
1

BENEFITS OF A UNIFIED LaSRS++ SIMULATION FOR NAS-WIDE AND

HIGH-FIDELITY MODELING

Patricia Glaab, NASA Langley Research Center, Hampton, VA

Michael Madden, NASA Langley Research Center, Hampton, VA

Abstract

 The LaSRS++ high-fidelity vehicle simulation

was extended in 2012 to support a NAS-wide

simulation mode. Since the initial proof-of-concept,

the LaSRS++ NAS-wide simulation is maturing into

a research-ready tool. A primary benefit of this new

capability is the consolidation of the two modeling

paradigms under a single framework to save cost,

facilitate iterative concept testing between the two

tools, and to promote communication and model

sharing between user communities at Langley.

Specific benefits of each type of modeling are

discussed along with the expected benefits of the

unified framework.

 Current capability details of the LaSRS++ NAS-

wide simulations are provided, including the

visualization tool, live data interface, trajectory

generators, terminal routing for arrivals and

departures, maneuvering, re-routing, navigation,

winds, and turbulence. The plan for future

development is also described.

Acronyms

ADRS Aeronautical Datalink and Radar

Simulation

ARINC Aeronautical Radio Incorporated

ASAB Aeronautics Systems Analysis

Branch

ASTOR Aircraft Simulation for Traffic

Operations Research

ATM Air Traffic Management

ATOL Air Traffic Operations Lab

ATOS Airspace and Traffic Operations

System

CMF Cockpit Motion Facility

CSAOB Crew Systems and Aircraft

Operations Branch

DOF Degrees of Freedom

FAA Federal Aviation Administration

FMS Flight Management System

HITL Human in the Loop

JNI Java Native Interface

JSC Johnson Space Center

KTG Kinematic Trajectory Generator

LaRC Langley Research Center

LaSRS++ Langley Standard Real-time

Simulation in C++

MACS Multi-Aircraft Control System

MAVERIC Marshall Aerospace Vehicle

Representation in C

MSFC Marshall Space Flight Center

NAS National Airspace System

SDAB Simulation Development &

Analysis Branch

SID Standard Instrument Descent

SMART NAS Shadow Mode Assessment using

Realistic Technologies in the NAS

STAR Standard Terminal Arrival Route

VM Virtual Machine

Background

 In 2012, the Langley Standard Real-time

Simulation in C++ (LaSRS++) was extended to

allow the framework to support systems-level

simulation of the National Airspace System (NAS),

also called NAS-wide simulation. The LaSRS++

high-fidelity vehicle simulation actively supports

studies involving commercial transport and military

aircraft, launch vehicles, and spacecraft. Simulations

are hosted as fast-time on the desktop, with humans-

in-the-loop (HITL) in research cockpits, and in flight

tests using Langley Research Center (LaRC) aircraft.

The simulation architecture was already designed to

support varying research missions on varied

platforms. With the addition of the NAS-wide

modeling capability, this range of research was

extended to include systems-level analysis of the

https://ntrs.nasa.gov/search.jsp?R=20150000565 2019-08-31T14:37:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42720525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

airspace, primarily in support of the Next Generation

Air Transportation System, or NextGen.

 The initial implementation of the LaSRS++

NAS-wide model was performed as a proof-of-

concept to verify that the LaSRS++ high-fidelity

C++ program was able to handle the very large

number of objects and fast processing speed required

to support NAS-wide modeling. After successful

proof-of-concept testing, work progressed to evolve

the LaSRS++ NAS-wide simulation with models

needed to support systems-level airspace research.

 Creation of a single software framework to

support Langley technology concepts offers

significant potential cost benefits. This cost savings

will result from the use of an existing in-house

LaSRS++ software support team that can be tasked

on an as-needed basis. Although some models and

techniques are unique to the new NAS-wide

paradigm, the shared style and architecture of the

LaSRS++ NAS-wide and high-fidelity vehicle

framework allows software developers to transition

quickly to the NAS-wide paradigm. Another

important benefit is the greater potential for

communication, model sharing, and mission testing

that is facilitated by allowing different research

groups to operate in a single, unified environment.

 A similar set of goals was envisioned in 1997

when the LaSRS++ simulation framework was

extended to support the simulation-to-flight mission

for the LaRC 757 aircraft. This capability resulted in

an estimated savings of $17M in the first 10 years of

use [1]. Once the LaSRS++ NAS-wide simulation is

ready for research, it is expected to save more

money per year than the total cost of its

development.

