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Outline 

•  Why are SGOs important? 
•  Basic GW physics 
•  Science 
•  Mission description 
•  How it works – more detail 
•  Program status 
•  Summary 
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Gravitational Wave Spectrum 

Figure courtesy of Rick Jenet FFFFiiiigure courtesy of Rick Jenet
Image credit: NASA 

BICEP-2/Planck Detection 2018-20? Detection 2017-18? 

Richest set of sources 
ESA L3 (2034 launch) 

Why is this important? 

GW imprint 
on inflation 

Stochastic 
background 
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Measurement Challenge 
•  Lowest order radiator is a quadrupole 

–  Dipole radiation forbidden by conservation of 
momentum 

–  Simplest quadrupole is a pair of masses rotating 
around their common center of mass (a “dumbell”) 

•  What is to be measured 
–  Time-varying strain (ΔL/L) in spacetime 

 typically ~10-21 /√Hz = 10 pm/10 Gm/√Hz  
–  Variations are periodic or quasi-periodic  

between 10-4 and 1 Hz, observable  
for months to centuries 

•  Measurement concept 
–  Measure distance changes between free-falling 

mirrors 
o  Test masses are the mirrors  
o  Interferometric measurement of 

distance changes 
–  Preferred measurement conditions 

o  A long measurement path to 
make ΔL large  

o  A very quiet place to avoid 
disturbances to the test masses: SPACE! 

hx Polarization 

Constellation Response 

h+ Polarization 



Binary Black Hole Merger 



6 IEEE AVFOP Conference: Atlanta, GA 11 Nov 2014 

Science Overview 
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Science Overview 

 

• Formation and growth of massive 
black holes: galaxy mergers 

• Dynamical strong-field gravity 
• Merger rates of 10s -100s yr-1 

expected 

 Supermassive Black Hole Mergers 
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• Formation and growth of massive 
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 Supermassive Black Hole Mergers 

• Population of galactic ultra-compact 
binaries 

• Evolution of ultra-compact binaries 
• >104 sources expected 

 Galactic close compact binaries 
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regime 

• Event rates uncertain 

 Extreme Mass Ratio Inspirals (EMRIs) 
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Science Overview 

 

• Formation and growth of massive 
black holes: galaxy mergers 

• Dynamical strong-field gravity 
• Merger rates of 10s -100s yr-1 

expected 

 Supermassive Black Hole Mergers 

• Population of galactic ultra-compact 
binaries 

• Evolution of ultra-compact binaries 
• >104 sources expected 

 Galactic close compact binaries 

• Precision tests of GR in strong-field 
regime 

• Event rates uncertain 

 Extreme Mass Ratio Inspirals (EMRIs) 

• Cosmological gravitational wave 
background 

• Superstring bursts 

 New Physics / Unexpected Sources 
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Not just detection… 

Table courtesy Robin T. Stebbins 
With assistance from R. Lang, N. Cornish, and S. Larson 

Number of Sources Observed Classic LISA SGO-Mid
Massive Black Hole Mergers  108-230  41-52
    Detected @ Z>10  3-57  1-4
    Both mass errors < 1%  67-171  18-42
    One spine error < 1%  49-130  11-27
    Both spin errors < 1%  1-17  <1
    Distance error < 3%  81-108  12-22
    Sky location < 1 deg2  71-112  14-21
    Sky location < 0.1 deg2  22-51  4-8
Extreme-Mass-Ratio-Inspirals 800 35
Resolved Ultra Compact Binaries 40,000 7,000
    Interacting UCB's 1,300 100
    Detached UCB's 40,000 8,000
    Sky location < 1 deg2 13,000 2,000
    Sky loc < 0.1 deg2 + distance error < 10% 8,000 800
Stochasitc Bkgnd relative to LISA 1.00 0.20

•  Detection already happened (direct + indirect…) 
•  Study growth of cosmic structure 
•  Test of GR in strong field limit 
•  Precise parameter estimation, including distances Quality vs Quantity 
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SGO Mission Concepts 

SGO High SGO Mid 

SGO Low SGO Lowest 

Study final report is available here: 
http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php 

Minimum two-arm mission Two-arm version of SGO Mid 

LISA concept with single-agency costing 
and all know cost reductions. 

