV characterization of forecast-error growth suggests that the
dominant errors grow non-modally; i.e. change their shape as
well as amplitude with time (Farrell, 1989; Palmer et al., 1998;
Errico, 2000b). If so, then spatial correlations are expected
to differ for BKGE and FD24 datasets. In the following,
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Figure 1. Ratios of zonal mean variances of BKGE data with respect to
corresponding variances of FD24 data for (a) temperature T, (b) specific humidity
q, (c) zonal wind speed u, and (d) meridional wind speed v, within the range
100 < η < 1000 hPa.
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Figure 2. Vertical correlations of (a) T with its value at η = 700 hPa and (b)
v with its value at η = 500 hPa, computed within the SPAC region for FD24
(dashed) and BKGE (solid) datasets.

geographically dependent statistics are determined by averaging
in time and within each of the separate regions indicated in
Table 1. Corresponding calculations were also performed for
other longitude ranges within the same latitude bands to ensure
the robustness of the presented results. This was confirmed for
all the qualitative statements here. Quantitatively, results for
corresponding wind and q correlations above the boundary layer
were negligibly different, but those for T in the Tropics had
greater variations.

Typical vertical correlations for the dynamic fields within the
extratropical troposphere are presented in Figure 2. Specifically,
these are for T at 700 hPa with T at other levels and for v at 500 hPa
with v at other levels, computed within the SPAC region. The
longer vertical correlation length-scales for FD24 data for both
fields are evident. From results such as these, quantitative correla-
tion length-scales Lv are determined as half-widths at half-maxima
(i.e. half the distance between locations where the correlation
equals 0.5) as functions of the η-level where the correlation is 1,
following the procedure described in Errico and Privé (2014).

Values of Lv for 1000 < η < 100 hPa computed for T and v
within the SPAC and TPAC regions are presented in Figure 3.
For the FD24 SPAC v field, the Lv are almost double their cor-
responding BKGE values. For SPAC T in the range η < 700 hPa,
FD24 values are roughly 40% larger than corresponding BKGE
ones. Results (not shown) for u are almost identical to those for
v. Values for q (not shown) are between those for T and v at
the same η-level, with values for FD24 also much larger than
for BKGE. Within the NPAC region, these differences between
the FD24 and BKGE datasets are only slightly less dramatic.
However, in the TPAC region corresponding values for FD24
and BKGE are similar to each other for all fields.

Values of Lv were also determined (not shown) for analysis
errors computed from differences between each analysis and
corresponding truth, as in Errico and Privé (2014). For all fields
and regions in the troposphere, these were 5–10% smaller than
the corresponding BKGE values. This is expected since the analysis
errors are a blending of spatially noisy observation errors with the
more spatially correlated background errors.

3.3. Comparison of principal components

Further understanding is aided by consideration of the principal
components (PCs) of a matrix constructed from the covariances
used to determine the vertical correlations. For this purpose,
only levels 100 < η < 1000 hPa are considered. Before PCs
are computed from it, each matrix element mi,j that considers
covariances between η-levels i and j is weighted by the product of
the square roots of the fractions of column total mass within each
of the atmospheric layers being considered. Specifically,

mi,j = wi wj〈{fi − 〈fi〉}{fj − 〈fj〉}〉 ,
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Figure 3. Vertical correlation lengths Lv for (a) T and (b) v for SPAC (thin lines)
and TPAC (bold lines) regions for BKGE (solid lines) and FD24 (dashed lines)
datasets as functions of η.

where the inner and outer angle brackets respectively denote
temporal–mean and regional–mean values, f denotes a generic
field, and

wi =
√

�pi

/∑
i

�pi ,

with �pi the ‘pressure thickness’ of the subscripted layer in units
of hPa and the sum is over all layers considered (i.e. 900 hPa).

The pressure thicknesses are computed from the η-levels
defining the data’s vertical grid by assuming that the surface
pressure is 1000 hPa. This weighting is necessary given the non-
uniformity of the η-levels of the GEOS-5 grid. Each PC is then
normalized such that the sum of its squared components over
the layers through which it is defined is 1. This is equivalent
to interpreting its associated eigenvalue as a fractional mass-
weighted integral of variance between the surface and 100 hPa for
the component of the field having the PC structure considered.
However, when a PC structure is presented, it will be unscaled
by the weights at each level, so it can be interpreted as the
corresponding vertical structure of the field itself.