 The Aeronautics Systems Analysis Branch

(ASAB) is providing the expertise for the initial

NAS-wide model development. Models hosted in

other NAS-wide simulation programs cannot be

ported directly to LaSRS++ because of the

differences in language and calling structure.

Therefore, the Langley Simulation Development and

Analysis Branch (SDAB) is providing expertise to

stage the models in the LaSRS++ architecture. The

successes achieved to date are a result of this

collaboration.

Benefits of High-Fidelity Simulation

 High-fidelity vehicle simulations are critical to

determining the feasibility and acceptability of new

technologies to pilots and controllers who must use

them. This is facilitated early in the design by human

testing through HITL simulation. This style of

simulation attempts to present as accurate a

depiction of reality as possible to the pilot subject

flying the mission for research and evaluation. The

simulation scenario is staged from the point of view

of the primary aircraft being modeled, also called the

“ownship”. These simulations are used to evaluate

display concepts, pilot workload, handling qualities,

and vehicle response. They can also help determine

exactly how a concept technology can be staged in

consideration of existing hardware systems on an

aircraft, which is a key factor in assessing the cost of

adoption of the technology to operators.

Benefits of NAS-Wide Simulation

 NAS-wide simulation modeling studies became

prevalent in the early 2000’s, enabled by increasing

compute speed and modern software languages.

Unlike high-fidelity vehicle simulations which focus

on the details of the ownship, NAS-wide simulations

focus on the overall picture. Details of how aircraft

characteristics are achieved are not as important as

succinctly capturing the behavior of the vehicle so it

can be tested in the larger flow. These simulations

were developed to support cost and benefit

assessment of the impact of individual technology

concepts deployed at a NAS-wide scope.

Improvements that seem minor for a single vehicle

can demonstrate substantial system-wide benefit if

applied to a large number of flights. Conversely, a

seemingly substantial benefit that can only be

realized by a few flights or in a limited region may

not justify the infrastructure cost of adoption.

 A substantial benefit of NAS-wide simulations is

the allowance for emergent behavior in the resulting

flow dynamics. Emergence is a process whereby

larger patterns and regularities arise through

interactions of smaller or simpler entities. In a NAS-

wide simulation, these emergent behaviors can

reveal flow characteristics that are difficult or

impossible to predict when the individual model is

considered separately or at a limited scale. These

3

unpredicted consequences can be the “Achilles heel”

of technology products making their way into larger

NAS testing for the first time. A NAS-wide

simulation can uncover many of these issues early in

the development process, often remedied with minor

changes if realized early enough.

 NAS-wide simulations must run their full

scenario in a very short amount of time to be useful,

preferably in minutes rather than hours. To model

this many aircraft concurrently and interactively on a

single computer (often a laptop), they use aircraft

models that are at lower detail level than their high-

fidelity vehicle simulation counterparts. Dynamic

actors in NAS-wide simulations are often based on

parameterized models, and the output metrics relate

to systemic properties (like total delay, average

throughput, and overall fuel reduction). The NAS-

wide aircraft can also contain action and response

algorithms to portray pilot behavior. This allows

each of the tens of thousands of flights to be an

intelligent actor in the scenario in a repeatable

fashion and without the need for support hardware

(like pseudo-pilot stations).

Unified Vehicle and NAS-Wide

Simulation Approach

 The adoption of promising new NextGen

technologies into real-world use will require

substantial changes to the existing Air Traffic

Management (ATM) infrastructure by the FAA and

industry stakeholders. The costs associated with

these changes must be justified by the NAS-wide

benefit and vetted for user acceptability. Technology

concept development using an iterative approach

with both high-fidelity and NAS-wide modeling can

quantify these benefits more completely and

demonstrate acceptability, resulting in a product that

is commercially viable earlier.

 At the same time that NAS ATM stakeholders

demand more from the research community, budgets

provide less. Efforts to integrate labs or to re-host

products into new test beds can be tedious and

expensive endeavors when done on a project-by-

project basis. This type of integrated capability is

only cost effective if it can be shared by many

projects and can provide continued return on

investment over time. No one project can absorb this

cost within their allocated time and budget. Once

available, however, many projects can benefit.

