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This paper proposes a mathematical definition of an aircraft-separation criterion for
kinematic-based horizontal maneuvers. It has been formally proved that kinematic maneu-
vers that satisfy the new criterion are independent and coordinated for repulsiveness, i.e.,
the distance at closest point of approach increases whether one or both aircraft maneuver
according to the criterion. The proposed criterion is currently used in NASA’s Airborne
Coordinated Resolution and Detection (ACCoRD) set of tools for the design and analysis
of separation assurance systems.

Nomenclature

D Minimum horizontal separation
ε Directionality parameter whose value is ±1
s Two-dimensional aircraft position
t Time variable
τ Time step
uuu,w Two-dimensional vector variables
v Two-dimensional aircraft velocity
V Kinematic maneuver
Subscripts
o Ownship information of a position or velocity vector
i Intruder information of a position or velocity vector
x Northern component of a position or velocity vector
y Eastern component of a position or velocity vector

I. Introduction

Maintaining aircraft separation is a safety objective of air traffic management systems. A credible demon-
stration that this goal has been achieved for a given airspace concept is challenging due to many inherent
characteristics of these concepts. In particular, advanced airspace concepts often involve safety-critical dis-
tributed software that interacts with human actors [9]. The standard method of demonstrating the viability
of an advanced airspace concept is through high fidelity simulations of relevant scenarios. However, no mat-
ter how many scenarios are examined, this approach can never demonstrate that the safety-critical software,
on which the concept is based, keeps aircraft separated in all scenarios, including those that are off-nominal.
Given the paramount importance of safety, an approach that can give strong assurances for the safe behavior
of new air traffic management systems is necessary when developing such systems.

In previous work by the authors [4], an analytical and formal approach for verifying the safe interplay
between (possibly different) separation assurance algorithms was proposed. This approach relies on the
definitions of analytical formulas, called criteria, that characterize sets of resolution maneuvers that are both
independent, i.e., separation is ensured when only one aircraft maneuvers, and coordinated, i.e., separation
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is ensured when two conflicting aircraft both maneuver. A criterion in this context is a formal condition
that a proposed maneuver for an aircraft can satisfy. In a conflict scenario between two aircraft, if the
resolution maneuvers of the aircraft each satisfy an appropriate criterion, it can be guaranteed that the
aircraft resolve the conflict even if they simultaneously maneuver. It has been formally proved that for
state-based (instantaneous) maneuvers, the given criteria provide sufficient conditions for independence and
coordination [5]. Hence, resolution algorithms that compute state-based maneuvers that satisfy the criteria
inherit independence and coordination properties regardless of how these maneuvers are computed.

The criteria presented by the authors in previous work can be used to show safe interplay between
algorithms that give instantaneous maneuvers to the pilot. These state-based maneuvers are often computed
by tactical conflict-resolution algorithms [3] for time to conflict that ranges between 5 and 20 minutes. For
these times, trajectory prediction errors introduced by the instantaneous-maneuver assumption of state-
based algorithms are considered acceptable. However, for short time intervals, such as in the case of collision
avoidance systems [7] or loss of separation recovery algorithms [1], the instantaneous-maneuver assumption
may produce infeasible or incorrect resolutions.

This paper extends the work in [5] by studying a criterion that does not assume instantaneous maneuvers.
Indeed, the proposed criterion applies to kinematic-based horizontal maneuvers. The result is a mathematical
criterion for kinematic maneuvers that guarantees independence and coordination. This coordination is
implicit in the sense that no communication is assumed between the aircraft other than knowledge of the
other aircraft’s initial position and velocity before the maneuver. The proposed criterion is currently used in
NASA’s Airborne Coordinated Resolution and Detection (ACCoRD)a set of tools for the design and safety
analysis of separation assurance systems.

The theorems in this paper have been formally proved in the Prototype Verification System (PVS) [6].
PVS is a system for verifying mathematical statements. In particular, PVS allows safety properties, such
as independence and coordination, to be stated and formally proved. Once a safety property is specified in
PVS, it is up to the user to prove in PVS that the condition holds. PVS has a reasoning engine that encodes
mathematical logic, so only statements that are mathematically correct can be proved in PVS. The use of a
system like PVS for proving safety properties about separation assurance systems in the airspace is justified
by the importance of safety and the key part that these systems play in the overall safety of the airspace.