The variances corresponding to the leading four PCs for the T,
v, and q fields in the SPAC and TPAC regions for the FD24 and
BKGE data appear in Table 2 along with the percentages of total
mass-weighted variance explained by these four PCs. Especially
for SPAC v, and apart from T in the Tropics, these explain a large
percentage of variance (as large as 89%). In the SPAC region, the
ratios of corresponding BKGE versus FD24 values are smaller for
more leading PCs, with the smallest ratio 0.16 for PC1 v. Thus,
the differences in total variance are accounted for by differences
in the variances explained by the leading PCs. However, for T in
the Tropics, the ratios for the PCs shown are all between 1.26 and
1.64. For v there, the ratios are even closer to 1.

For all fields, results for NPAC are like those for SPAC, except
that the variances associated with corresponding PCs are smaller
in the summer (NPAC) hemisphere. In particular, corresponding
leading PC structures are very similar. Results for v are very
similar to those for u in all regions. Explicit results for u are
therefore not shown.

Structures of PC1–4 for T and v in SPAC and TPAC regions
appear in Figure 4. Results for BKGE and FD24 appear together.
The structures for BKGE and FD24 are similar to each other in
most of the panels except for some near 1000 and 100 hPa. So,
in what follows, projections of datasets onto one set of leading
PCs yield results similar to those if the other set were used.
For the SPAC region, each successive leading PC has smaller
vertical scale as measured by the number of zero crossings. By
the same measure, each PC for T has a smaller vertical scale than
that for the corresponding v PC, consistent with the assumption
that differences or background errors at large vertical scales are
geostrophically balanced. (Errico, 1997b, gives an explanation
for this.) For the TPAC region, these changes of scale between
successive PCs and relationships between structures for T and
v are less apparent. The latter result is consistant with the lack
of geostrophy expected there. An explanation of the leading PC
structures in the Tropics likely involves effects of convection.

PC results for q are not shown except in Table 2. In all regions,
the four leading PCs explain more than 70% of the total q variance.
Ratios of corresponding BKGE and FD24 values for q in Table 2
are qualitatively like those for other fields, in agreement with the
similarity of panels in Figure 1. Leading PC structures for q have
largest magnitudes below η = 500 hPa due to the approximately
exponential decay of q itself as pressure decreases. For PC1 in all
regions, the PC structure is of a single sign through the lower half
of the troposphere.

3.4. Comparison of horizontal correlations

Horizontal correlations for BKGE and FD24 fields were computed
separately in the meridional and zonal directions within each
region of Table 1 for each η surface. From these, half-widths at
half-maximum were estimated as horizontal correlation lengths
Lm and Lz, respectively. Values of Lm are presented for T and v in
SPAC and TPAC regions in Figure 5. Values in the NPAC region
are not shown since they are very similar to those for SPAC. The
same relationships between Lm and Lz values described in Errico
and Privé (2014) apply here, so Lz is not discussed further.

For SPAC v at all levels, Lm for BKGE is 60% or smaller
than its FD24 counterpart. Values change little with height for
η > 400 hPa. For FD24, unlike for BKGE, there is a rapid increase
in Lm as η decreases through the range 300 > η > 100 hPa, such
that Lm for BKGE is 30% of its FD24 value at η = 100 hPa. For
TPAC v, Lm for BKGE is approximately 125% of its corresponding
FD24 value, except near the surface and top of the range of η
presented, where BKGE values are instead smaller. For SPAC T,
FD24 values also exceed those for BKGE except near the surface,
although the differences are less dramatic than seen for v. For
TPAC T at almost all levels, the FD24 values undervalue the BKGE
results. Thus the relationships between the horizontal correlation
lengths in the FD24 and BKGE datasets are very different, with
the nature of that difference reversed in the Tropics compared
with the Extratropics.

