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Abstract 
The runway is a critical resource of any air transport system. It is used for arrivals, departures, and for 

taxiing aircraft and is universally acknowledged as a constraining factor to capacity for both surface and 

airspace operations.  It follows that investigation of the effective use of runways, both in terms of selection 

and assignment as well as the timing and sequencing of the traffic is paramount to the efficient traffic 

flows. Both the German Aerospace Center (DLR) and NASA have developed concepts and tools to improve 

atomic aspects of coordinated arrival/departure/surface management operations and runway 

configuration management. 

In December 2012, NASA entered into a Collaborative Agreement with DLR.  Four collaborative work areas 

were identified, one of which is called “Runway Management.” As part of collaborative research in the 

“Runway Management” area, which is conducted with the DLR Institute of Flight Guidance, located in 

Braunschweig, the goal is to develop an integrated system comprised of the three DLR tools - arrival, 

departure, and surface management (collectively referred to as A/D/S-MAN) - and NASA’s tactical runway 

configuration management (TRCM) tool. 

To achieve this goal, it is critical to prepare a concept of operations (ConOps) detailing how the NASA 

runway management and DLR arrival, departure, and surface management tools will function together to 

the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are 

assessed through a functional analysis method described in this report. The report first provides the high-

level operational environments for air traffic management (ATM) in Germany and in the U.S., and the 

descriptions of the DLR’s A/D/S-MAN and NASA’s TRCM tools at the level of details necessary to 

compliment the purpose of the study. Functional analyses of each tool and a completed functional analysis 

of an integrated system design are presented next in the report. 

Future efforts to fully develop the ConOps will include: developing scenarios to fully test environmental, 

procedural, and data availability assumptions; executing the analysis by a walk-through of the integrated 

system using these scenarios; defining the appropriate role of operators in terms of their monitoring 

requirements and decision authority; executing the analysis by a walk-through of the integrated system 

with operator involvement; characterizing the environmental, system data requirements, and operator 

role assumptions for the ConOps. 
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1. Introduction 
The runway is a critical resource of any air transport system and is universally acknowledged as a 

constraining factor to capacity for both surface and airspace operations.  It follows that investigation of 

the effective use of runways, both in terms of selection and assignment as well as the timing and 

sequencing of the traffic is paramount to the efficient traffic flows. Both the German Aerospace Center 

(DLR) and NASA have developed concepts and tools to improve atomic aspects of coordinated 

arrival/departure/surface management operations and runway configuration management. 

Both NASA and DLR have extensively studied the efficient use of runways. For instance, DLR is conducting 

research on tactical decision support tools for air traffic control operators (ATCO) to achieve compact and 

coordinated arrival and departure sequences that also consider surface traffic. Arrival/Departure/Surface 

Management Systems individually plans every aircraft and displays its calculation results as advisories to 

the ATCO for implementation. In the area of runway management, NASA has focused on developing a 

decision support tool to assist air traffic personnel with decisions regarding the selection of runway 

configurations and runway usage. These decision support tools are intended for use by those making 

runway management decisions (usually supervisors or traffic flow managers) in the approach control 

facilities and the airport traffic control towers.  

1.1. Purpose of Analysis 
In December 2012, NASA entered into a Collaborative Agreement with DLR, located in Braunschweig, 

Germany.  Four collaborative work areas were identified, one of which is called “Runway Management.” 

As part of collaborative research in the “Runway Management” area, which is conducted with the DLR 

Institute of Flight Guidance, located in Braunschweig, the goal is to develop an integrated system 

comprised of the three DLR tools - arrival, departure, and surface management tools - and NASA runway 

management tool.  

To achieve this goal, a tentative milestone (currently under review) for fiscal years (FY) 2015-2016 

provides for the preparation of a concept of operations (ConOps) detailing how the NASA runway 

management tools and DLR arrival, departure, and surface management tools will function together to 

the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are 

assessed through functional analysis method given in this document.  

1.2. Document Organization 
Section 0 compares the air traffic management (ATM) systems in Germany and in the U.S. in terms of 

facilities and general procedures, and for both operations in terminal airspace and on the surface.  

Following this comparison of the operational environments, a more detailed description of the individual 

tools is presented in section 3. Section 4 presents the integrated system using the functional analysis and 

Section 5 concludes the analysis. Recommendations are also given in this section.  
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2. Air Traffic Management Environments: Germany and the United States 
The following section compares the operational contexts in Germany and the United States in which the 

respective tools were developed.  A detailed description of the operational contexts can be found in ref. 

1 (unpublished). Comparisons of procedures supporting each system are described. Table 1 compares air 

traffic environments in Germany and the United States, while Table 2 compares their air traffic control 

operations. 

Traffic flow management is responsible for the overall flow of traffic in the respective airspace systems 

from a systemic perspective. Terminal airspace is normally composed of traffic transitional to 

(departures)/from (arrivals) enroute airspace.  Terminal airspace as well as the airport surface are the 

relevant environments for the NASA and DLR integrated system. Effects of decisions made as a result of 

the integrated tools may affect enroute operations as well, albeit less directly.  Note that system 

comparisons are limited to the level of detail necessary to compliment the purpose of the study. 
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Table 1: Air Traffic Environment 

Enabling environment German U.S. 

Air Traffic Control (ATC) 
system 

The German air navigation service provider, “Deutsche 
Flugsicherung GmbH” (DFS), an institution of the 
German Federal Ministry of Transport and Digital 
Infrastructure (BMVI), is responsible for the operation of 
the air traffic control system as related to the integrated 
tools.   

The Federal Aviation Administration (FAA), an agency of 
the Department of Transportation, is responsible for the 
operation of the air traffic control system. 

Operational regulations The manual of operational regulations for Air Traffic 
Control Services, called Regulation of the 
Implementation of Air Traffic Control (ref. 10) is the 
primary document for air traffic control, with additional 
regulations including national air traffic regulations, 
Letters of Agreement, ICAO publications, 
EUROCONTROL central flow management unit (CFMU) 
handbook, etc.  

The air traffic control manual FAA JO 7110.65, “Air 
Traffic Control” (ref. 11) is the primary document 
governing the procedures for air traffic operations in the 
U.S. 

Facilities 

The Network Management Operations Center (NMOC), 
responsible for central traffic flow management in 
Europe, is part of EUROCONTROL. 

Air Traffic Control System Command Center (ATCSCC), 
responsible for traffic flow management on a national 
scale. 

Area Control Centers (ACC), responsible for enroute 
traffic in the lower airspace (generally between ground 
level to any flight levels from 245 to 315).  

Air Route Traffic Control Centers (ARTCC), primarily 
responsible for enroute traffic. 

There is no specific physical facility for approach control 
(ref.11a). Within the ACC facilities, there are controller 
working positions called Approach Control (APP), 
responsible for servicing all arriving and departing 
aircraft of a specific aerodrome1. 

Terminal Radar Approach Control (TRACON), 
responsible for air traffic services to aircraft departing 
airports and transitioning into the enroute environment 
and for arrival aircraft transitioning from the enroute 
environment to airports. 

Air Traffic Control Tower (TWR), responsible for air 
traffic services to aircraft in the immediate vicinity of the 
airport and on the airport surface. 

Airport Traffic Control Towers (ATCT), responsible for air 
traffic services to aircraft on the airport surface 
(excluding ramp or non-movement areas). 

                                                           
1 According to the International Civil Aviation Organization (ICAO), an aerodrome is “a defined area on land or water (including any buildings, installations and 
equipment) intended to be used either wholly or in part for the arrival, departure, and surface movement of aircraft.” 
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Table 2: Air Traffic Control Operations 

ATC Operations Germany U.S. 

Traffic flow 
management 

Traffic flow management in Germany is called air traffic 
flow and capacity management (ATFCM) and is 
administered by the DFS and the NMOC (former CFMU) of 
EUROCONTROL. The objectives of ATFCM are adjusting 
demand and capacity on the basis of strategic planning. 