The rest of this paper is structured as follows. Section II gives a brief overview of the criteria-based
resolution approach, Section III reviews coordination for instantaneous maneuvers, Section IV presents a
criterion for kinematic maneuvers and its main properties, Section V provides a counterexample that shows
that even trajectories that are incrementally diverging from one another do not always exhibit coordination,
and Section VI concludes the paper.

II. Criteria-Based Resolution Approach

Formally, a criterion is specified as an analytical formula that defines a set of acceptable resolution
maneuvers for an aircraft in a conflict scenario. As a simple example, a criterion specifically for aircraft in a
head-on conflict might state that each aircraft must alter course to the right, as stated in part 91.113 of the
Federal Aviation Regulations [2].

In general, criteria for instantaneous maneuvers can be analytically expressed by formulas involving the
positions and velocity vectors of two aircraft, referred to as the ownship and the intruder, and a parameter
that indicates directionality of the set of maneuvers, e.g., left/right, up/down, etc. For instance, a criterion
for horizontal conflict avoidance was presented in [5]. That criterion specifies a mathematical condition on
resolution maneuvers that are guaranteed to be independent, i.e., the maneuvers avoid the conflict assuming
that only the ownship maneuvers, and coordinated, i.e., they also avoid the conflict if both aircraft simultane-
ously maneuver according to the criterion. The parameter indicating directionality for this criterion is called
ε, which takes a value of either −1 or 1. If both aircraft maneuver, then they must select resolutions using
the same ε value, which can be chosen implicitly from the input states of the aircraft. This is illustrated
in Figure 1. The current ownship velocity vector is shown in blue and the current traffic velocity vector is
shown in magenta. Conflict Detection and Resolution (CD&R) systems that for both aircraft select reso-
lution vectors anywhere in their green regions will produce resolution maneuvers that are always implicitly
coordinated. Conversely, if the CD&R systems on both aircraft select resolution vectors anywhere in their
blue regions, the combined result will be implicitly coordinated. If only one aircraft maneuvers, then a vector
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Figure 1. Visualization of Horizontal Criterion for Conflict Avoidance

in either the blue or green region will suffice.
The criterion for kinematic maneuvers proposed in this paper builds upon another criterion for instanta-

neous maneuvers that ensures repulsiveness. A resolution maneuver is repulsive if it increases the distance
at the closest point of approach between two conflicting aircraft. The notion of repulsiveness is particularly
relevant when a conflict between two aircraft can not be immediately solved. In this case, it is important that
any resolution maneuver is in the appropriate direction, so that the distance at the closest point of approach
increases even when both aircraft simultaneously maneuver. Similarly, the directions of the maneuvers are
most important in a close encounter scenario such as when two aircraft have already lost minimum separation
and must maneuver to recover separation. To eventually solve the conflict in these scenarios, aircraft have to
maneuver in a way that incrementally improves the situation, which is measured by the distance at closest
point of approach, hence the relevance of repulsiveness.

In [5], a criterion for instantaneous maneuvers that guarantees repulsiveness is proposed. The next section
presents the basic definitions of the criteria-based approach for instantaneous maneuvers provided in that
work.

III. Coordination for Instantaneous Maneuvers

In this paper, vector variables are written in boldface and can be denoted by their components. For
example, if uuu is a 2-dimensional (2-D) vector, then uuu denotes the pair (ux, uy). The two-dimensional Euclidean
norm of the vector uuu is denoted by

‖uuu‖ ≡
√
u2x + u2y, (1)

and the dot product of the 2-D vectors uuu and w is denoted

uuu ·w ≡ (uxwx + uywy). (2)

Furthermore, 0 denotes the zero vector, i.e., 0 ≡ (0, 0) and uuu⊥ denotes the right perpendicular vector to uuu,
i.e.,

uuu⊥ ≡ (uy,−ux).

From these definitions, it can be easily proved that uuu · uuu⊥ = 0. The function det is defined by

det(uuu,w) ≡ uuu ·w⊥. (3)

This paper considers pairwise resolution algorithms that return guidance maneuvers for aircraft. The
terms ownship and intruder are used to distinguish between the aircraft for which the resolution maneuver
is computed. These designations are relative in the sense that each aircraft will be from its point of view the
ownship and the other aircraft will be the intruder. Without loss of generality, the development presented
here takes the point of view of one of the aircraft, and that aircraft will be designated as the ownship. The
algorithms discussed here use state-based information for the two aircraft as inputs, i.e., position and velocity
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vectors that are elements of a Euclidean space. The current states of the ownship and intruder aircraft at
time t = 0 are denoted by the following vectors:

• so,vo: Initial position and velocity of the ownship aircraft, respectively.