Values of Lm were also computed for analysis errors (not
shown). For all fields, regions, and tropospheric η-levels
examined, these were generally 3–7% smaller than corresponding
BKGE values. One exception was for SPAC and NPAC T for

Table 2. Variances corresponding to the leading four principal components for the regions, fields, and datasets indicated. Units are K2 for T, 10−7 for q, and m2s−2

for v. Also shown is the percentage of the total variance explained by the leading four PCs.

Region SPAC TPAC
Field T v q T v q
Dataset BKGE FD24 BKGE FD24 BKGE FD24 BKGE FD24 BKGE FD24 BKGE FD24

PC1 0.088 0.370 1.110 7.020 0.347 0.829 0.053 0.042 1.050 1.110 5.120 3.380
PC2 0.080 0.165 0.852 2.740 0.181 0.249 0.048 0.032 0.894 0.851 2.480 1.880
PC3 0.061 0.118 0.695 1.240 0.125 0.134 0.041 0.025 0.679 0.579 1.450 1.000
PC4 0.053 0.088 0.406 0.712 0.090 0.084 0.034 0.023 0.574 0.537 1.050 0.714
%Total 47 65 72 89 76 84 37 33 56 58 74 71
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Figure 4. Structures of the four leading PCs (first to fourth columns) computed for temperature (first and third rows) and meridional wind speed (second and fourth
rows) within the SPAC (first and second rows) and TPAC (third and fourth rows) for BKGE (solid lines) and FD24 (dashed lines) datasets.
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Figure 5. Meridional correlation lengths Lm for (a, c) T and (b, d) v in the (a, b)
SPAC and (c, d) TPAC regions for BKGE (solid line) and FD24 (dashed line)
datasets as functions of η.

η < 300 hPa, where Lm values were instead a few percent greater.
As is the case for vertical correlations, the typically smaller Lm

may be explained by the blending of background errors with less
spatially correlated observation errors.

Horizontal correlations were also examined for coefficients
of the PCs when the fields are projected onto them, thereby
linking vertical and horizontal scales. Values of Lm for PC1–10

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10
TPAC T

Length, km

P
C

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10
SPAC T

(a) (b)

(c) (d)

Length, km

P
C

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10
TPAC V

Length, km

P
C

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10
SPAC V

Length, km

P
C

Figure 6. Meridional correlation lengths Lm for (a, c) T and (b, d) v in the (a, b)
SPAC and (c, d) TPAC regions for BKGE (solid line) and FD24 (dashed line)
datasets for fields of projection coefficients for PC1–10.

are presented in Figure 6 for T and v in the SPAC and TPAC
regions for both BKGE and FD24 datasets. For v, they reveal
that a difference in Lm between datasets occurs for all PCs, and
thus vertical scales, presented, although in the SPAC region, the
greatest difference occurs for PC1. Since PC1 also accounts for
a large fraction of total variance in either dataset, its difference
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Figure 7. Meridional length-scales (Lc, km) for (a) ps and for (b) T, (c) q, and (d) v at η = 500 hPa for BKGE (solid) and FD24 (dashed), computed from the
curvature of the correlation function at separation zero.

in Lm values also accounts for much of the difference observed
for SPAC v in Figure 5. In contrast, for T in the SPAC region,
the differences seen in Figure 5 must be explained by PCn,
n > 3. In the Tropics all PCs shown reveal the same relationship
between BKGE and FD24 datasets as is seen at most η-levels in
Figure 5.

A more common way to compute horizontal length-scales
is described in Belo Pereira and Berre (2006) with some
computational details provided in Appendix A here. It uses
local standard deviations of fields and their spatial gradients
to efficiently compute curvatures of correlation functions near
zero separation distances. This computation therefore does not
depend on binning sizes or interpolations between binned values,
as required for computing Lm. The length-scales Lc so determined
generally differ from the half-widths at half-maxima, with the
relationship between the two depending on the particular shape
of the correlation function.