Minimum-cost three arm design with 
acceptable Decadal-survey science return. 
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How the science instrumentation works 

•  The Constellation is the instrument 
– Orbits passively maintain formation 
–  “Sciencecraft” house test masses and  

interferometry 
•  Interferometer Measurement System (IMS) 

–  Active transponder, phase-locked  
laser ranging system 

–  Phasemeter records fringe signal 
–  Laser frequency noise correction  

by pre-stabilization and post processing 
•  Disturbance Reduction System (DRS) 

–  Free-falling test masses don’t contact the sciencecraft 
–  Drag-free stationkeeping reduces sciencecraft test mass relative 

motion and force gradients 
–  Design to limit thermal, magnetic, electrostatic, mechanical, self-

gravity disturbances 

X 

Z 

Y 
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3
2
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Full Spacecraft 
Bus 

DRS 
Detail  

Telescope 
Assembly 

Optical bench 
mounted in 
Telescope 
Assembly 

Payload Integrated with Bus 

IMS 
Detail  

Payload systems 
•  Interferometer Measurement System (IMS) 

• Laser 
• Telescope 
• Optical bench 

• Disturbance Reduction System (DRS) 
• Gravitational Reference Sensor (GRS) 
• µN thrusters 
• Control laws 

colloidal µN thrusters 
GRS 

(Note: solar array not shown) 
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Prop Module/Cruise Configuration 

Sciencecraft 

Propulsion 
Module 

Propulsion Module: 
– Bi-prop design 
– Δv ~ 200 m/sec capability 
– 6 coarse sun sensors 
– 2 star tracker heads 
– 2 omni antennas 



Mission Timeline 
Falcon Heavy EELV Cruise Trajectories 

Acquisition 

Science Orbits 

Doppler/Arm length changes 

Mission Timeline 

18 month cruise 

24 months science operations: orbits optimized for 48 months 

Stack in Falcon 5 m PLF 

4 month 
commissioning 
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• Test-mass to test-mass measured in 3 parts: 
•  2 × test-mass to spacecraft measurements (short-arm: LPF tests this) 
•  1 × spacecraft to spacecraft interferometer (long-arm) 

S/C 1 S/C 2 

Quad 
photodetector 

d1 

Proof 
Mass 

Optical Bench Optical Bench 

d2 

d12 = 1 x 109 m 

telescope 

Tx LO LO Tx 

Main interferometer 

Proof 
Mass 

~ 0.2 m 
~ 0.2 m 
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Interferometry Measurement System 

US Patent 7,970,025 

US Patent 8,598,673 B2 

Same noise with tuning TDI demonstrated with realistic 
delays using electronic signals 

Seed laser with LPF heritage Cavity pre-stabilization 

Optical bench with LPF heritage 

Pointing mechanisms tested 

Low noise quad detector LISA Phasemeter development 
meets multiple requirements 

Prototype telescope spacer demonstrates dimensional 
stability and for studying scattered/stray light 
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Front-end Phasemeter Architecture 

LPF 

LPF 

LPF 

NCO 
sin 

cos 

X 

X 

Loop 
filter 

Down 
sampling 

DLL 

LPF ADC 

Laser 
control 

Floating-point 
Processor 

(PC) 

Phase 
reconstruction 

DAC_1 

DAC_2 

DiOB 

EPP 

Channel 1 
Channel 2 

Channel 3 
Channel 4 

100 pW from 
far spacecraft 

100 μW from 
local oscillator 

*Joshi, A. et al. Proc. SPIE 8453, 84532G (25 Sep 2012); 
doi: 10.1117/12.918285 

• Low noise quad photodiode* serves two functions 
• Differential wavefront sensing of quadrant pairs determines S/C pointing 
• Sum is main science signal 
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Weak Light Phase Locking 

~ 13 km 

1 x 106 km 

λ=1064 nm 
D = 20 cm 

PTX = 0.5 W     PRX ~ 125 pW 

θ ~ 2.4 λ/D ~ 13 μradian 

(20 cm/13 km)2 ~ 2.5 x10-10 

20 cm dia 
Receiving 
Telescope 

SGO received power budget: 