Traffic flow management is a process managed through 
the ATCSCC and a network of traffic management units 
throughout the U.S. The basic objective of traffic 
management is to provide for an efficient flow of traffic 
throughout the National Airspace System (NAS) which is 
manageable for air traffic controllers. 

Terminal area 
airspace  

 
 

Terminal area airspace varies significantly based on local 
constraints that are nearby cities, mountains and legal 
issues regarding noise and emissions. The dimensions are 
typically 16-27 nautical miles from the primary airport (ref. 
13). Departures and arrivals are normally guided on 
predefined departure and arrival routes dependent on the 
aircraft equipment (ref. 14). Arrival and departure “fixes” 
are designated waypoints on the standard terminal arrival 
route (STAR) and the standard instrument departure (SID), 
respectively. Arrival fix denotes a metering fix, called the 
clearance limit of the STAR. Dependent on the airport, the 
clearance limit can lie inside or outside of the terminal area 
of the airport. Departure fixe denotes the last waypoint of 
the SID.  

Terminal area airspace varies significantly based on local 
constraints. Several high density facilities have adopted a 
common design which lends itself to the use of common 
procedures. This design is commonly referred to as a “four-
corner post system” which defines the arrival routes from 
the northeast, southeast, southwest, and northwest into 
the terminal airspace. Departure “gates” are located 
between the arrival corridors in the north, east, south, and 
west areas of the airspace. Arrival and departure “fixes” 
are normally located at the terminal boundary, agreed to 
by the TRACON and adjacent facility, usually an ARTCC. The 
dimensions are typically 35-40 nautical miles from the 
primary airport. 
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ATC Operations Germany U.S. 

Terminal airspace 
operations for 

arrivals 

The aircraft navigate via a STAR route to the Initial 
Approach Fix (IAF).  Generally, aircrafts are expected to fly 
according to area navigation (RNAV) transition procedure, 
which is published in German aeronautical information 
publication (AIP). RNAV usually begins at the clearance 
limit (arrival fix) and leads the aircraft on the downwind 
segment to the final approach fix (FAF), usually 11–12 
nautical miles away from the runway threshold.  
 
Information on active runways is available through the 
Automatic Terminal Information Service (ATIS), and is 
updated every 30 minutes. Because runway assignment 
depends on aircraft wake class and on the flight direction, 
the flight-to-runway assignment is implicitly derived from 
the latest runway information from the ATIS. Before flight 
crews enter the terminal area, they have to listen to ATIS 
for the runway information. The APP controller also 
confirms which runway to use. The aircraft usually is 
handed over to the ATCT when or before passing the FAF. 

Generally speaking, arrivals flow from Center airspace into 
terminal airspace on routings defined by standard terminal 
arrival routes (STARs). Upon entry to the terminal area 
flight crews will be given a runway assignment.  At the 
terminal point of the STAR, controllers will provide 
headings for the transition to the final approach course. 
Aircraft will be sequenced with other traffic in the terminal 
area and the appropriate spacing’s/separation standards 
applied. The ATCT assumes responsibility of aircraft once 
they pass the FAF; in the U.S., the FAF is usually five 
nautical miles from the runway. In the event of a runway 
configuration change, a determination is made as to which 
aircraft will be the last to land on the current configuration, 
and the first aircraft for each arrival runway of the new 
configuration. 

Terminal airspace 
operations for 

departures 

Primarily aircraft are assigned to runways depending on 
their initial flight direction. Because of noise abatement 
procedures, aircraft always navigate via predefined 
standard instrument departure (SID) or via an assigned 
departure procedure.  

Departure aircraft are assigned runways based on initial 
direction of flight. To optimize spacing, aircraft are 
sequenced such that there are divergent headings 
(normally a minimum of 15 degrees) immediately after 
departure between successive departures. Departures will 
either be navigating via SIDs, or based on headings 
assigned by the controller.  
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ATC Operations Germany U.S. 

Airport surface 
area 

 
 

The airport surface is segmented into the maneuvering 
area and the apron. While the maneuvering area is 
controlled by ATC, the apron area is controlled either by 
the airport or ATC. The border for the handover between 
both areas is marked in the aerodrome charts published in 
the AIP of every airport. There are no marks on the 
taxiways, so there is no interruption in the taxi phase on 
the airport surface either from touchdown to engines off, 
and vice versa.   

The airport surface is divided into movement and non-
movement areas. It is quite common that the airlines lease 
gates and hence have control over all activity in the ramp 
area. The border between these responsibilities is marked 
by “spots” at many high density airports.  Every departure 
aircraft is cleared to proceed to a spot by the airline ramp 
controller. There, ATC specifically the ground controller, 
assumes responsibility for the aircraft and assigns a 
departure runway. 

Airport surface 
operations for 

arrivals 

Arriving aircraft are handed over from the “local 
controller” of TWR to the “ground controller” of TWR 
shortly after touchdown. While leaving the runway, the 
ground controller assigns a taxi route and confirms the 
gate. If control of the apron area is conducted by the 
airport operator, the ground controller hands over to 
apron control before the aircraft enters the apron area. 

Arrival aircraft are assigned an arrival runway which is 
usually closest to the arrival fix they have crossed upon 
entering the terminal area. The ATCT assumes 
responsibility of aircraft once they pass the FAF. The “local 
controller” issues a landing clearance; upon exiting the 
runway, the flight crew contacts the “ground controller” 
who issues clearance to the ramp or non-movement area, 
with necessary restrictions incorporated. Once arrival 
aircraft enter the ramp area, the “ramp controller” 
assumes their responsibilities.  
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ATC Operations Germany U.S. 

Airport surface 
operations for 

departures 

Departing aircraft get their enroute and start-up clearance 
(via voice or datalink communications) by clearance 
delivery in the ATCT, and pushback clearance from apron 
controller. When ready for taxi, apron controller assigns a 
taxi route in its area of responsibility. Before the aircraft 
pass the border of responsibility, the apron controller 
hands the aircraft over to the ground controller. Before the 
aircraft arrive at the departure runway, the ground 
controller instructs the aircraft to switch to the local 
controller who gives the line-up and take-off clearance. 

Aircraft movements are generally under the control of a 
“ramp controller” who is responsible for aircraft in the 
ramp area. While in this area, flight crews will obtain the 
Automatic Terminal Information Service information as 
well as their pre-departure clearance from the tower 
clearance delivery position. At many high density facilities, 
there are “spots” where departing aircraft wait for ATC to 
provide clearance into the movement area. Ground 
controller will provide clearance for aircraft to taxi to their 
departure runway. Departures are often subject to delays 
based on either constraints at the departure airport, or 
delays imposed based on considerations in the enroute 
environment or at the destination airport. The local 
controller will issue take-off clearance followed by a 
frequency change to the departure controller (located in 
the TRACON) shortly after the aircraft is airborne. 
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The basic objectives of the air traffic control systems in Germany and the United States are the same, i.e. 

to provide for the safe and efficient movement of aircraft. Although fundamentally the same, there are 

differences in procedures, airspace structure, roles/responsibilities, among others as described in this 

section. In Germany the general problem is the dense airspace caused by overflights of European air traffic 

and the small airport surface. With the consideration of noise abatement and the avoidance of storm cells, 

the rising traffic demand needs to be handled in the same airspace area. DLR is investigating how the 

present traffic demand can fully use the allocated capacity. In the U.S., the problem is the large number 

of aircraft and in many cases, limited surface area; there are, of course, many other aspects of the air 

traffic flow process and supporting elements that affect capacity and efficiency. There are on-going 

research efforts to address many facets of the airspace system in Germany and the U.S. 

3. Tools and Capabilities 

3.1. German Aerospace Center (DLR) Tools 

There are three well known concepts in Europe to handle arrival, departure, and surface traffic. These 

concepts are Arrival Management (AMAN), Departure Management (DMAN), and Surface Management 

(SMAN).  

Reference 2 defines AMAN as “a general term given to the process of safely and effectively arranging 

arrivals into a smooth efficient flow for landing at a destination airport.  Although no agreed definition is 

in place, when people consider or talk about dedicated Arrival Management software, they are usually 

considering this type of software specifically designed to provide assistance in metering and sequencing 

arrival streams of traffic and which gives, via electronic display, all the time management, and other 

information needed to implement efficient arrival management.” 

