Space-based Gravitational-wave Observatories (SGOs)

Presented by Jeff Livas NASA Goddard Space Flight Center Greenbelt, MD 20771

IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014

Outline

- **Why are SGOs important?**
- **Basic GW physics**
- **Science**
- **Mission description**
- **How it works more detail**
- **Program status**
- **Summary**

Gravitational Wave Spectrum Why is this important?

3 IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014

52 \mathbf{e}

4 IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014

Measurement Challenge

• **Lowest order radiator is a quadrupole**

- Dipole radiation forbidden by conservation of momentum
- Simplest quadrupole is a pair of masses rotating around their common center of mass (a "dumbell")
- **What is to be measured**
	- Time-varying strain (ΔL/L) in spacetime typically ~10⁻²¹ / \sqrt{Hz} = 10 pm/10 Gm/ \sqrt{Hz}
	- Variations are periodic or quasi-periodic between 10-4 and 1 Hz, observable for months to centuries

•**Measurement concept**

- Measure distance changes between free-falling mirrors
	- o Test masses are the mirrors
	- o Interferometric measurement of distance changes
- Preferred measurement conditions
	- o A long measurement path to make ΔL large
	- \circ A very quiet place to avoid
disturbances to the test masses: SPACE!

Binary Black Hole Merger

Science Overview

Not just detection…

- •**Detection already happened (direct + indirect…)**
- •**Study growth of cosmic structure**
- **Test of GR in strong field limit**
- •**Precise parameter estimation, including distances Quality vs Quantity**

Table courtesy Robin T. Stebbins

With assistance from R. Lang, N. Cornish, and S. Larson

SGO Mission Concepts

LISA concept with single-agency costing and all know cost reductions.

Two-arm version of SGO Mid Minimum two-arm mission

Minimum-cost three arm design with acceptable Decadal-survey science return.

Study final report is available here:

IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014 http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php 12

13 IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014

How the science instrumentation works

• **The Constellation is the instrument**

- Orbits passively maintain formation
- "Sciencecraft" house test masses and interferometry

• **Interferometer Measurement System (IMS)**

- Active transponder, phase-locked laser ranging system
- Phasemeter records fringe signal
- $-$ Laser frequency noise correction by pre-stabilization and post processing

• **Disturbance Reduction System (DRS)**

- Free-falling test masses don't contact the sciencecraft
- Drag-free stationkeeping reduces sciencecraft test mass relative motion and force gradients
- Design to limit thermal, magnetic, electrostatic, mechanical, selfgravity disturbances

Y

X

Z

 $S_{+} = \frac{\sqrt{3}}{2}$

S×

 $\frac{1}{2}X$

 $\frac{1}{2}(X + 2Y)$

 $S_o = \frac{1}{3}(X + Y + Z)$

Payload Integrated with Bus

Prop Module/Cruise Configuration

- –2 star tracker heads
- –2 omni antennas

Inter-Spacecraft Distance Measurement

• **Test-mass to test-mass measured in 3 parts:**

- **2 × test-mass to spacecraft measurements (short-arm: LPF tests this)**
- **1 × spacecraft to spacecraft interferometer (long-arm)**

Interferometry Measurement System

Seed laser with LPF heritage Cavity pre-stabilization

Optical bench with LPF heritage

Pointing mechanisms tested

US Patent 8,598,673 B2

US Patent 7,970,025

Same noise with tuning TDI demonstrated with realistic delays using electronic signals

Low noise quad detector LISA Phasemeter development meets multiple requirements

Prototype telescope spacer demonstrates dimensional stability and for studying scattered/stray light

LASER OPTICAL BENCH OPTICAL BENCH

LASER

18 IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014

Front-end Phasemeter Architecture

- •**Low noise quad photodiode* serves two functions**
	- •**Differential wavefront sensing of quadrant pairs determines S/C pointing**
	- •**Sum is main science signal**

*Joshi, A. et al. Proc. SPIE 8453, 84532G (25 Sep 2012); doi: 10.1117/12.918285

Weak Light Phase Locking

Frequency Noise Suppression: Time Delay Interferometry (TDI)