• si,vi: Initial position and velocity of the intruder aircraft, respectively.

Furthermore, it is assumed that the current ground speeds of the ownship and intruder aircraft are not zero,
i.e., ‖vo‖ 6= 0 and ‖vi‖ 6= 0. Therefore, vo 6= 0 and vi 6= 0.

In the airspace system, the separation requirement for two aircraft is specified by a minimum horizontal
separation D (typically, D is 5 nautical miles). A loss of separation between two aircraft occurs when the
distance between them is less than D. Thus, the ownship and intruder aircraft are in loss of separation if
and only if it holds that

‖so − si‖ < D.

The separation requirement can be understood as an imaginary circle of diameter D around each aircraft,
and a conflict between two aircraft as a future overlapping of these circles. In this paper, an alternative
but equivalent view is considered where the intruder is surrounded by a circle, called the protected zone,
of radius D. From this perspective, a conflict between the ownship and intruder aircraft is defined as the
existence of a time t ≥ 0 at which the ownship is in the interior of the intruder’s protected zone. In conflict
detection algorithms, it is also required that t is within a specified lookahead time. However, since this
work concerns resolution algorithms, a lookahead time is not considered. Formally, the ownship and intruder
aircraft are in conflict along their current linear trajectories if and only if there exists t ≥ 0 such that, at time
t, separation is lost, i.e., ‖(so + t vo)− (si + t vi)‖ < D. Since (so + t vo)− (si + t vi) = (so−si)+ t (vo−vi),
the mathematical expression that characterizes conflict can be defined on s = so−si and v = vo−vi, i.e., the
relative position and velocity vectors, respectively, of the ownship with respect to the intruder. Therefore,
conflict can be viewed as a Boolean condition on two vectors s and v rather than a condition on four vectors
so, vo, si, and vi. This relative view simplifies the mathematical development presented in this paper. Thus,
the Boolean condition conflict can be formally defined as follows.

conflict(s,v) ≡ ∃ t ≥ 0 : ‖s + t v‖ < D. (4)

In this paper, the relative position and velocity vectors, s and v, will commonly be used in place of so − si
and vo − vi, respectively.

As noted in Section II, a criterion for instantaneous maneuvers can be be analytically expressed by
formulas involving the positions and velocity vectors of the two aircraft and a parameter that indicates
directionality of the set of maneuvers, e.g., left/right, up/down, etc. An example of a criterion presented
in [5] is horizontal criterion. This criterion guarantees that any resolution maneuver will independently
and coordinatedly solve a conflict between the aircraft. The criterion is defined as follows.

horizontal criterion(s,v, ε)(v′) ≡ s · v′ ≥ ε
√
s · s−D2

D
det(s,v′). (5)

Here, the direction parameter ε is either −1 or 1. Figure 1 illustrates the set of velocity vectors that satisfy
the criterion horizontal criterion. The key property of this criterion is that it guarantees coordination
when both aircraft use the same value of ε. This value can be chosen implicitly without any communication
between the aircraft. Given a choice of ε, if each aircraft executes a maneuver that satisfies the criterion,
then the combined result will both satisfy the criterion and remain conflict-free.

A criterion related to repulsiveness is relevant to the work presented in this paper. A resolution maneuver
is repulsive if it increases the distance at the closest point of approach between two conflicting aircraft.
Formally, this is defined as a condition on s,v, which are the current relative position and velocity of the
aircraft, and v′, which is a relative velocity vector after a maneuver. Repuslive is formally is defined as
follows.

repulsive(s,v)(v′) ≡ (s · v < 0 and (tca(s,v′) ≤ 0 or ‖s + tca(s,v) · v‖ < ‖s + tca(s,v′) · v′‖))
or (s · v ≥ 0 and (v = 000 ⇒ s · v′ ≥ 0) and (v 6= 000 ⇒ s · v′ > s · v)).