 This same philosophy is a driver for NASA’s

current investment in the Shadow Mode Assessment

using Realistic Technologies for the National

Airspace System (SMART NAS) initiative. SMART

NAS is a simulation framework that is expected to

accelerate the transformation of the NAS by

providing a platform for more comprehensive testing

of integrated airspace concepts. [2] NASA is

investing in the design and development of the

SMART NAS capability up front, expecting that the

return on investment will be exponentially greater

than the cost of development.

Impediments to a Unified Simulation

 An impediment to iterative testing in both a high-

fidelity and a system-level environment is the unique

tool sets used by each group. Research simulations,

regardless of their style, are supported by complex

executives and architectures. Transitioning models

from one environment to another is much more

complicated than simply relocating the software and

supplying inputs and outputs. Architectural

constraints often require changes to the software to

allow it to operate properly within a different calling

scheme and using a different set of available state

variables.

 Differing software language conventions for real-

time versus NAS-wide simulations also impede

iterative concept testing. Most NAS-wide

simulations are in Java. Simulations which require

hard-deadline real-time operation (which includes

the LaRC HITL simulators) cannot use Java because

of the garbage-collection process, which is used by

the Java Virtual Machine (VM) to clean up unused

memory. Though the user can tune the way Java

runs the garbage collection and can set

recommended limits on its duration and frequency

[3], it cannot be turned off entirely.
1

1
 Disabling the garbage collection was removed after Java

1.1, although the syntax was supported until Java 1.4.

4

 For a system without real-time operational

constraints, the Java garbage-collector is a valuable

service that eliminates the tedium of tight memory

management. However, the process is inherently

non-deterministic in duration. This prevents the level

of control required for the tightly managed real-time

frame. Simulations that must support hard-deadline

real-time operation are written in languages that

allow the programmer to control all system calls and

memory allocation. Legacy real-time simulations

were often written in FORTRAN. Modern

frameworks often use some derivative of C. For

example, the Johnson Space Center (JSC) “Trick”

simulation is written in C--, Marshall Space Flight

Center’s (MSFC) Marshall Aerospace Vehicle

Representation in C (MAVERIC) simulation is in C

and C++ [4], and LaSRS++ is written in C++. Java

and C-based language developers also use different

coding styles, which contributes significantly to the

difficulty in transitioning between existing real-time

and NAS-wide paradigms.

 Table 1 captures some of the differences in

vehicle versus NAS-wide simulation frameworks.

Trait Vehicle Simulation NAS-Wide Simulation

Language Usually a version of C or FORTRAN Usually Java

Programming

considerations

Memory allocation and system calls must be

completed before or after the real-time run.

System calls are non-deterministic in length and

often cause frame overruns (a simulated second

takes more than a second of wall clock time).

Frame overruns cause a buildup of error between

simulation states and internally computed states

of avionics and simulator hardware, such as a

control loader or Flight Management System

(FMS).

Overall time to execute the

run is prioritized, rather than

consistency in timing between

individual frames. Techniques

like distribution of operations

and event-driven computations

are frequently employed to

increase overall run speed.

Clock Can support real-time or fast-time Usually only fast-time

Length of run Simulated runs span minutes, seldom more than

a few hours.

Simulated runs can span

several days (in fast-time)

Viewpoint From the ownship (vehicle being simulated) Bird’s eye view (no ownship)

Vehicle

Lifespan

Simulated vehicle (ownship) is active for entire

duration of run

Flights enter and exit the

simulated day[s] at designated

departure and landing times

Metrics Typically relate to the ownship (aircraft state

data, environmental states, Cooper-Harper scales

for pilot workload, pilot controls movement)

Typically relate to system

characteristics (averages/ totals

of measured states of all

flights)

Traffic

intelligence

Traffic (non-ownship) movement is usually

predetermined (e.g., based on a previously

recorded path) or is assisted by pilot actions with

a simplified cockpit (a pseudo-pilot station).

Traffic aircraft have artificial

intelligence to respond to

simulated situations through a

“pilot” model. All flights can

be intelligent actors.

Table 1. Characteristic differences between vehicle and NAS-wide simulations

5

Unified LaSRS++ High-Fidelity and

NAS-Wide

 While the Langley airspace research community

can benefit from an iterative concept development

and test approach offered by both vehicle and NAS-

wide simulations, this was not a cost-effective option

in the past for reasons mentioned in the previous

section. The time and effort required to re-host a

software model from an event-based Java calling

scheme (as typical for NAS-wide simulations) into a

time-based C++ calling scheme (for Langley real-

time vehicle simulations) is difficult to the point of

being impractical, and so rarely occurs.