- **An interferometer arm length mismatch** Δ**L will allow frequency noise to mimic a displacement noise,** δ**x.**
- **A sensitivity requirement of** δ**x <10 pm/√Hz implies that the interferometer arm lengths must be equal to better than 100 m**
- •**LISA arm lengths may differ by as much as 1% or 10,000 km!**

- **Unequal-arm Michelson interferometer**
- **Output corrupted by laser frequency noise**

- **Equal-arm (Sagnac) interferometer (TDI combination X)**
- **Output immune to laser frequency noise: synthesized equal arms**

 $\delta x = \frac{\delta v}{\Delta L}$ ν

- **Constant spacecraft velocity introduces an arm length mismatch to the synthesized interferometer.**
- Δ*L* **~ 20m/s x 6.7 s ~ 130 m**
- **Output immune to laser frequency noise: synthesized equal arms**

D.A. Shaddock, et al; PRD 68, 061303 (2003).

TDI Experimental Demonstration

Mitryck, et al. PRD **86**, 122006 (2012) testbed with electronic delays

Laser frequency noise can be reduced with margin

- • **Laser frequency noise suppression of ~ 109**
- **Clock noise suppression of ~ 6 x 104**

de Vine, et al. PRL **104**, 211103 (2010) static test bed

Inter-Sciencecraft Signaling: Clock noise and ranging

- \bullet **Requirement 1:**
- • **Implementation: clock-coherent side tone**
	- **8 GHz nominal sidetones (~2 MHz offsets in send vs receive)**
	- –**1% of power in sidebands**
	- –**Sideband-sideband beat detection**
- •**Requirement 2:**
- • **Implementation: inter-spacecraft comm**
	- –**1% modulation on main science beam (carrier)**
	- –**Manchester encoding (2 Mchips/s)**
	- –**13-bit Gold code yields 2 m range accuracy**
	- **~100 bps required (400 kbps capable)**

Phase modulator supports clock noise rqmts

Ultra-stable oscillator (USO) modulated onto main science beam

Using sideband-sideband beatnotes (instead of carrier-sideband) allows high modulation frequency and low photoreceiver BW

Instrument Performance

- **The instrument performance is determined by:**
	- **Displacement noise from the Interferometric Measurement System (IMS)**
	- **Acceleration noise from the Disturbance Reduction System (DRS)**
	- **Arm Length (1 x 106 km)**
- • **The arm length also determines the instrument response function and is optimized for the science requirements.**

Summary of DRS Subsystem allocations

Summary of IMS subsystem noise allocations

Instrument Performance

- **The instrument performance is determined by:**
	- **Displacement noise from the Interferometric Measurement System (IMS)**
	- **Acceleration noise from the Disturbance Reduction System (DRS)**
	- **Arm Length (1 x 106 km)**
- • **The arm length also determines the instrument response function and is optimized for the science requirements.**

LISA Pathfinder to validate noise model

Summary of IMS subsystem noise allocations

	$\times 10^{-12} \frac{m}{\sqrt{Hz}}\sqrt{1+\left(\frac{2~mHz}{f}\right)}$	
Effect	Total per group (pm/\sqrt{Hz})	$Sub -$ Allocation
Total IMS Error/Noise Budget	12.0	
Total of subsystem allocations	11.7	
Subsystem Allocations		
Shot noise	7.7	
Pathlength noise	7.0	
Pointing Errors		5.3
Telescope pathlength stability		1
Optical bench pathlength stability		4.5
Measurement noise	5.4	
Photoreceiver errors		3
Residual laser frequency noise		$\overline{\mathbf{c}}$
Residual clock frequency noise		3
Phasemeter noise		
Intensity noise		
Phase reconstruction		
straylight		\overline{c}

LPF Status

- •**Propulsion module complete**
- • **Spacecraft bus near complete**
	- – **cold-gas thruster system currently being integrated**
- • **Major system tests complete**
	- **thermal**
	- **electro-magnetic**
	- **vibration/shock**
- \bullet **On-track for July 2015 launch**
	- **Lissajous orbit around L1**

 $T = L + 0$ $L + 21d$ $L + 41d$ $L + 56d$

Transfer

Phase

- **90 days LTP Ops**
- **90 days DRS Ops**

LEOP

Commiss-

ioning

Despin

Orbit

Corr

 $L+86d$

DRS Ops

 $L+266d$

Extended Mission?