Reference 3 defines DMAN as “a planning system to improve departure flows at an airport by calculating 

the target take-off time (TTOT) and target start-up approval time (TSAT) for each flight, taking multiple 

constraints and preferences into account.”  

Reference 4 defines SMAN as “a tool within Advanced Surface Movement Guidance and Control System 

(A-SMGCS2) that will determine the optimal surface movement plans involving the calculation and 

sequencing of movement events and optimizing resource usage, while minimizing the environmental 

impact.” 

Based on these concepts, DLR developed research prototypes for decision support tools called 4 

Dimensional Cooperative Arrival Manager (4D-CARMA), Controller Assistance for Departure Optimization 

                                                           
2 A-SMGCS is “a system providing routing, guidance and surveillance for the control of aircraft and vehicles in order 
to maintain the declared surface movement rate under all weather conditions within the aerodrome visibility 
operational level (AVOL) while maintaining the required level of safety.” (skybrary, 
http://www.skybrary.aero/index.php/Advanced_Surface_Movement_Guidance_and_Control_System_%28A-
SMGCS%29 [last access: 2014-10-29]). 

http://www.skybrary.aero/index.php/Advanced_Surface_Movement_Guidance_and_Control_System_%28A-SMGCS%29
http://www.skybrary.aero/index.php/Advanced_Surface_Movement_Guidance_and_Control_System_%28A-SMGCS%29
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(CADEO), and Taxi Routing of Aircraft: Creation and Controlling (TRACC) for AMAN, DMAN, and SMAN, 

respectively. 

4D-CARMA is the DLR arrival management system that builds an arrival sequence, assigns an arrival time 

at the threshold, continuously adapts to the actual situation, predicts trajectories for all aircraft, and 

transforms them into appropriate guidance instructions for the air traffic controller (ref. 5). For any 

arrivals, 4D-CARMA’s planning responsibility begins when an aircraft enters the terminal maneuvering 

area, and ends when the aircraft touches down. The corresponding working positions are approach 

controller in the ACC (refer to table 1 for ACC definition). 

CADEO is the DLR departure management system that optimizes the departure sequence at the runways 

while considering arrivals on the same runway or a dependent runway. It provides the calculations of 

TTOT and TSAT to Airport Collaborative Decision Making System (A-CDM)3.  Departure queues at the 

runway are mostly avoided and the environmental stress is minimized (ref. 6). For any departures, 

CADEO’s planning responsibility begins approximately 20 minutes before an aircraft’s target off-block time 

(TOBT4), and ends when the aircraft takes off. The corresponding working positions are local, ground 

controller, and also clearance delivery controller in the TWR (refer to table 1 for TWR definition). 

TRACC is the DLR surface management system that generates conflict-free taxi routes from gate to runway 

and vice versa to meet TTOTs with a minimum of speed changes during the taxi process. Furthermore, it 

provides guidance instructions (speed and route) for the air traffic controller (ref. 7). For any arrivals, 

TRACC’s planning responsibility begins approximately five minutes before an aircraft’s target landing time 

(TLDT) and ends when the aircraft arrives at the gate. For any departures, TRACC’s planning responsibility 

begins approximately five minutes before an aircraft’s TOBT and ends when the aircraft lines up for 

departure. The corresponding working positions are ground controller and apron controller either seated 

in the air traffic control tower or a dedicated control facility. 

3.2. National Aeronautics and Space Administration (NASA) Tools 
System-Oriented Runway Management (SORM) consists of Runway Configuration Management (RCM) 

and Combined Arrival Departure Runway Scheduling (CADRS). RCM is subdivided into two different time 

horizons with different capabilities for different stakeholder (refs. 8, 9). RCM consists of a strategic and a 

tactical element. Research in the area of strategic runway configuration management is focused on 

balancing traffic demand and capacity in the NAS over a time horizon of six hours to support traffic flow 

management. TRCM calculates airport configurations and the configuration change time between these 

configurations over a time horizon of 90 minutes. 

                                                           
3 European A-CDM was based on the U.S. concept of Collaborative Decision Making to improve airport’s decision 
making by sharing accurate and timely information (skybrary, http://www.skybrary.aero/index.php/Main_Page [last 
access: 2014-10-29]). 
4 Target off-block time (TOBT) is the time that an aircraft operator or ground handler estimates that an aircraft will 
be ready, all doors closed, boarding bridge removed, push-back vehicle available, and ready to start up / push back 
immediately upon reception of clearance from the airport traffic control tower. 

http://www.skybrary.aero/index.php/Main_Page
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Only the tactical runway configuration element of SORM will be used in this collaboration. TRCM provides 

runway configuration and runway usage recommendations intended for use by traffic flow managers and 

supervisors. The TRCM capability primarily considers overall transit time and delay for arrivals and 

departures. For arrivals, calculations for transit from arrival fix (normally at the terminal boundary (entry 

point to TRACON airspace) to the ramp area. For departures, it is the time from the ramp area to the 

departure fix, also at the terminal boundary.  The 90 minute planning horizon used is based on the tactical 

nature of runway changes. After a configuration change is made, no additional configuration changes will 

be recommended by the algorithm for a 30 minute period5. The current version of TRCM primarily 

considers traffic demand and weather information. The longer-term vision incorporates airport operator 

constraints, system user preferences, and traffic flow considerations. TRCM is intended for use by those 

making runway management decisions (usually supervisors or traffic flow managers) in the approach and 

departure control facility and the airport traffic control towers.  

4. Analysis of the Integrated System 
In this section, the manner in which the aforementioned tools are combined to form the proposed 

integrated system is analyzed using functional analysis. Section 4.1 describes functional analysis.  Data 

requirements for all tools are defined in section 4.2. Section 4.3 presents the integrated system. 

4.1. Functional Analysis 
Functional Analysis is a study of process activities that arranges functions in logical sequences, 

decomposes higher-level functions into lower-level functions, and identifies all internal and external 

functional interfaces. The tools used to model the functional behavior of a system are functional flow 

block diagram (FFBD) and N-squared (N2) diagramming techniques. The FFBD technique details the logical 

and environmental sequence of the system, while the N2 diagramming technique provides the data 

environment of the system. Both the FFBD and N2 diagrams provide complementary functional behavior 

of the system. 

4.2. Data Requirements 
Table 3 defines all necessary data requirements for all tools along with their associated potential data 

sources. Data are categorized into seven groups, each with different colors:  

• Airport adaptation 
• Flight information  
• TRCM optimization parameters 
• BADA6 aircraft database 
• TRCM output 
• TRCM user selection 
• Environmental data 

                                                           
5 The 30-minute period may be dependent on airport environment, and is a subject for further investigation. 
6 Base of Aircraft Data (BADA) is a database containing performance and operating procedure coefficients for 
different aircraft types. The coefficients include those used to calculate thrust, drag and fuel flow and those used to 
specify nominal cruise, climb and descent speeds.  
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For every mentioned data category, the respective information that corresponds to the category and the 

allocation to the decision support tool are listed in Table 3. The “X” indicates which tool uses the 

respective data either as input or output. An “(X)” indicates that this information is important but used 

indirectly, and “F” indicates future work that has to be done.  