λ/4 

Slave 
Isolator 

Master 
Isolator 

EOM 

Reference Cavity 

PBS 

Power  
Stabilisation 

Power  
Stabilisation 

Intensity 

PZT 

Temp 

Intensity 

PZT 

Temp 

Attenuator 

“Sideband” 
EOM 

“Sideband” 
EOM 

Offset 
Frequency 

Data Acquisition 

PBS 

•  Phase lock Successful at lower power than 
requirements 

–  Master Oscillator = 1 mW vs 3-10 mW 
–  Slave laser power = 13pW vs ~ 100 pW 
–  Laser power step attenuated– not variable 

•  Shot noise limit for 13pW = 1.3x10-4 rad/√Hz 

Paul W McNamara 2005 Class. 
Quantum Grav. 22 S243-S247 
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Frequency Noise Suppression: 
Time Delay Interferometry (TDI) 

•  Unequal-arm Michelson 
interferometer 

•  Output corrupted by laser 
frequency noise 

•  Equal-arm (Sagnac) interferometer 
(TDI combination X) 

•  Output immune to laser frequency 
noise: synthesized equal arms 

•  Constant spacecraft velocity 
introduces an arm length mismatch 
to the synthesized interferometer. 

•  ΔL ~ 20m/s x 6.7 s ~ 130 m 

•  Output immune to laser frequency 
noise: synthesized equal arms 

δx =
δν
ν
ΔL

• An interferometer arm length mismatch ΔL will allow 
frequency noise to mimic a displacement noise, δx. 

• A sensitivity requirement of δx <10 pm/√Hz implies that the 
interferometer arm lengths must be equal to better than 100 m 

• LISA arm lengths may differ by as much as 1% or 10,000 km! 

1 3 2 
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TDI Experimental Demonstration 

Laser frequency noise can be 
reduced with margin 

Mitryck, et al. PRD 86, 122006 (2012) testbed with electronic delays 

•  Laser frequency noise 
suppression of ~ 109 

•  Clock noise suppression 
of ~ 6 x 104 

de Vine, et al. PRL 104, 211103 (2010) 
static test bed 



•  Requirement 1: Clock Noise Transfer(< 50 fs/√Hz) 
•  Implementation: clock-coherent side tone 

–  8 GHz nominal sidetones (~2 MHz offsets in send 
vs receive) 

–  1% of power in sidebands 
–  Sideband-sideband beat detection 

•  Requirement 2: inter-S/C ranging (25 m) 
•  Implementation: inter-spacecraft comm 

–  1% modulation on main science beam (carrier) 
–  Manchester encoding (2 Mchips/s) 
–  13-bit Gold code yields 2 m range accuracy 
–  ~100 bps required (400 kbps capable) 

Inter-Sciencecraft Signaling: 
Clock noise and ranging 

Three unique 
frequencies for 
fmod ≠ f 'mod

Using sideband-sideband beatnotes (instead of carrier-sideband) 
allows high modulation frequency and low photoreceiver  BW 

~8 GHz 

Science 
msrmt 

Lower clock 
msrmt 

upper clock 
msrmt 

f-LSS= f-Doppler + 
            (f-mod - f’-mod) 

f-USS= f-Doppler – 
            (f-mod - f’-mod) 

f-Doppler  
(<18 MHz) 

La
se

r 

Fiber-coupled electro-
optic modulator (EOM) 

Transmitter 
Laser 

Phase modulator supports clock noise rqmts 

To/from far 
Sciencecraft 

Local 
Oscillator 

Laser 

Sideband-sideband 
beatnote from far 
sciencecraft recovered 
by phasemeter 

Ultra-stable oscillator (USO) modulated 
onto main science beam 



Instrument Performance 
•  The instrument performance is determined by: 

–  Displacement noise from the Interferometric 
Measurement System (IMS) 

–  Acceleration noise from the Disturbance Reduction 
System (DRS) 

–  Arm Length (1 x 106 km) 
•  The arm length also determines the instrument 

response function and is optimized for the science 
requirements. 
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LISA Pathfinder to validate noise model 
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LPF Status 
•  Propulsion module complete 
•  Spacecraft bus near complete 

–  cold-gas thruster system currently 
being integrated 

•  Major system tests complete 
–  thermal 
–  electro-magnetic 
–  vibration/shock 