 This situation is being remedied for the Langley

research simulation community by the expansion of

the existing LaSRS++ vehicle simulation to support

NAS-wide modeling. This effort began in 2012 and

continued as a grass roots effort supported by one or

two developers at a time, but with considerable

progress in the two years since it was first proposed.

Langley ATOS and ATOL Facility

 The Langley Airspace and Traffic Operations

(ATOS) and Air Traffic Operations Lab (ATOL) are

development and test systems for new air traffic

management concepts and airborne technologies [5].

This lab allows pilots and controllers to assess the

usability, feasibility, and acceptability of new flight

deck technologies.

Figure 1. Langley ATOS Monitoring System [6]

 Within this lab are numerous “Aircraft Simulation

for Traffic Operations Research” (ASTOR) stations,

which can be configured to support single or dual

crew operations. ATOL and ATOS are operated by

the Crew Systems and Aviation Operations Branch

(CSAOB) at LaRC. The lab can model hundreds of

interactive background aircraft to create realistic

scenarios as staging for the live pilot test subjects.

Though the software is maintained independently by

CSAOB, the systems have some commonality with

the SDAB HITL simulator lab run using LaSRS++.

The ATOL lab is also written in C++ and runs in

either fast-time or real-time. The lab can run

independently, or in joint simulations with the

Cockpit Motion Facility (CMF) simulators linked to

ATOL for expanded test missions. ATOL also has

access to the LaSRS++ software repositories and

configuration management system, and reuses some

of the aircraft models from LaSRS++. Therefore,

models that are developed under the LaSRS++

framework for the NAS-wide models will also be

available to ATOL developers. This may be

particularly useful for sharing the SMART NAS

interfaces that will be created once that system is

available.

Figure 2. ATOL Displays and Controller Stations [6]

6

LaRC LaSRS++ Framework

 Extension of the LaSRS++ simulation to support

NAS-wide operation was simplified by the software

architecture, which was designed to provide

flexibility for varied operational scenarios and was

extended several times in its lifespan to that end [7].

The simulation was originally adopted in 1995 for use

in the any of the simulator cockpits maintained by

SDAB, including Langley’s Cockpit Motion Facility

(CMF), or with fast-time operation on the desktop. In

1998, the mission for LaSRS++ was extended to

additionally provide the research system for the

Langley 757 aircraft, and eventually for all Langley

aircraft running flight test software. In 2005 and

2008, Mars and Moon environment models were

added, respectively, to support the space science

research.

 In 2011, LaSRS++ was extended to add a

distributed simulation capability for traffic modeling.

This allows LaSRS++ vehicles to send and receive

situational data required to model ADSB antenna

communication using traffic states supplied by

ASTOR models of the LaRC ATOS. It also provides

a one-way gateway to Ames' Aeronautical Datalink

and Radar Simulation (ADRS) which allows

LaSRS++ vehicle simulations to use the Ames' Multi-

Aircraft Control System (MACS) as an ATC station.

For the NAS-wide model, a new simulation entity

was created to manage the life cycle of NAS traffic

objects within the local simulation. This

“TrafficFlowManager” component builds models into

the simulation as simple aircraft that have type-

specific parameter-based trajectories, pilot decision-

making, and which can respond to airspace

management requests. TrafficFlowManager also

controls the lifecycles of the airspace management

components, which provide scheduling and routing

directives to initiate and adjust the flow of traffic.

 Figure 1 presents the high-level class architecture

of the three model styles within LaSRS++. Any of the

three model types can run independently or together

in a simulation scenario. In this diagram, the ATOS is

the supplier of ADSB information, but this data can

alternately come from the Ames MACS system or

from playback data from a previous run.

SMART NAS Shared Development

 The timing of this effort will allow both the

vehicle and NAS-wide LaSRS++ research

communities to share interface tools to SMART NAS

as they are added to the framework. The new

SMART NAS interface system will have the benefit

of two distinctly different operational paradigms

contributing to the design from the outset. LaSRS++

is expected to be one of the early-adopters of

SMART NAS technologies. By developing an

interface to serve both the NAS-wide and HITL

simulators from the outset, overall cost of

transitioning to SMART NAS will also be minimized.