 

Table 3: Data Category 

 

 

 

  

Data Description TRCM CADEO 4D-CARMA TRACC

Airlines X

Airline-to-Gate Assignment X

Configurations X (X) X (X)

Departure Runway SID Separations X X

Departure Runway Speed Separations X X

Departure Runway Wake Vortex Separations X X

Fixes X

Gates X

Gate-to-Spot Assignment X

Path Stretching Procedures X

Routes from Arrival Fix to Threshold X

Runway Policies X

Runways X X X X

Runway-to-STAR Assignment X

SIDs X

Spots X

Spot-to-Taxiway Assignment X

STARs X

Taxiways (Node-link) X X

Transition Routes X

Variable Taxi Time (VTT) X X

Waypoints with Constraints X

Airspace Operational Status (VMC or IMC) X

Arrival Runway Wake Vortex Separations X X

Airport Resource Constraints (e.g., Runway Closure) X

Controller Working Positions X F

Standard Taxi Routes X
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Table 3: Data Category (continued) 

 

  

Data Description TRCM CADEO 4D-CARMA TRACC

Flight Information - Assigned Fix X

Flight Information - Assigned Runway X X X X

Flight Information - Assigned Spot/Gate/Stand X X X

Flight Information - Call Sign X X X X

Flight Information - Calculated Take-Off Time (CTOT) X

Flight Information - Flight Plan X X X X

Flight Information - Target Landing time (TLDT) X X X X

Flight Information - Service Type X X X

Flight Information - Unimpeded Spot/Gate Time X

Flight Information - Target Off-Block Time (TOBT) X X F

Flight Information - Estimated Landing Time (ELDT) X X X

Flight Information - Unimpeded Time at Runway for 

Arrivals  or Unimpeded Landing Time
X

Flight Information - Unimpeded Time at Runway for 

Departures 
X

Flight Information - Target Start-Up Approval Time 

(TSAT)
X X F

Flight Information - Target Take-Off Time (TTOT) X X

Flight Information - Position Data from Radar Data X

Flight Information - Position Data from A-SMGCS X X

Flight Information - Clearance Inputs from Controller X X

Flight Information - Earliest Take-Off time (ETT) X

Fl
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h
t 
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Table 3: Data Category (continued) 

 

4.3. The Integrated System 

Because available data sources and data necessary for DLR and NASA tools generally differ, the analysis 

of the integrated system presented here will be at the higher level of details, where the FFBD is applicable 

to both the German and the U.S. air traffic environments. The lower FFBD levels vary depending upon to 

where the integrated system is tailored, (i.e., the German or the U.S. airports.) Reference 1 (unpublished) 

provides all lower FFBD levels tailored for a German airport, given all data sources needed for all tools are 

available at the centralized A-CDM of the German airport. 

Figure 1 shows the highest level FFBD of the AMAN, DMAN, SMAN (collectively referred to as A/D/S-MAN) 

and TRCM integration and, therefore, provides an excellent way to overview of the integration. The 

Data Description TRCM CADEO 4D-CARMA TRACC

Current (Active) Configuration X

Alternative Configurations X

TRCM Planning Horizons X

TRCM Freeze Horizon X

TRCM Minimum Time between Configuration Change X

TRCM Alternative Runway Policies X

TRCM Objective Function Metric X

Baseline Configuration X

Baseline Objective Function Metrics X

Baseline Flight List (Flight-Runway Assignment) X

Optimal Configuration X X

Optimal Objective Function Metrics X

Optimal Flight List (Flight-Runway Assignment; the 

last flight on the active configuration, and the first 

flight on the new configuration)

X X X

Optimal Configuration Changetime X X
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User Selection on Configuration (Change or 

NoChange)
X

Aircraft Taxi Speed X

Aircraft Take-Off or Landing Speed X X

Aircraft Weight Class X X

Rate of Climb and Descent / True Airspeed X

Diverse calculation coefficients for Thrust and Drag X

Wind Velocity X

Ceiling and Visibility X

Noise Constraints XEn
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underlined function names in the FFBD indicate that the function can be decomposed into lower-level 

functions.  

 

Figure 1: Preliminary functional overview of the Arrival/Departure/Surface Management and 
Tactical Runway Configuration Management integration. 

 

At the high level, there are three main systems for the integrated system: TRCM (functions 1 and 2), the 
interface (functions 3, 4, and 8), and A/D/S-MAN (functions 5, 6, and 7).  

TRCM evaluates the current and the optimal runway configurations (F.1) and repeats the evaluation 

process at a predetermined time-based planning frequency. At this predetermined re-planning time, 

TRCM takes snapshots of the current air traffic system as input to its optimization algorithm. TRCM then 

provides advisory (both the current active and the optimal) configurations along with its performance 

metrics to the air traffic personnel (supervisors or traffic flow managers) (F.2). The controller can choose 

to accept or reject the recommended configuration (F.3). The rejection of the recommended 

configuration implies no change to the current active configuration, and TRCM will wait until the next 

planning cycle to repeat the evaluation process. If the recommended configuration is selected, the airport 

configuration is updated (F.4) and will be used in planning by A/D/S-MAN in the next functions. Function 

4 represents this interface communication between TRCM and A/D/S-MAN. Functions 5–7 represent 

A/D/S-MAN. A/D/S-MAN generally re-evaluates whenever there is an update to the air traffic system. As 

opposed to the TRCM’s time-based re-planning cycles, A/D/S-MAN uses event-based re-planning cycles. 

Whenever there is an event occurring to a flight such as clearance inputs from controllers, non-occurrence 

of expected events, and deviation from previously planned events including a configuration change event, 

etc., the corresponding tool is triggered for re-planning. After any re-planning cycle of A/D/S-MAN, an 
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update on flight information takes places (F.8) so that TRCM has access to the latest flight information for 

its next planning cycle. 

Function 3 requires controller interactions with the integrated tool. If controllers fail to interact with the 

tool, then the tools default to “no system change.” The tools continue their planning with the existing 

information as they are the latest information the tools have. Function 8 may require controller 

interactions, but an automatic retrieval may be conceivable.  

As already mentioned in section 4.1, there is also an N2 chart corresponding to the functional flow block 

diagrams. It is a way to display the information flows between all the different functions of the integrated 

system design. All functions are put in the diagonal of a matrix. Information that goes from function to a 

following function is displayed at the right side and is located above the function that receives it. 

Information that goes from a function to a previous function is displayed at the left side and stands below 

the function that receives it. Information that stands above the level of function (F.1) comes from outside 

the whole system.  

Figure 2 is a snapshot of the N2 chart that corresponds with the integrated system shown in Figure 1.  It 

is based on the defined data categories to keep it readable (see section 4.2). The color coded cells from 

Figure 2 can also be referred to Table 3 for specific data requirement for each respective tool. 

In the next subsections, the lower-level FFBDs are shown and described. It is important to note that the 

lower-level FFBDs provided here are based on the research states as of September 2014. As the research 

in A/D/S-MAN progresses, these FFBDs may need to be revised accordingly. 
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Figure 2: Preliminary N-squared chart for the Arrival/Departure/Surface Management and Tactical Runway Configuration Management 

integration.
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4.3.1. Perform Tactical Runway Configuration Management (TRCM) Function (F.1) 

This function (Figure 3) receives three types of information: static information (F.1.1), dynamic 

information (F.1.2), and user preference’s TRCM parameters (F.1.3). The updated flight information from 

A/D/S-MAN (via F.8) is a part of the dynamic information (F.1.2). 

 

 

Figure 3: Perform Tactical Runway Configuration Management function (F.1). 

 Load Static Information Function (F.1.1) 

Function 1.1, Load Static Information (Figure 4), generally relates to airport-specific physical information 

(F.1.1.1 to F.1.1.11), compliances to FAA or ICAO regulations (F.1.1.12 to F.1.1.13), and BADA aircraft 

database (F.1.1.14 to F.1.1.16). The airport-specific physical  information include all (inactive and active) 

runways, arrival and departure fixes, spots (only for U.S. airports, the hand-off location between the ramp 

and tower controllers, or a separation of movement and non-movement surface area), gates, taxiways 

(node-link surface network), and airlines. TRCM also requires operational and/or modeling information 

that assigns airline to gate, assigns gate to spot, assigns spot to taxiway, defines runway policy7, and 

defines variable taxi time.  For German airports, there is no spot on the airport surface area. As such, 

TRCM requires an assignment of gate to taxiway directly. 

Compliances to FAA or ICAO regulations are flight rules, either instrument (IFR) or visual (VFR), for 

aircrafts, which in turn, define the wake vortex separation standard according to the regulations. Wake 

vortex separation standard depends on the weight class of aircraft. Weight class of aircraft can be 

retrieved from BADA aircraft database along with its taxi, take-off, and landing speeds. TRCM uses all 

compliances, taxi, take-off, and landing speeds to calculate the earliest times at runway for all flights 

during the planning horizon. 