(6)

This definition uses the function tca, which computes the time at closest point approach for converging
aircraft with initial relative position s and relative velocity v, and is defined as follows.

tca(s,v) ≡ − s · v
‖v‖2

. (7)
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There are two main conditions in Formula (6), the first being for the case where the aircraft are originally
converging (getting closer together), i.e., when s · v < 0, and the second being for the case where they are
diverging, i.e. when s · v ≥ 0. Given the current relative position s = so − si and velocity v = vo − vi, for
the ownship aircraft with respect to the intruder, repulsive(s,v) is a condition on a relative velocity vector
v′ = v′

o−vi, where v′
o is a new velocity vector representing a possible maneuver for the ownship. It implies

that the minimum distance achieved by the aircraft for positive times increases when the new velocity vector
v′
o is chosen by the ownship instead of the current vector vo. The simplest visualization of repulsiveness

is when two aircraft are in a head-on conflict scenario with a horizontal offset. In this case, repulsiveness
just means that the new maneuver is incremental in the direction opposite the other aircraft, as indicated
in Figure 2. A criterion that ensures repulsiveness is defined as follows.

Figure 2. Repulsive Maneuvers

repulsive criterion(s,v, ε)(v′) ≡
s 6= 000 and v′ 6= 000 and ε det(s,v) ≤ 0 and ε det(s,v′) < 0

and ( [ s · v < 0 and ε det(v′,v) < 0 ]

or [ s · v ≥ 0 and ε det(v′,v) ≤ 0 and (v = 000 ⇒ s · v′ ≥ 0) and (v 6= 000 ⇒ s · v′ > s · v) ] ).

(8)

Just as in the definition of repulsion, repulsive criterion has two main conditions, the first being for
the case where the aircraft are originally converging, i.e., when s · v < 0, and the second being for the case
where they are diverging, i.e. when s · v ≥ 0. Also, the ε parameter is similar to that used in the definition
of horizontal criterion above. It is equal to either −1 or 1 and indicates direction in the relative frame
of reference. In general, the value for ε that should be used in practice is the sign of det(v, s), which will be
the same value when computed from the perspective of each aircraft. The following theorem, which states
the coordination property of this criterion, has been formally proved in PVS.

Theorem 1. If both aircraft maneuver instantaneously and each maneuver satisfies repulsive criterion,
then the combined result is repulsive. That is, for all so,vo,v

′
o, si,vi,v

′
i and ε, if

• repulsive criterion(so − si,vo − vi, ε)(v
′
o − vi) and

• repulsive criterion(si − so,vi − vo, ε)(v
′
i − vo)

both hold, then repulsive(so − si,vo − vi)(v
′
o − v′

i) holds as well.

The criterion repulsive criterion is fundamental to the definition of the criterion for kinematic ma-
neuvers presented in Section IV and the coordination theorem of repulsive criterion implies the coor-
dination of this more general kinematic criterion.

IV. Coordination for Kinematic Maneuvers

If there is a conflict between the ownship and the intruder, or if the aircraft have already lost separation,
a resolution maneuver will be taken by one or both aircraft to resolve the conflict or to regain adequate
separation. Henceforth, these maneuvers are modeled by kinematic trajectories.
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A kinematic trajectory is represented as a sequence of velocities, along with a timestep value which
specifies how long the aircraft have each velocity in the sequence. Formally, kinematic maneuvers are
functions from the positive natural numbers N+ into 2-D velocity vectors. Let V : N+ → R2 be one
such function. It is assumed that there is an associated time step τ and that during the time interval
[(k − 1) · τ, k · τ ], where k ∈ N+, the aircraft executing the maneuver has velocity V(k). Moreover, there is
assumed to be a number N of time steps after which the aircraft follows its last velocity indefinitely. This
piecewise linear trajectory can closely approximate a true trajectory, since every continuously differentiable
function can be uniformly approximated on an interval by a piecewise linear function [8].

The ownship’s and the intruder’s kinematic maneuvers are denoted Vo and Vi, respectively. It is assumed
for mathematical simplicity that the time step value is the same for the ownship as for the intruder.

Example 2. If the ownship has initial position so = (0, 0) and initial velocity vo = (300, 0) (the units do
not matter) and makes a constant bank angle turn 90 degrees to the left by changing its heading by 1 degree
per second, the corresponding maneuver Vo is given by

Vo(k) = (300 cos(
kπ

180
), 300 sin(

kπ

180
)),

for k ≥ 1, and the parameter N is 90. That is, after 90 incremental changes to its velocity, the ownship will
continue indefinitely with velocity vector (0, 300).