Current Status of LaSRS++ NAS-Wide

 The majority of the simulation architectural and

infrastructure changes needed to support NAS-wide

simulation in LaSRS++ were completed during the

feasibility study in late 2012 and early 2013. Once the

NAS-wide framework changes were completed,

models running within it were extended and matured

to begin to provide functionality to ready them for

research.

Progress Monitor Visualization Tool

 Emphasis was put on early development of a

visualization monitor. One of the lessons shared by

other NAS-wide development teams was the need to

have visualization of trajectories available as soon as

possible. Without a visualization tool, verification

and validation relies on inspection of data values

which is error-prone. Problems that are obvious with

a visualization display running can go undetected for

years without one. Therefore, a display called the

Progress Monitor was created early in the

development process. This display uses a birds-eye

viewpoint that can be zoomed, slewed, or rotated.

When the Progress Monitor runs, it artificially slows

down the simulation speed to force the traffic to

move slowly enough to be captured for display.

When run speed is critical and the monitor is not

needed, the user can run the simulation without it.

7

Figure 3. LaSRS++ Class Architecture for NAS-Wide, External Traffic, and High-Fidelity Operation

8

 The Progress Monitor is a good example of

software reuse (and associated cost savings) possible

by using a common framework. The map background

for the display was created to support an earlier

LaSRS++ real-time project and was resurrected for

the NAS-wide simulation. The interface architecture

between the simulation program and the display

program (which runs as a separate process) is also

reused and is standard for display communication

with LaSRS++ real-time simulator projects. Since the

new Progress Monitor display uses LaSRS++

standard methods, this display can be reused in the

future for real-time projects and is already being

considered for cockpit display of weather. The icons

that show traffic were also reused from an existing

simulator cockpit navigation display.

 A feature was recently added to this display to

allow a spacing disk to be optionally enabled around

any or all aircraft. The spacing disk radius and

thickness are sent as individual aircraft parameters

and are used to monitor loss of separation events for

testing or for demonstration.

Figure 4. LaSRS++ NAS-Wide Progress Monitor

Live Data Interface

 An interface was added to the simulation to

process live data using a web-based blended source

data service. Prior to the creation of this interface,

live data was never used for LaSRS++. The capability

was added as a feasibility test and to provide insight

into the benefits and challenges of using this type of

data in a simulation. FlightAware was selected

because their service provides data from a

compilation of sources through a single protocol. This

allows a user to easily experiment with different data

types through the same server. The LaSRS++ NAS-

wide simulation currently only takes advantage of

aircraft state data, which is used to locate traffic for

interactive modeling and for display on the Progress

Monitor. However, the API already exists in the

simulation to access weather data, flight plans, and all

other information offered by the service.

Figure 5. Live Traffic Portrayed in LaSRS++ NAS-Wide

Trajectory Generators

 The term “trajectory generator” is used in a

different context by the flight vehicle modeling

community versus the NAS-wide modeling

community. In the vehicle modeling world, a

trajectory generator is the component of a flight

management system (FMS) which predicts a path

through space for the host aircraft to follow to

navigate efficiently along the 3-D route selected by

the pilot. In this case, the trajectory is not the state of

the aircraft, but rather the target state. In the NAS-

wide modeling community, a trajectory generator is

the component of the simulation that provides the

actual state for a modeled aircraft at all points along

its simulated path based on performance database

criteria. The trajectories are constructed from

estimated performance data for specific aircraft types.

The resulting paths are point-mass models with 3

degrees of freedom (3 DOF), as opposed to the 6

DOF trajectories of the high-fidelity aircraft models.

The lower fidelity state models are appropriate for the

systems-level studies that use them, and they run very

quickly. This allows the NAS-wide simulation to run

tens of thousands of aircraft on a single processor.

 The LaSRS++ vehicle simulation already

contained many high-fidelity performance models

and can model FMS trajectories, but the type of

trajectory generators needed by the NAS-wide

framework had to be added. Three trajectory types

9

are currently available. A nodal model was created

during the initial development to exercise the

framework features (like data logging, file

processing, and timing features). A second option

called the Kinematic Trajectory Generator (KTG) [8]

from Intelligent Automation, Inc. (IAI) was added

which uses aircraft-specific performance

characteristics and provides an integrated path. The

KTG trajectory is also used in ACES, and provided a

common thread between the two simulations that was

useful for comparison testing during the proof-of-

concept phase. The downside of this version of KTG

for the LaSRS++ simulation is that it is written in

Java, requiring it to be interfaced to LaSRS++

through the Java Native Interface (JNI).