                                                           
7 Runway policy determines how arrival and departure fixes are assigned to runways. 
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Figure 4: Load Static Information function (F.1.1). 

 Receive Dynamic Information Function (F.1.2) 

Function 1.2, Receive Dynamic Information (Figure 5), relates to information that evolves over time. 

Dynamic information includes environmental-related information (F.1.2.1) and flight-related information 

(F.1.2.2 to F.1.2.3). Environmental-related information includes forecast weather-related information and 

noise-abatement constraints that will limit the selection of optimal configurations by TRCM.  

Flight-related dynamic information can be broken down into short-term (less than 45 minutes from 

current time) and long-term flight information (more than 45 minutes). TRCM receives short-term flight 

information directly from AMAN (arrivals), DMAN (departures), and SMAN (both arrivals and departures). 

This short-term flight information is more accurate and is updated whenever there is new re-planning 

flight information available by A/D/S-MAN. TRCM uses this information to properly account for runway 

management times (e.g., target runway queue entry time, target runway queue exit time, target runway 

entry time, target runway exit time) for all flights from this short-term flight list. TRCM currently does not 

allow any configuration changes for the next 45 minutes from current time. Therefore, it will not affect all 

flights from this short-term flight list.   
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For the long-term flight dynamic information, TRCM receives this information from the flight plan, usually 

available in the Collaborative Decision Making (CDM for German system) or traffic flow management 

systems, for flights with the planning horizon beyond the short-term duration (i.e., long-term). TRCM 

currently plans for the next 90 minutes. Only flights having the unimpeded8 time at gate/ spot (departures) 

or the unimpeded time at arrival fix (arrivals) that falls within the next 90 minutes are used by TRCM to 

determine the optimal configurations.  

 

Figure 5: Receive dynamic information function (F.1.2). 

 Receive Tactical Runway Configuration Management (TRCM) Parameters User 

Preference Function (F.1.3) 

This function (Figure 6) allows the controllers (users) to change parameters used in TRCM. The controllers 

can define (1) the baseline configuration (usually is the current active configuration), (2) a list of all 

configurations to be evaluated, (3) freeze and planning times, (4) minimum time between configuration 

changes, (5) runway policy, and (6) performance metric used as an objective function.  

The freeze horizon is the time duration (from current time) where the algorithm will not generate a new 

runway configuration recommendation. Currently, TRCM defines this freeze horizon as the next 45 

minutes. The planning horizon is the time duration (from current time) where TRCM looks ahead. The 

current TRCM tool defines this as the next 90 minutes from current time. Because the first 45 minutes is 

the freeze horizon, runway configuration changes are only allowed in the last 45 minutes.  

Having a minimum time between changes prevents excessive recommended configuration changes. TRCM 

only considers the next change at least this minimum from the last change. The current algorithm defines 

                                                           
8 Unimpeded time is the earliest time for the aircraft if it is the only aircraft in the system. 
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this as 30 minutes. If the last change occurred at time 1:00 pm, then the next change TRCM could consider 

is at 1:30 pm because of the 30 minute minimum time between changes. 

The runway policy relates to the way in which TRCM assigns aircraft to the active runways, given that 

there is more than one active runway. The users assign arrival and departure fixes to runways. If any fix is 

assigned to more than one active runway, the users need to define the rule on how to select the runway. 

This rule (often referred to as runway policy) generally can be either a runway balancing concept, “taxi 

easy” (shortest taxi distance), or “taxi right” (based on fix location). TRCM checks any aircraft with the 

defined fix to determine how to assign a runway to the aircraft. If there is more than one active runway 

available (because the fix is assigned to more than one active runway), then TRCM uses the runway policy 

that users defined earlier to make the runway assignment. 

The users can define which performance metric to be considered as the objective function in TRCM. The 

current algorithm uses total travel time (between fixes and gates) of all aircrafts during the next 90 

minutes as the objective. Any configuration schedule that minimizes this total will be the optimum 

configuration.  
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Figure 6: Receive Tactical Runway Configuration Management parameters user 
preference function (F.1.3). 

 Evaluate Runway Configurations Function (F.1.4) 

TRCM performs re-planning every 15 minutes. It takes all flights with the unimpeded time at gate/spot 

(departures) or the unimpeded time at arrival fix (arrivals) within the next 90 minutes into consideration 

for each planning cycle. It evaluates the current active (baseline) configuration by using all inputs in 

functions 1.1, 1.2, and 1.3 in calculation of the earliest times at runway for all flights during the planning 

horizon of 90 minutes (see Figure 7). These earliest times at runway are then used to sequence flights 

based on a first-in-first-out rule. That is, flights with the earliest times at runway will be the first in 

sequence, and flights with the latest times at runway will be the last in the sequence. TRCM uses the 

wake-vortex separation standards to ensure that there is no violation on the separations between 

pairwise flights in the sequence. TRCM uses a simple queuing-based performance prediction to compute 

travel time (between fixes and gates) for all flights. The objective function for current TRCM is to calculate 

the travel times of all flights. This objective value is recorded for the baseline configuration.  
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TRCM next evaluates all available configurations. The evaluation is similar to that of the baseline. After 

evaluations of all configurations, only the best configuration (with the minimum objective function) is 

recorded and recommended as the optimal configuration. 
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Figure 7: Evaluate runway configurations function (F.1.4). 

4.3.2. Provide Advisory Airport Configurations Function (F.2) 

After TRCM completes the evaluation from the previous section (F.1), it then provides the advisory airport 

configurations to the users (controllers). Figure 8 depicts the lower-level diagram for function 2, Provide 

Advisory Airport Configurations. Two sets of configurations are available to the controllers: baseline 

configuration (F.2.1) and TRCM-based configuration (F.2.2). For each set, configuration, its corresponding 

objective function value, and the corresponding flight list (the flight-to-runway assignment list) are given.  
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Figure 8: Provide advisory airport configuration function (F.2). 

4.3.3. Receive User Selection of Tactical Runway Configuration Management (TRCM) 

Configurations Function (F.3) 

After TRCM provides advisory configurations to users, who make runway management decisions (usually 

supervisors or traffic flow managers) in the approach and departure control facility and the airport traffic 

control towers (F.2), the users can select to accept or reject the recommended configuration (F.3). The 

rejection of the recommended configuration implies no change to the current active configuration, and 

TRCM will wait until the next planning cycle to repeat the evaluation process. The airport configuration 

and the flight-to-runway assignment are only updated by function 4 if the recommended configuration is 

accepted.  

4.3.4. Communicate Airport Configuration Change Function (F.4) 
Figure 9 gives the lower-level diagram for function 4, Communicate Airport Configuration Change. The 

earliest configuration change time recommended by TRCM is 45 minutes ahead (configurable). Therefore, 

there is no change to the short-term flight information, which is within the 45 minute period. There is no 

impact on the A/D/S-MAN for the current planning cycle (< 45 minute horizon.) The recommended change 

will trigger their future re-planning cycles. For 4D-CARMA, the recommended change time and the new 

configuration will be input into its database for future re-planning cycles in function 4.1. For CADEO and 

TRACC, because future flights have not started taxiing, the only update for these flights is done by 
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Figure 9: Communicate airport configuration change function (F.4). 

4.3.5. Perform Departure Management - Controller Assistance for Departure 

Optimization (CADEO) Function (F.5) 

CADEO’s main functionalities are displayed in Figure 10. This function receives two types of information: 

static information (F.5.1) and dynamic information (F.5.2). It then uses the information to sequence 

departures (F.5.3). Once the sequence is calculated, it is given to the controllers for clearance advisories 

along with TSAT and TTOT (F.5.4).  

    

Figure 10: Perform Departure Management - Controller Assistance for Departure Optimization 

(CADEO) function (F.5). 

Generally, CADEO uses the required data to schedule or plan departing aircraft within its planning horizon. 