 $L+176d$

IOOP

SCIENCE OPERATIONS

LTP Ops

Summary

\bullet **Space-based gravitational-wave work continues**

- Science receives top ratings in reviews
- LPF is progressing for launch in July 2015
- $-$ Issue is funding, not technology
- **Current opportunity is partnership with ESA on an L3 mission for 2034 launch**
	- 20+ year scientific collaboration on both sides of the Atlantic
- **Successful LISA Pathfinder technology demo required**
- **US technology development targeted at TRL-5 level for ~ 2020 for key technologies**

BACKUP SLIDES

28 IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014

Context and Status of SGO-Mid

- • **No official project office at NASA**
	- Study team under Physics of the Cosmos Program office
- **No LISA International Science Team (LIST)**
	- University engagement is critical
	- Community engagement through PhysPAG
- **Technology development for L3 mission contribution**
	- laser -- photoreceiver
	- telescope the micro-newton thruster
	- phasemeter
- **Participation on LPF science team**
	- ST-7 experiments -- mission data analysis operations
- \bullet **Developing a reference mission and science case**

SGO-High vs Mid (vs LISA baseline)

- - **Preserves all LISA performance parameters**
	- **Single agency cost model (not joint mission)**
	- **Lower cost launch vehicle (shared launch on a Falcon Heavy)**
	- **Demonstrated improvements in photoreceiver performance**
	- **More economical trajectories to the operational orbits**
- **SGO Mid differs from LISA by:**
	- **Detector arm length reduced from 5 Gm to 1 Gm**
	- **Science operations reduced from 5 to 2 years.**
	- **Nominal starting distance from Earth is reduced by about a factor of 2.5 to a 9-degree trailing orbit.**
	- **Telescope diameter is reduced from 40 to 25 cm, and the laser power out of the telescope is reduced from 1.2 to 0.7 W (end of life).**
	- **In-field guiding is used instead of articulating the entire optical assembly**

LISA vs SGO-high vs SGO-mid

Orbits/trajectory

•**2 year drift-away**

- $-\sim$ 6 deg/year drift rate starting at 9 degrees
- –2 year end of mission similar to nominal SGO-high orbital station (but orbit optimized for 4 years)
- –EOL communications requirements similar to SGO-high

• **Stable constellation geometry simplifies measurement**

- $-\Delta$ L/L ~0.010, relative to 10⁶ km $-\Delta \alpha$ ~ +/- 0.6° relative to 60°
- $-\Delta v \sim +/- 1.6$ m/s
- **18 month trajectory from escape**
	- –For shared launch, second stage has 2 restarts
	- –Drop off shared package at GTO, then go to escape
	- $-$ Optimized $\Delta V \sim 130$ m/s (each), \sim 200 m/s for extended launch window and margin

- Point ahead ~ +/- 0.55urad out of plane
- Point ahead ~ +/- 0.004 urad in plane, relative to \sim -0.3 urad

Operations / Science Data

• **Simple Operations**

- No instrument pointing or scheduling of observation time
- LISA observes "all the sky, all the time"
	- o Scheduled interruptions approximately every 2 weeks for HGA re-pointing and to switch laser offset frequencies

• **Routine Communications Strategy**

- Ka-Band downlink every 2 days with one spacecraft (6 days for the constellation)
- Up to 8-hr contacts with DSN 34m at 90 kbps (allows downlink of 6 days telemetry generated at 5 kbps)
- Special merger events may require more frequent contact and continuous operation for up to \sim 4 days to preempt schedule interruptions and com

• **Science Data**

- 5 kbps = 1 kbps science data + 4 kbps science housekeeping and engineering data, 15 kbps total for the constellation
- **No on-board science processing**
- Mission Ops Team forwards downlinked data to Science Data Centers