Values of Lc in the meridional direction as functions of latitude
for ps and at η = 500 hPa, for T, q, and v for both BKGE and
FD24 appear in Figure 7. Qualitatively, the results for T and v are
like those in Figure 5 in the specific sense of which dataset has
the larger values in which latitudinal zones. However, the ratios
of corresponding BKGE and FD24 values appear less dramatic
than those for Lm within the same latitude bands. (This was
also confirmed by averaging the local Lc within the regions of
Table 1 for direct comparison with Figure 5.) Also, Lc < Lm,
consistent with the different meanings of the length-scales. For
q, corresponding BKGE and FD24 values of Lc are very similar,
except at high latitudes in the winter hemisphere, where, as for
the other fields, FD24 values are much larger. The fact that the
ratios of corresponding FD24 to BKGE values differ for Lm and Lc

indicates that the functional shapes of the meridional correlation
functions change, not just the length-scales.

Values for Lc appearing for ps in Belo Pereira and Berre (2006)
(Figure 10 there) cannot be compared directly with those in
Figure 7 because the former were produced for a lower-resolution
DAS and the ensemble they used to estimate BKGE did not
consider model error. Both of these differences will tend to create
smaller Lc here. This reasoning assumes that the temporally
variable part of the model error in the OSSE has very small spatial
correlation.

3.5. Comparison of dynamic balances

As a measure of the degree of dynamic balance, the fractions
of the total temperature variances contributed by the balanced
temperature components as a function of η and latitude are shown
in Figure 8 for BKGE and FD24. This fraction is determined using
the algorithm described in Appendix B. Almost everywhere in the
BKGE troposphere, the fraction of balance temperature variance
is less than 0.5. In contrast, values larger than 0.5 are seen in many
locations for FD24. It is apparent that the FD24 balance fraction
is a gross overestimate of the BKGE value throughout most of the
extratropical troposphere.

Balance was also measured for 1 day forecast error using the
NR truth. Its values were between those for BKGE and FD24. This
indicates that the descrepancy revealed in Figure 8 is not simply
because FD24 concerns a 24 h lag rather than forecast error.

4. Conclusions

Estimates of background-error statistics inferred from consider-
ation of forecast differences have always been expected to require
significant tuning before they could be successfully employed
in a DAS. Here, the specific kinds of tuning required have been
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Figure 8. Fractions of temperature variance contributed by dynamical balanced components for (a) FD24 and (b) BKGE.

revealed by examination of explicit background errors determined
within an OSSE context.

The ratios of variances produced by OSSE background errors
versus 24 h lagged forecast differences vary greatly with both
height and latitude. For all fields in the troposphere, ratios range
from 0.2 near the extratropical tropopause to more than 2 near
the tropical surface. A single global scaling factor should not be
applied to variances of the lagged differences when tuning them
to approximate background-error variances.

In the Extratropics, corresponding vertical correlation length-
scales are much larger for lagged differences than background
error. This is as expected from consideration of short-term
forecast error growth as revealed by SVs and the dependence
of the lagged differences on analysis increments rather than on
analysis errors, which can have very different characteristics as
revealed in Berre et al. (2006). However, in the Tropics there
is little apparent change of such length-scales. As for variances,
tuning of vertical correlation lengths to modify covariances of
the lagged differences to be more like those for background error
should be latitude dependent.

The structures of leading PCs of layer mass-weighted vertical
covariances in the troposphere are very similar for both lagged
differences and background errors. However, the corresponding
variances explained by each differ for each dataset. For all fields,
greater variance is explained by larger vertical scales.

Horizontal correlations of background error are similar to
those for analysis error as revealed in Errico and Privé (2014). For
all fields in the Extratropics, correlation lengths are much greater
for lagged differences than those for corresponding background
errors. This is especially true for wind, where the former is more
than 60% larger at all tropospheric levels. However, in the Tropics
the relationship is qualitatively reversed. For example, for tropical
T for η < 700 hPa, the meridional length-scale is 40% smaller for
the lagged differences.

For wind, larger horizontal length-scales are associated with
all vertical PCs for lagged differences in the Extratropics and
background errors in the Tropics. In the Extratropics, the
leading PC is associated with the greatest difference in horizontal
correlation length between datasets. The equivalent relationship
for tropical temperature is like that for tropical wind. In the
Extratropics, the relationship for temperature is more complex,
with the two leading PCs associated with larger horizontal length-
scales for the background, and PC4-7 with smaller scales. This
mixed behaviour is associated with the varying relationship seen
for this field as a function of elevation.