It considers all departures within 20 minutes (configurable) prior to their TOBTs to determine the 

departure schedule. The tool re-plans whenever certain events occur in the air traffic system. Examples 

of updates that will trigger the re-planning are clearance inputs of controllers, non-occurrence of expected 
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20 minutes before the departure’s off-block and ends when it departs. In other words, each departure 

has its own planning duration depending upon the traffic demand surrounding the departure. For 

example, departures during the busy hours (peak demand) generally have longer planning durations than 

those of the off-peak-hour departures. When there is a configuration change recommended by TRCM and 

it is accepted by the controllers at least 45 minutes ahead (i.e., at the end of TRCM’s freeze horizon), there 

are two possible groups of departures. The first group is for departures with the old departure runway 

before the change time. The second group is for departures with the new departure runway after the 

change time. For the first group, a TRCM recommendation does not affect how CADEO operates. For the 

second group, since the configuration change is known 45 minutes in advance, flight plans which are part 

of the dynamic information (F.5.2) have to be modified by the responsible operators accordingly. CADEO 

has to ensure safe coordination between the two departure groups. For example, sufficient time 

separation between the departing aircraft of the old and the new configurations must be used if they are 

on the same runway moving in opposite flow directions. This implementation needs further evaluation if 

this function is part of automation or operator responsibility. 

 Load Static Information Function (F.5.1) 

Figure 11 shows the lower-diagram for Load Static Information. Static information usually does not change 

frequently within the planning horizon time. The information includes runways, standard instrument 

departures (SIDs), variable taxi times (VTTs), controller working positions (F.5.1.8), and departure runway 

separations for departure-departure pairwise separations (F.5.1.5 to F.5.1.7). Controller working positions 

are important for CADEO in order to provide time-based clearance advisories appropriate to all air traffic 

controllers’ working positions: clearance delivery, apron (ramp), ground, and local controllers.  

Note that in referring to the Figure 11, the application of departure separation standards represent those 

used in the German system although there are similarities with the U.S. system. There are three types of 

separation criteria applied to departing aircraft: (1) wake vortex separations (F.5.1.5), (2) separations for 

aircraft that will fly a SID (F.5.1.6), and (3) speed separations (F.5.1.7). Wake vortex separations are 

normally dependent on the ICAO classification of aircraft. The separation values for the airport are 

provided to CADEO as a predefined data table. Departure runway SID separations and speed separations 

are dependent on the first turn in the SID of departures, regardless of the direction of their routes. The 

time separation or speed separation required between two flights sharing the same or common-path SIDs 

are provided to CADEO as predefined data tables. Separation is irrelevant between two flights with their 

first turns in different paths. When more than one pairwise separation is available, the greater separation 

will be used in CADEO to guarantee compliance with regulations.  
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Figure 11: Load static information function (F.5.1). 

 Load Dynamic Information Function (F.5.2) 

Dynamic information (Figure 12) for each departure includes flight information, taxi clearance inputs from 

the controller, and position information by A-SMGCS (a.k.a. ASDE-X in the U.S., see section 3.1) Flight 

information includes flight plan, call sign, assigned runway, assigned gate, and (dynamic) target off- block 

time (TOBT9). If CADEO has not received confirmation for taxi clearance from the controller, the tool will 

re-compute the target start-up approval time (TSAT10) for this departure during the next planning cycle. 

 

Figure 12: Receive dynamic information function (F.5.2). 

                                                           
9 TOBT is the time that an aircraft operator or ground handler estimates that an aircraft will be ready, all doors 
closed, boarding bridge removed, push-back vehicle available, and ready to start up / push back immediately upon 
reception of clearance from the TWR. 
10 TSAT is the time provided to air traffic controller taking into account target off block time (TOBT), calculated take-
off time (CTOT) and/or the traffic situation that an aircraft can expect start-up / push back approval. CTOT is the 
time calculated and issued by the traffic flow management, at which a flight is expected to become airborne. 

F.5.1.4

Retrieve Variable 
Taxi Times (VTT)

F.5.1.2

Retrieve SIDs

F.5.1.1

Retrieve Runways

F.5.1.8

Load controller and 
clearance models

AND

F.5.1.6

Retrieve departure 
runway SID 
separations 

F.5.1.7

Retrieve departure 
runway speed 

separations 

F.5.1.5

Retrieve departure 
runway wake vortex 

separations 

F.5.1.3

Retrieve Parking 
positions incl. 

pushback procedures

AND

AND AND
DLR: 4D-CARMA, CADEO, TRACCNASA: TRCM

Perform TRCM

F.1

Provide Advisory 
Airport 

Configurations

F.2

Receive User 
Selection of TRCM 

Configurations

F.3

Perform 
4D-CARMA 

(AMAN)

F.6

Perform TRACC 
(SMAN)

F.7

Perform CADEO 
(DMAN)

F.5

Communicate airport 
configuration change 

F.4

AND

Send current flight 
information of ADS-MAN 

F.8

After replanning cycles

Accept Configurat ion Change

NASA-DLR Interface

F.5.2.3

Receive position 
information by A-
SMGCS (optional)

F.5.2.1

Receive flight 
information 

(plus updates)

AND

F.5.2.2

Receive clearance 
inputs of controller

Back

Name:

Receive dynamic information

Author:

DLR-FL and NASA-LaRC

Date:

2013-11-12

Number:

5.2

AND
DLR: 4D-CARMA, CADEO, TRACCNASA: TRCM

Perform TRCM

F.1

Provide Advisory 
Airport 

Configurat ions

F.2

Receive User 
Selection of TRCM 

Configurat ions

F.3

Perform 
4D-CARMA 

(AMAN)

F.6

Perform TRACC 
(SMAN)

F.7

Perform CADEO 
(DMAN)

F.5

Communicate airport 
configuration change 

F.4

AND

Send current flight 
information of ADS-MAN 

F.8

After replanning cycles

Accept Configuration Change

NASA-DLR Interface



 

30 
 

 Schedule Departures Function (F.5.3) 

Figure 13 shows the lower-level diagram for function 5.3, Schedule Departures. CADEO tool uses the 

required information in function 5.1 and function 5.2 to schedule departing aircraft within 20 minutes 

prior to their TOBTs. CADEO calculates the earliest take-off time (ETT) of all departures using the TOBT 

and variable taxi times (VTTs). The tool also retrieves the target landing times (TLDTs11) of all arrivals from 

AMAN at the time of planning cycles. It then uses both ETT and TLDT, along with any required departure 

runway separations (from F.5.1), to determine the optimal departure sequence at the departure runway. 

Once CADEO computes the target take-off times (TTOTs), the departure sequence is determined. Based 

on the TTOT, the TSATs are determined for all departing aircraft by back calculating from TTOT.  

 

                                                                   

Figure 13: Schedule departures function (F.5.3). 

 Provide Time-Based Clearance Advisories Function (F.5.4) 

This function provides the recommended time-based clearance advisories to the controllers. When 

controllers confirm the clearance, CADEO will receive this input through function 5.2. If controllers do not 

confirm the clearance, CADEO will assume there is a non-occurrence of expected prior events (e.g., push 

back needs longer time, etc.) for this departure causing the controllers to fail to confirm departure 

clearance. CADEO will continue to re-compute this departure’s TTOT and/or TSAT in the next re-planning 

cycle. 

4.3.6. Perform Arrival Management – 4 Dimensional Cooperative Arrival Manager 
(4D-CARMA) Function (F.6) 

The main functionalities of 4D-CARMA are displayed in Figure 14. This function receives two types of 

information: airspace information (F.6.1) and dynamic information (F.6.2). It then uses the information to 

schedule or plan arrivals (F.6.3). Once the arrival schedule is planned, it is given to the controllers with 

guidance instructions for implementation (F.6.4).  

                                                           
11 TLDT is the target time from the Arrival management process at the runway threshold, taking runway sequence 
and constraints into account.  
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Figure 14: Perform Arrival Management – 4 Dimensional Cooperative Arrival Manager (4D-
CARMA) function (F.6). 