•  On-track for July 2015 launch 
–  Lissajous orbit around L1 
–  90 days LTP Ops 
–  90 days DRS Ops 
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Summary 
•  Space-based gravitational-wave work continues 

–  Science receives top ratings in reviews 
–  LPF is progressing for launch in July 2015 
–  Issue is funding, not technology 

•  Current opportunity is partnership with ESA on an 
L3 mission for 2034 launch 
–  20+ year scientific collaboration on both sides of the 

Atlantic 
•  Successful LISA Pathfinder technology demo 

required 
•  US technology development targeted at TRL-5 level 

for ~ 2020 for key technologies 
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BACKUP SLIDES 
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Context and Status of SGO-Mid 
•  No official project office at NASA 

–  Study team under Physics of the Cosmos Program office 
•  No LISA International Science Team (LIST) 

–  University engagement is critical 
–  Community engagement through PhysPAG 

•  Technology development for L3 mission contribution 
–  laser     -- photoreceiver 
–  telescope    -- micro-newton thruster 
–  phasemeter 

•  Participation on LPF science team 
–  ST-7 experiments   -- mission data analysis operations 

•  Developing a reference mission and science case 
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SGO-High vs Mid (vs LISA baseline) 
•  SGO Mid differs from LISA by: 

• Detector arm length reduced from 5 Gm to 1 Gm 
• Science operations reduced from 5 to 2 years. 
• Nominal starting distance from Earth is reduced 

by about a factor of 2.5 to a 9-degree trailing 
orbit. 

• Telescope diameter is reduced from 40 to 25 cm, 
and the laser power out of the telescope is 
reduced from 1.2 to 0.7 W (end of life). 

•  In-field guiding is used instead of articulating the 
entire optical assembly 

ce: Atlanta, GA 11 Nov v v vvvvvvvvvvvvvvvvv 2014 

•  SGO High differs from LISA by: 
• Preserves all LISA performance parameters 
• Single agency cost model (not joint mission) 
• Lower cost launch vehicle (shared launch on 

a Falcon Heavy) 
• Demonstrated improvements in 

photoreceiver performance 
• More economical trajectories to the 

operational orbits 

Mid High 
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LISA vs SGO-high vs SGO-mid 

2/2 
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Orbits/trajectory 
•  2 year drift-away 

– ~ 6 deg/year drift rate starting at 9 degrees 
– 2 year end of mission similar to nominal SGO-high orbital station (but 

orbit optimized for 4 years) 
– EOL communications requirements similar to SGO-high 

•  Stable constellation geometry simplifies measurement 
– ΔL/L ~0.010, relative to 106 km 
– Δα ~ +/- 0.6° relative to 60° 
– Δv ~  +/- 1.6 m/s 

•  18 month trajectory from escape 
– For shared launch, second stage has 2 restarts 
– Drop off shared package at GTO, then go to escape 
– Optimized ΔV ~ 130 m/s (each), ~ 200 m/s for extended launch 

window and margin 

•  Point ahead ~ +/- 0.55urad out of plane 
•  Point ahead ~ +/- 0.004 urad in plane, 

relative to ~ -0.3 urad 
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Operations / Science Data 
•  Simple Operations 

– No instrument pointing or scheduling of observation time 
– LISA observes “all the sky, all the time”  

o Scheduled interruptions approximately every 2 weeks for HGA re-pointing and to 
switch laser offset frequencies 

•  Routine Communications Strategy 
– Ka-Band downlink every 2 days with one spacecraft (6 days for the 

constellation) 
– Up to 8-hr contacts with DSN 34m at 90 kbps (allows downlink of 6 days 

telemetry generated at 5 kbps) 
– Special merger events may require more frequent contact and continuous 

operation for up to ~ 4 days to preempt schedule interruptions and com 
•  Science Data 

– 5 kbps = 1 kbps science data + 4 kbps science housekeeping and 
engineering data, 15 kbps total for the constellation 

– No on-board science processing 
– Mission Ops Team forwards downlinked data to Science Data Centers 
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Satellite 
Satellite 

Test mass 
x 

Position 
sensor 

Thrusters 

Control loop 

Drag-free control 

Countering Solar Radiation Pressure 

Courtesy K. Danzmann 