Just as in the case of the current linear trajectories, where the relative velocity v can be used to compute
the relative position at a future time t as s + tv, the notion of a relative velocity sequence is useful when
studying the coordination of kinematic maneuvers. The relative velocity sequences Vo − vi, vo −Vi, and
Vo −Vi are defined by

(Vo − vi)(j) ≡ Vo(j)− vi,

(vo −Vi)(j) ≡ vo −Vi(j),

(Vo −Vi)(j) ≡ Vo(j)−Vi(j).

(9)

The function pos step, defined below, computes the sequence of positions so that pos step(s,V, τ)(j)
is the position at the moment velocity V(j) is assumed. Thus, pos step(s, τ,V)(1) is equal to the initial
position s. Further, pos step is defined recursively on j.

pos step(s, τ,V)(j) ≡ if j = 1 then s

else pos step(s, τ,V)(j − 1) + τV(j − 1)

endif.

(10)

By using the function pos step, it is easy to compute the position at any future time t by first determining
which time interval t falls into. This is accomplished through the function position, which computes the
position at time t.

position(s, τ,V, N)(t) ≡ let j = min(floor(
t

τ
) + 1, N) in

pos step(s, τ,V)(j) + (t− τ · (j − 1))V(j).
(11)

The concept of repulsive maneuvers is especially relevant for kinematic, piecewise linear maneuvers such
as those represented by velocity sequences described above. As in the case of instantaneous maneuvers, a
kinematic resolution maneuver is called repulsive if it increases the distance at the closest point of approach
between the aircraft. It is defined as a condition on relative kinematic trajectories. Formally, a relative
velocity sequence is repulsive if the distance between the aircraft at any future time is not less than the min-
imum distance between the aircraft along their current trajectories. If the aircraft are currently converging,
then this minimum distance is attained at the time of closest approach tca(s,v), and if they are currently
diverging, then this minimum is attained at time 0. Repulsiveness for these kinematic maneuvers is formally
defined as follows.

repulsive kin(s,v, τ,V, N) ≡
(s · v < 0 and ∀ t : t ≥ 0 =⇒ ‖position(s, τ,V, N)(t)‖ ≥ ‖s + tca(s,v)v‖) or
(s · v ≥ 0 and ∀ t : t ≥ 0 =⇒ ‖position(s, τ,V, N)(t)‖ ≥ ‖s‖).

(12)

6 of 10

American Institute of Aeronautics and Astronautics



In contrast to Formula (6), Formula (12) can not be algorithmically evaluated due to the universal quantifier.
As it turns out, just as the instantaneous criterion repulsive criterion defined in Section III guaranteed
coordinated repulsiveness, there is a criterion repulsive kin crit for these kinematic, piecewise linear
relative velocity sequences that also guarantees coordinated repulsiveness when both aircraft maneuver. It
is defined piecewise on each linear segment of the maneuver and, unlike the definition of repulsiveness given
by Formula (12), it can be computed by an algorithm. The instantaneous criterion repulsive criterion

is used in the definition of this new criterion. The new criterion repulsive kin crit checks incrementally
whether each velocity V(j + 1) satisfies the criterion repulsive criterion with respect to the previous
velocity V(j), at the position given by pos step(s, τ,V)(j + 1). It is formally defined as follows.

repulsive kin crit(s,v, τ,N, ε)(V) ≡
repulsive criterion(s,v, ε)(V(1)) and

∀ j : 1 ≤ j < N =⇒ repulsive criterion(pos step(s, τ,V)(j + 1),V(j), ε)(V(j + 1)).

(13)

It can be seen that any relative velocity sequence V that satisfies this condition will also be repulsive. In
fact, the following theorem has been formally proved in PVS.

Theorem 3 (Independence). repulsive kin crit(s,v, τ,N, ε)(V) =⇒ repulsive kin(s,v, τ,V, N).

Example 4. Consider the scenario in Figure 3. In this case, the initial positions of the two aircraft are
so = (10, 2), si = (0, 0) (units are nautical miles), and the initial velocities are vo = (−500, 0), vi = (500, 0)
(units are knots). In this scenario, the ownship executes an avoidance maneuver by changing its heading by

Figure 3. Repulsive Relative Velocity Sequence

3 degrees every 10 seconds for 1 minute and then continuing linearly. This sequence of velocity changes is
represented by

Vo(j) = (−500 cos(
jπ

60
), 500 sin(

jπ

60
)),

the corresponding time step τ is 10 seconds, or τ = 0.0027̄ hours, and finally the corresponding value for N
is 7. It can be seen that for these values, repulsive kin crit(so − si,vo − vi, τ,N, ε)(Vo − vi) holds for
the relative velocity sequence Vo−vi when ε = 1, which represents the right direction from the point of view
of each aircraft, but does not hold when ε = −1, which represents the left direction. Also, it is clear from the
definition of repulsiveness that repulsive kin(so− si,vo− vi, τ,Vo− vi, N) holds for this relative velocity
sequence as well.