Generally, 4D-CARMA tool uses the required data to schedule or plan arriving aircraft within its planning 

horizon. Each arrival has its own planning duration (similar to the DMAN concept), depending on the traffic 

demand. The planning horizon for each arrival begins when the arrival enters a pre-defined radius around 

the airport (or terminal airspace), and ends when it passes the runway threshold. 4D-CARMA detects 

arrivals entering the approach control airspace serving the airport. It then takes all of these arrivals to 

sequence for an arrival runway. The tool re-plans whenever there is an update of the flight or position 

information.  

When there is a configuration change recommended by TRCM, and it is accepted by air traffic personnel 

(supervisors or traffic flow managers), arrivals are divided into two groups for the purpose of runway 
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the first group, there is no impact on the arrivals with respect to runway assignment. The second group is 

for all other arrivals. For this group, a new configuration will trigger a change in the airspace layout in 
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the second group. Currently there is no implementation of the transition from one configuration to the 

other. Because of the planning horizon of TRCM, all affected aircraft of the second group are not yet in 

the approach airspace of the airport. Flight operators have to be informed by the air traffic controllers in 

the ACCs (enroute control centers as defined in Table 1) before entering the approach airspace. As the 

affected aircraft enters the approach airspace, it will be detected by 4D-CARMA. The tool will include this 

aircraft in the future planning cycles with the new airspace layout corresponding to the new configuration. 
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 Load Airspace Function (F.6.1) 

This function (Figure 15) loads an airspace model necessary for the 4D-CARMA tool. Approach routes and 

active runways vary depending upon the runway configuration. All possible routes for all possible 

configurations must be modelled before running the integrated system.  

The airspace model data for all possible configurations includes active runways (F.6.1.3), airport-specific 

runway-to-STAR assignment (F.6.1.4), routes from the arrival fix to the runway threshold (F.6.1.5), and 

waypoints with altitude and speed constraints (F.6.1.6).   

 

Figure 15: Load airspace function (F.6.1). 

 Receive Dynamic Information Function (F.6.2) 

This function (Figure 16) receives flight information and radar data for all arrivals within the approach 

airspace. Flight information includes flight plan, call sign, and assigned runway. The radar data gives 

aircraft current positions and is updated every five seconds to reflect the latest aircraft positions. In  

4D-CARMA, there is no input from the controller. The impact of controller commands, given through voice 

communication, can be seen only through an update of radar data. Meanwhile there is an on-going 

research to extent 4D-CARMA by automatic speech recognition to react much faster and more accurate 

to changes (ref. 15). 

 

Figure 16: Receive dynamic information function (F.6.2). 
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 Sequence Arrivals Function (F.6.3) 

Figure 17 shows the lower-level diagram for function 6.3, Sequence Arrivals. The 4D-CARMA tool uses the 

airspace layout (from F.6.1) along with aircraft radar data (from F.6.2) to predict the shortest and longest 

routes from their current position to the active runways (F.6.3.1). Given the known aircraft make and 

model from the flight plan, the tool uses the BADA database to determine aircraft-specific approaching 

speeds and descent profiles. Using the shortest and longest distances along with the aircraft-specific 

approaching speeds and descent profiles, 4D-CARMA calculates the earliest and latest arrival times (or 

the arrival time intervals) at the runway threshold for all arrivals within the approach airspace (F.6.3.2). 

These predicted arrival time intervals are then used to sequence all arriving aircraft at the threshold based 

on a scheduling constraint set of conflicting objectives (F.6.3.3 and F.6.3.4). Given the arriving sequence 

from F.6.3.4, the tool then computes the required time of arrivals (RTA) at the runway threshold with a 

consideration of wake vortex separations. 4D-CARMA predicts 4D-trajectories (F.6.3.6 to F.6.3.7) for all 

arriving aircraft to meet the computed RTA. The prediction of the RTA 4D-trajectory is done using an 

aircraft-specific approaching speed and descent profile from the BADA database. 

 

                                                                 

Figure 17: Sequence arrivals function (F.6.3). 
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calculate surface trajectories (F.7.3). Once the surface trajectories are planned, they are provided to the 

controllers together with guidance instructions (F.7.4.) for implementation.  

   

Figure 18: Perform Surface Management - Taxi Routing of Aircraft: Creation and Controlling 
(TRACC) function (F.7). 

Generally, TRACC uses the required data to plan conflict-free optimized taxi routes for all aircraft which 

are close to their landing or off-block times (approximately five minutes before landing or off-block times). 

All aircraft meeting this criterion are put into an internal flight list. The internal flight list contains all flights 

(arrivals and departures) to be optimized by TRACC. The optimization process can occur for two cases. 

First, there is a new aircraft introduced into the planning horizon. Second, TRACC detects a deviation from 
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For arrivals, the first (second) group is for arrivals with their touchdown times before (after) the change 

time. There is no impact of TRCM’s recommendation to the first group of arrivals. Since the TRACC’s 

optimization process begins five minutes before landing, TRACC uses the most recent information about 

landing time and runway to provide a conflict-free taxi route for all aircraft for the second group. A 

possible configuration change has not been tested yet. 

 Load Node-Link Model of Airport Function (F.7.1) 

TRACC loads the airport-specific node-link surface model which will be used to determine a conflict-free 

taxi-route in the downstream function (F.7.3). If the airport has a predefined set of standard taxi routes, 

TRACC will include these routes as part of the node-link surface model. 

 Receive Dynamic Information Function (F.7.2) 

Dynamic information (Figure 19) for each aircraft includes flight information, clearance inputs from 

controller, and position information by A-SMGCS (a.k.a. ASDE-X in the U.S., see section 3.1). Flight 

information includes a flight plan, call sign, assigned runway, assigned gate, TOBT (for departures), and 

TLDT (for arrivals). In case there is no “target” time available, TRACC will use the estimated 

landing/departure times. If those estimated times are not available, TRACC will use the scheduled 

landing/departure times. Flights without any of these time values will not be optimized or even considered 

by the tool.  

 

Figure 19: Receive dynamic information function (F.7.2). 
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The optimization can occur for two cases. First, there is a new aircraft introduced to the internal flight list. 

The TLDTs (arrivals) and TOBTs (departures) are used to determine when they are to be considered as a 

new aircraft. A standard taxi-route from a set of predefined airport-dependent routes is allocated to the 

new aircraft. For arriving aircraft, TRACC selects the most probable runway exit to allocate a taxi route. 

Five minutes before the TLDT (arrivals) and approximately five to fifteen minutes before TOBT 

(departures) of the new aircraft, TRACC will optimize the taxi route of this aircraft. Second, TRACC detects 

a deviation from the previously planned taxi route or taxi time of any already taxiing aircraft. For this case, 

TRACC will adapt the planned trajectory to the actual position and speed, and check the new trajectory 

for conflicts or missed target times. If a problem occurs, TRACC will re-optimize only the flight with 

deviation.  

Both cases, the time optimization algorithm (TOA) is triggered (F.7.3.2) in an attempt to evaluate an 

optimal speed profile for the deviated taxi-route of the aircraft. The deviated taxi-route can be either the 

standard taxi-route (for the first or second cases) or the adapted taxi-route from previous optimization 

cycle(s) (for the second case). If speed solution from the TOA is not sufficient, TRACC will re-optimize this 

flight for a better route using a more complex algorithm called the route optimization algorithm (ROA) as 

shown in F.7.3.5. In other words, TRACC will not try to change other flights’ planned speed profiles or taxi-

routes, but only try to adjust this flight speed or route to have a conflict-free taxi-route with all others’ 

existing routes.  

 

Figure 20: Calculate surface trajectories function (F.7.3). 
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TRACC to optimize the surface operations. For all new aircraft, the standard taxi-route is provided as the 

first approach. The controller has an option to view this route by clicking on the flight entry in the planned 

flight list, but no associated commands are shown at this time. A trajectory with an adjusted speed profile 

or a completely adapted route is shown to the controller only for optimized aircraft with five minutes 

before its TOBT or TLDT. Necessary advisories for these optimized trajectories are presented to the 

controllers (90 seconds plus a command-dependent buffer) before the advisories have to be applied. 