Communication between the C++ host and the Java

KTG code through the JNI is very difficult to debug

and impeded the progress of route modification

modeling between LaSRS++ and KTG.

 Two solutions were initiated to remove the Java

code from the LaSRS++ NAS-wide model. One is the

replacement of the Java KTG with a new version now

available from IAI that is entirely in C++. This work

is scheduled for completion by the end of 2014. The

second solution is a new in-house C++ trajectory that

is an evolution of the original nodal model and

provides an integrated path using aircraft-specific

performance data. The in-house C++ trajectory was

completed in spring of 2014. The KTG trajectory is

more mature and provides a richer set of features and

higher fidelity, but the integrated C++ trajectory is

also a useful model for many applications. The in-

house C++ trajectory has the additional benefit of

accessibility of the source code, since the C++

version of KTG will only be available as a linked

executable library.

Arrival and Departure Routes

 The ability for traffic to use Standard Instrument

Departures (SIDs) or Standard Terminal Arrival

Routes (STARs) is available for LaSRS++ NAS-

wide. At startup, the program reads a text file that

uses the same format as the FAA’s 56 Day NASR

“stardp.txt” data file. This file is available via the web

from the FAA for US government use through

subscription.

 The 56-Day NASR STAR and SID routes file

commonly contains multiple versions of routes, in

which case the first version is used by the simulation.

This file contains the superset of all route options, but

does not determine which subset is used for any given

simulation run. A separate initialization file contains

the list of airports that will use arrival and departure

routes, and which routes are active at startup. Only

active routes are used by simulated traffic. Airports

not specifically designated for SID/STAR arrivals

default to a nodal terminal airspace model for run

speed efficiency.

Navigation Database

 The NAS-wide simulation reuses the Navigation

Database system already available in LaSRS++ to

determine the location of arrival and departure

airports, named waypoints in arrival and departure

routes, and runway parameters. This data resides in

an ARINC
2
 424-formatted text file for the continental

US which can be used as-is or tailored for research

use. This navigation database information is used by

the NAS-wide simulation to determine the airport

centers for the default terminal airspace regions and

for the locations of the runway thresholds at each

airport.

Maneuvering and Rerouting

 After the initial path for a flight is created, the

flight may have to alter its path to avoid a conflict or

to change its arrival time to interim waypoints or to

the arrival runway. A maneuver can be added to the

current route to issue a short-term divergence from

the original path. Once the purpose of the maneuver

is accomplished, the flight reacquires the original

route as soon as possible. With rerouting, the latitude

and longitude points that contribute to the aircraft’s

route are changed permanently and the flight is not

expected to reacquire the original route. This might

be done, for example, to avoid a large weather

system.

2
 Aeronautical Radio, Incorporated (ARINC) maintains

formatting standards for communication protocols for the

aeronautics industry, including the 424 standard which

pertains to navigation databases.

10

 The KTG trajectory generator option within the

NAS-wide simulation supports maneuvering with a

user-friendly interface to request changes. The

simulation currently only uses the path stretch and the

speed change maneuvers to alter aircraft paths, but

options are also available for altitude and course

changes, and for combinations of several of these

options linked in tandem. Maneuvering is not yet

available for the C++ trajectory, but is a planned

future feature. Rerouting is available for either

trajectory and is handled by modifying the reference

points for a flight’s path and requesting a new

trajectory prediction.

Wind and Turbulence

 The NAS-wide simulation makes use of the

existing wind and turbulence models from LaSRS++.

A variety of models are available, including constant

and 4-D location wind models and several options for

wind turbulence and wind shears. Numerous other

environmental models are available in LaSRS++ that

are frequently used by the vehicle simulations but are

not yet used in the NAS-wide simulation. These

include cloud layers, fog, and sun rise and set timing

which could be useful in the future for localized

visibility constraints on spacing, for example, while

the wind information could be useful in assessments

of noise impact in the vicinity of airports.