The most important property of the criterion repulsive kin crit is that, in addition to guaranteeing
repulsiveness when only one aircraft maneuvers, it also guarantees repulsiveness when both aircraft maneuver,
which means that it is coordinated with respect to repulsiveness. The following theorem, which states the
main coordination property for this criterion, has been formally proved in PVS.

Theorem 5 (Coordination). If the conditions

• repulsive kin crit(so − si,vo − vi, τ,N, ε)(Vo − vi)

• repulsive kin crit(si − so,vi − vo, τ,N, ε)(Vi − vo)
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both hold, then relative velocity sequence Vo −Vi is repulsive. That is, the condition

repulsive kin(so − si,vo − vi, τ,Vo −Vi, N)

holds.

Example 6. Consider the same scenario that was given in Figure 3, but in the case where both aircraft
execute similar maneuvers. As above, the initial positions of the two aircraft are so = (10, 2), si = (0, 0),
and the initial velocities are vo = (−500, 0), vi = (500, 0), and the time step is τ = 0.0027̄ hours (10
seconds). In this scenario, each aircraft executes an avoidance maneuver by changing its heading to the right

Figure 4. Repulsive Coordinated Relative Velocity Sequence

by 3 degrees every 10 seconds for 1 minute and then continuing linearly. This sequences of velocity changes
are represented by

Vo(j) = (−500 cos(
jπ

60
), 500 sin(

jπ

60
)) and Vo(j) = (500 cos(

jπ

60
), −500 sin(

jπ

60
)).

For these values, repulsive kin crit(so − si,vo − vi, τ,N, ε)(Vo − vi) and repulsive kin crit(si −
so,vi−vo, τ,N, ε)(Vi−vo) both hold when ε = 1, which represents the right direction from the point of view
of each aircraft, but do not hold when ε = −1, which represents the left direction. Also, it is clear from the
definition of repulsiveness that repulsive kin(so− si,vo−vi, τ,Vo−Vi, N) holds for this relative velocity
sequence as well, and thus these two maneuvers exhibit coordination.

Theorem 5 requires that both aircraft choose the same value for ε. However, this is quite easy even without
explicit communication. In fact, ε can be simply chosen by the ownship to be the sign of det(vo−vi, so−si).
The intruder will similarly choose ε to be the sign of det(vi − vo, si − so), which is exactly the same value
since

det(vo − vi, so − si) = det(vi − vo, si − so).

In general, except in the case where the aircraft are on perfect straight line collision trajectories, this choice of
ε is the only choice possible while still satisfying the criterion repulsive kin crit. Indeed, the condition
inside the definition of repulsive kin crit requires, by the definition of repulsive criterion, that
εdet(so−si,vo−vi) ≤ 0. Unless det(so−si,vo−vi) = 0, which is precisely when the aircraft will eventually
collide, this is only possible when ε is the sign of det(vo − vi, so − si).

Another important note regarding Theorem 5 is that Figure 4 is just a simple example of coordination
where it is clear what each aircraft should do. More complicated encounter geometries exist where it is
unclear at first glance which direction each aircraft should maneuver to incrementally improve the situation.
Theorem 5 guarantees that even in these complicated scenarios, if each aircraft chooses a maneuver that
satisfies the criterion repulsive kin crit, the combined result will still exhibit coordination when both
aircraft maneuver. The theorem holds in all possible geometries.

Theorem 5 guarantees implicit coordination in the sense that the aircraft do not need to communicate
anything other than their original positions and velocities for the kinematic maneuvers to exhibit coordina-
tion. Implicit coordination is sometimes viewed as unnecessary when communication channels already exist
in a concept of operations. However, it should be noted that implicit coordination such as that guaranteed
by this theorem can provide an extra layer of safety even when such communication is possible. This is
because it can guarantee coordination even when communication fails or messages are dropped, as long as
the aircraft have accurate estimates of each other’s current positions and velocities.
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V. An Interesting Example