Two kinds of horizontal correlation length-scales were
determined: half-widths at half-maxima determined from
spatially averaged covariances, and spatially averaged length
parameters determined from estimates of the local curvatures of
correlation functions at zero separation distances. Although not
identical in meaning or the effects of averaging, these yielded
qualitatively similar results regarding comparisons of values

for corresponding BKGE and FD24 fields. Some quantitative
differences in the results suggest that the shapes of the correlation
functions, not just their length-scale parameters, may differ
between the BKGE and FD24 datasets.

The fractions of variances of temperature error or forecast
differences attributed to dynamical balanced temperature
components were determined statistically from covariances
between stream functions and temperature at differing vertical
levels of the analysis grid. For the FD24 dataset, large fractions
of balance are obtained throughout most of the extratropical
troposphere. In contrast, the BKGE dataset reveals much less
balance. Thus, for this measure also, the pre-tuned NMC method
does not yield good estimates for the desired background-error
statistics.

In summary, the tuning required to construct appropriate
background-error statistics from lagged forecast differences varies
much with latitude. For variances in the Extratropics, the
appropriate tuning also varies greatly with elevation. Appropriate
tuning of vertical and horizontal correlation lengths also differs
greatly between the Tropics and Extratropics. In the profound
case of horizontal correlations of wind, the length-scale must be
made 40% smaller at all η levels in the extratropical troposphere
but 25% larger in the Tropics for 800 > η > 200 hPa. Although
these results have been produced for an OSSE, validation of the
OSSE framework (Errico et al., 2013), consideration of the theory
of short-term error growth (e.g. Palmer et al., 1998; Gelaro et al.,
2002), and examination of the NMC method (Berre et al., 2006;
Belo Pereira and Berre, 2006) suggest they are realistic. In the
future we will attempt to use these results to provide a new
background-error covariance model to test within the OSSE and
for an assimilation of real observations.

Appendix A

Computation of local correlation lengths

The definition of Lc appears in Belo Pereira and Berre (2006):

Lc =
√√√√ σ 2(ε)

σ 2
(

∂ε
∂y

)
−

(
∂σ (ε)

∂y

)2 ,

where ε is the BKGE or FD24 field in question, y is a meridional
distance, and σ 2 is the variance of the indicated variable. The
meridional gradients are computed here as centred differences
on the GEOS-5 grid that has equidistant separations between
latitudes. The variances are computed separately at each latitude
and longitude of the grid, excluding the poles, by using temporal
averages. The values of Lc discussed here are then determined by
simply averaging all the separate grid-point values within either
the region or latitude concerned.
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For a Gaussian-shaped correlation function,

ρ(�y) = exp

(
−1

2

(�y)2

L2
c

)
,

the correlation is 0.5 when the separation distance (�y)
is approximately 1.18Lc. For a second-order auto-regressive
(SOAR) function,

ρ(�y) =
(

1 + �y

Lc

)
exp

(
−�y

Lc

)
,

the correlation is 0.5 when �y ≈ 1.67Lc. Note that since ρ
generally depends nonlinearly on Lc, determining Lm from
spatially averaged covariances as done here and described in
Errico and Privé (2014) likely will not produce the same results
as spatially averaging locally determined Lc.

Appendix B

Determination of the balance measure

Let T and ψ denote column vectors whose components are values
of T and stream function at successive η levels, defined for each
latitude, longitude, and time. The variances of T are determined
by the diagonal elements of the matrix

〈(T − T)(T − T)T〉 ,

where T indicates a transpose, the overline denotes a zonal mean
and angle brackets here indicate a time and zonal mean. The
balanced temperature is defined as

Tb = Aψ ,

where

A = 〈(T − T)(ψ − ψ)T〉〈(ψ − ψ)(ψ − ψ)T〉−1 .

Variances of Tb are determined as the diagonal elements of

A〈(ψ − ψ)(ψ − ψ)T〉AT .

This is the method of computing statistics of dynamic balances
to define the background-error covariance models used by GSI at
NCEP and the GMAO.
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