Future Development

 Additional functionality is in progress, with

optional new capabilities envisioned for farther term

development. The near-term features center on arrival

and departure scheduling models. Though aircraft can

already follow SID or STAR routes, there is no

system monitoring or advising them for specific

waypoint crossings or runway threshold touchdown

times to target safe separation. The addition of a

system to provide this is a near-term research need.

Properly implementing such a scheduler will rely on

an expanded maneuvering and rerouting capability,

which is also targeted for near-term development.

 As discussed in the Trajectory Generator section,

a new version of the KTG trajectory generator is

currently being interfaced to the NAS-wide

simulation. This trajectory will be available as a

fourth option and will allow the more mature KTG

features and fidelity to be used in the simulation

without Java. As part of the addition of KTG in C++,

the trajectory generator manager is being reworked to

allow any trajectory generator to be added to the

simulation in the future as a plug-in.

 A long term goal is to allow the LaSRS++ HITL

simulator cockpits to use the NAS-wide aircraft as

intelligent traffic models. Use of this type of

intelligent traffic model in the current HITL

simulations requires connection to and support of the

ATOL lab. Once the NAS-wide models are integrated

to the real-time simulation, intelligent high-volume

traffic will also be available in LaSRS++-only

operations and also with fast-time vehicle simulations

on the desktop.

 Adding this capability will require some minor

changes to the vehicle simulation executive to create

and manage the NAS-wide flights. Once integrated,

this will also allow the HITL simulations to run in

scenarios that use actual live traffic in progress. The

implementation of this set of features is conditional

on funding and need from the research clients that

will use that service.

References

1. Madden, M., and Glaab, P., “The Langley

Standard Real-time Simulation in C++; 2005

Software of the Year Presentation”, NASA IV&V

Facility, Fairmont WV, June 22, 2005.

2. SMART NAS NNA13446416L, Attachment A:

Statement of Work, Nov 2, 2012,

http://prod.nais.nasa.gov/eps/eps_data/154428-

DRAFT-001-001.docx.

3. Oracle, “Tuning Garbage Collection with the 5.0

Java Virtual Machine”, Sun Microsystems,

http://www.oracle.com/technetwork/java/gc-

tuning-5-138395.html.

4. NASA, “Marshall Aerospace Vehicle

Representation in C (MAVERIC-II) Computer

Program”, Tom Knight, June 12, 2014,

http://techtran.msfc.nasa.gov/software-

catalog/MFS-31989-1-MAVERIC-II.php.

5. NASA, “NextGen Takes Flight with Air Traffic

Operations Lab Upgrades”, Denise Lineberry,

July 22, 2013, http://www.nasa.gov/larc/nextgen-

http://prod.nais.nasa.gov/eps/eps_data/154428-DRAFT-001-001.docx
http://prod.nais.nasa.gov/eps/eps_data/154428-DRAFT-001-001.docx
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://techtran.msfc.nasa.gov/software-catalog/MFS-31989-1-MAVERIC-II.php
http://techtran.msfc.nasa.gov/software-catalog/MFS-31989-1-MAVERIC-II.php
http://www.nasa.gov/larc/nextgen-takes-flight-with-air-traffic-operations-lab-upgrades/

11

takes-flight-with-air-traffic-operations-lab-

upgrades/.

6. Lewis, T., “Airspace and Traffic Operations

Simulation (ATOS) and the Air Traffic

Operations Laboratory (ATOL)”, Crew Systems

and Aviation Operations Peer Review, Feb 29,

2012, NASA, Hampton, VA.

7. Madden, M., “Architecting a Simulation

Framework for Model Rehosting”, AIAA 2004-

4924, AIAA Modeling and Simulation

Technologies Conference, Providence, RI, Aug.

2004.

8. Zhang, Y., Satapathy, G., Manikonda, V., and

Nigam, N., “KTG: A Fast-time Kinematic

Trajectory Generator for Modeling and

Simulation of ATM Automation Concepts and

NAS-wide System Level Analysis”, AIAA 2010-

8365, AIAA Modeling and Simulation

Technologies Conference, Toronto, Canada, Aug.

2010.

33rd Digital Avionics Systems Conference

October 5-9, 2014

http://www.nasa.gov/larc/nextgen-takes-flight-with-air-traffic-operations-lab-upgrades/
http://www.nasa.gov/larc/nextgen-takes-flight-with-air-traffic-operations-lab-upgrades/