Recall that the kinematic criterion defined in Section IV is defined by requiring each successive velocity
in the relative velocity sequence V to satisfy the instantaneous repulsive criterion repulsive criterion.
It may seem obvious that requiring each incremental change in the velocity sequence to satisfy a safety
property like repulsiveness at each incremental step is enough to ensure coordination even when both aircraft
maneuver. However, this is not always the case. An example is given below in which the aircraft are originally
diverging, and the maneuver that each aircraft executes is incrementally diverging from the other aircraft’s
current linear trajectory, but if they both maneuver, the combination of the maneuvers puts the aircraft in
conflict. This is similar to a phenomenon with instantaneous maneuvers that, in the case where the aircraft
are originally diverging, allows each aircraft to turn toward the other aircraft, thus losing coordination but
still maintaining safety in the case where only one of them maneuvers. That example for instantaneous
maneuvers was presented in [5].

The example presented below shows that it is not enough to design the instantaneous repulsive criterion
repulsive criterion, defined in Section III, to simply ensure divergence in the case where the aircraft
are initially diverging. The authors initially defined the kinematic criterion repulsive kin crit using
that condition, namely that in the case where the states were diverging, each successive velocity in the
maneuver was only required to be divergent. The process of trying to formally prove the coordination
properties of this kinematic criterion failed, leading the authors to realize that this definition of the criterion
was too liberal in the diverging case. A more conservative version of the instantaneous repulsive criterion
repulsive criterion was needed to ensure the coordination of the kinematic criterion.

In this example, the aircraft have the following initial states: so = (−10, 0), vo = (−300, 0), si = (10, 0),
and vi = (300, 0). The units for positions are nautical miles (nm) and the units for velocities are knots.
The two aircraft are initially separated by 20 nm and are heading in exactly opposite directions. Thus, they
are diverging. The initial states are shown in Figure 5. In this figure, the ownship is shown in blue and the
intruder in green.

Figure 5. Initial States Diverging

Each aircraft in this example executes a turn with a constant bank angle of 25 degrees, the ownship to
its right and the intruder to its left. This results in turns with heading changes of approximately 1.7 degrees
per second. Each aircraft executes the turn until its track angle has changed 165 degrees from its initial
track angle, at which point it continues linearly. These maneuvers can be seen in Figure 6. Each incremental

Figure 6. Divergent But Not Coordinated Maneuvers

velocity change by the ownship along its maneuver maintains divergence from the intruder, assuming that
the intruder continues its originally linear trajectory without turning. The same holds for the intruder if
the ownship continues its original trajectory. However, if they both maneuvered at the same time, the
aircraft would collide at approximately 230.5 seconds after the initial states. This shows that for the safety
that coordination ensures, the definition of the instantaneous repulsive criterion must restrict maneuvers in
the initially-divergent case more than just requiring continued divergence. This is the reason for the more
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elaborate conditions in Formula 6 in Section III in the divergence case, i.e., when s · v ≥ 0, which require

ε det(v′,v) ≤ 0 and (v = 000 ⇒ s · v′ ≥ 0) and (v 6= 000 ⇒ s · v′ > s · v).

VI. Conclusion

This paper extends previous work [4,5] on coordination for instantaneous maneuvers. That work focused
mostly on conflict resolution, where distances between the aircraft often make the instantaneous maneuver
assumption a reasonable approximation. However, for cases where the time to conflict is small, or alterna-
tively for recovery from loss of separation, the piecewise linear kinematic model used in this paper provides
a better approximation of actual aircraft trajectories. This model is also better at determining whether
coordinated behavior will actually be observed by aircraft executing those maneuvers.

This paper presents the notion of a criterion for kinematic, piecewise linear maneuvers that guarantees
independence and implicit coordination with respect to repulsiveness. Implicit coordination can be useful for
ensuring safe interplay of maneuvers between aircraft, because aircraft do not need to communicate anything
other than their original positions and velocities for the kinematic maneuvers to exhibit coordination. It is
also important to note that implicit coordination can enhance safety even when aircraft communicate more
information about their intent. In that case, it can add an extra layer of safety, because it can guarantee
coordination even when communication fails or messages are dropped, as long as the aircraft have accurate
estimates of each other’s current positions and velocities.

The primary motivation behind the further development of the concept of implicit coordination is that
it enhances safety features key to any separation assurance system. Thus, the theorems presented here
have been proved correct in an interactive theorem prover, which is a system that allows safety properties
to be stated and formally proved. The use of an interactive theorem prover is justified by the paramount
importance of safety in new air traffic management systems.
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