4.3.8. Send Current Flight Information of Arrival/Departure/Surface Management 
(A/D/S-MAN) Function (F.8) 

After any re-planning cycle of A/D/S-MAN, an update on flight information takes places in this function so 

that TRCM has access to the latest flight information for its next planning cycle. This latest information is 

part of the dynamic information in function 1.2. TRCM uses it in the planning cycle as part of the freeze 

horizon, where no change can be made to the flights and airport configuration. Figure 21 gives the flow 

diagram of this function. There are three sub-functions, one for each A/D/S-MAN tools. Each sub-function 

will provide slightly different flight information, depending on the tool capabilities. 

        

Figure 21: Send current flight information of Arrival/Departure/Surface Management function 
(F.8). 

4D-CARMA (F.8.1) provides three types of information to TRCM: the flight plan, assigned runway for 
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its planning cycle as part of the freeze horizon. Similarly, CADEO (F.8.2) provides three types of 

information to TRCM: the flight plan, assigned departure runway, and the TTOT. They are part of the short-

term flight information. TRACC (F.8.3) sends the flight plan, gate information, and the TSAT (for 

departures) to TRCM as part of the short-term flight information.  

5. Conclusions and Recommendations 
The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have 

collaborative research effort focused on the integration of arrival/departure/surface management tools 

and a runway management tool. This document first compares the operational environments for air traffic 
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The basic objectives of the air traffic control systems in Germany and the United States are the same, i.e. 

to provide for the safe and efficient movement of aircraft. Although fundamentally the same, there are 

differences in procedures, airspace structure, roles/responsibilities, among others as described in this 

document.  

In a general sense, the problems seem to be the same, though slightly different. In Germany, the general 

problem is the dense airspace through overflights of European air traffic and the small airport surface. 

With the consideration of noise abatement and the avoidance of storm cells, the rising traffic demand 

poses a capacity and efficiency challenge for the airspace area. In the U.S., the problem is the large number 

of aircraft and in many cases, limited surface area; there are, of course, many other aspects of the air 

traffic flow process and supporting elements that affect capacity and efficiency. There are on-going 

research efforts to address many facets of the airspace system in Germany and the U.S. 

DLR has developed research prototypes of decision support tools for three well-known concepts in Europe 

to handle arrival, departure, and surface traffic. Four Dimensional Cooperative Arrival Manager (4D-

CARMA) is the DLR arrival management tool that builds an arrival sequence, assigns an arrival time at the 

runway threshold, predicts trajectories for all aircraft, and transforms them into appropriate guidance 

instructions for the air traffic controller. For any arrivals, 4D-CARMA’s planning responsibility begins when 

an aircraft enters the terminal maneuvering area, and ends when the aircraft touches down. The 

corresponding working positions are approach controllers. 

Controller Assistance for Departure Optimization (CADEO) is the DLR departure management tool that 

optimizes the departure sequence at the runways while considering arrivals on the same runway or a 

dependent runway. For any departures, CADEO’s planning responsibility begins approximately 20 minutes 

before an aircraft’s target off-block time (TOBT), and ends when the aircraft departs. The corresponding 

working positions are local, ground controller, and also clearance delivery controller in the airport traffic 

control tower. 

Taxi Routing of Aircraft: Creation and Controlling (TRACC) is the DLR surface management tool that 

generates conflict-free taxi routes from gate to runway and vice versa to meet target take-off times (TTOT) 

with a minimum of speed changes during the taxi process. For any arrivals, TRACC’s planning responsibility 

begins approximately five minutes before an aircraft’s target landing time (TLDT) and ends when the 

aircraft arrives at the gate. For any departures, TRACC’s planning responsibility begins approximately five 

minutes before an aircraft’s TOBT and ends when the aircraft lines up for departure. The corresponding 

working positions are ground controller and apron (ramp) controller either seated in the airport traffic 

control tower or a dedicated control facility. 

NASA has developed a tactical runway configuration management (TRCM) tool that provides runway 

configuration and runway usage recommendations intended for use by traffic flow managers and 

supervisors. TRCM makes runway recommendations that optimize overall transit time for arrivals and 

departures scheduled to be within the terminal boundary for the next 90 minutes from current time. The 

90 minute planning horizon used is based on the tactical nature of runway changes. 
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Functional Analysis of individual tools and of an integrated system are described next. Functional Analysis 

is a study of process activities that arranges functions in logical sequences, decomposes higher-level 

functions into lower-level functions, and identifies all internal and external functional interfaces. The tools 

used to model the functional behavior of a system are functional flow block diagram (FFBD) and N-squared 

(N2) diagramming techniques. The FFBD technique details the logical and environmental sequence of the 

system, while the N2 diagramming technique provides the data environment of the system. Both the FFBD 

and N2 diagrams provide complementary functional behavior of the system. 

Because available data sources and data necessary for DLR and NASA tools generally differ, the analysis 

of the integrated system presented in the document will be at the higher level of details, where the FFBD 

is applicable to both the German and the U.S. air traffic environments. At the highest level of the 

integrated system, TRCM evaluates the current and the optimal runway configurations, and repeats the 

evaluation process at a predetermined time-based planning frequency. At this predetermined re-planning 

time, TRCM takes snapshots of the current air traffic system as input to its optimization algorithm. TRCM 

then provides advisory (both the current active and the optimal) configurations along with its 

performance metrics to the air traffic personnel (supervisors or traffic flow managers). The personnel can 

choose to accept or reject the recommended configuration. The rejection of the recommended 

configuration implies no change to the current active configuration, and TRCM will wait until the next 

planning cycle to repeat the evaluation process. If the recommended configuration is selected, the airport 

configuration is updated and will be used in planning by arrival, departure, and surface management 

(A/D/S-MAN) tools. A/D/S-MAN generally re-evaluates whenever there is an update to the air traffic 

system. As opposed to the TRCM’s time-based re-planning cycles, A/D/S-MAN uses flight-based re-

planning cycles. Whenever there is an event occurring to a flight such as clearance inputs from controllers, 

non-occurrence of expected events, and deviation from previously planned events including a 

configuration change event, etc., the corresponding tool is triggered for re-planning. After any re-planning 

cycle of A/D/S-MAN, an update on flight information takes places so that TRCM has access to the latest 

flight information for its next planning cycle. The update of flight information may require controller 

interactions, but an automatic retrieval may be conceivable. For all tools, if the users fail to interact with 

the tool, then the tools default to “no system change.” The tools continue their planning with the existing 

information as they are the latest information the tools have.  

As the FFBD of the integrated system was assessed in the document, the future collaborative research 

efforts is to provide a high-level concept of operations (ConOps) detailing how the NASA runway 

management and DLR arrival, departure, and surface management tools will function together to the 

benefit of each. Specifically, the future efforts to fully develop the ConOps will include: 

 developing scenarios to fully test environmental, procedural, and data availability assumptions; 

 executing the analysis by a walk-through of the integrated system using these scenarios; 

 defining the appropriate role of operators in terms of their monitoring requirements and 

decision authority; 

 executing the analysis by a walk-through of the integrated system with operator involvement; 
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 characterizing the environmental, system data requirements, and operator role assumptions for 

the ConOps. 

Acronyms 
4D-CARMA 4 Dimensional Cooperative Arrival Manager 

A/D/S-MAN Arrival, Departure and Surface Management System 

ACC Area Control Center 

A-CDM airport collaborative decision making 

AIP aeronautical information publication 

AMAN Arrival Management System 

APP Approach Control Center 

ARTCC Air Route Traffic Control Center 

ASDE-X Airport Surface Detection Equipment, Model X 

A-SMGCS Advanced Surface Movement Guidance and Control System 

ATC air traffic control 

ATCO air traffic control operator 

ATCSCC Air Traffic Control System Command Center 

ATCT Airport Traffic Control Tower 

ATFCM air traffic flow and capacity management 

ATIS Automatic Terminal Information Service 

ATM air traffic management 

AVOL aerodrome visibility operational level 

BADA base of aircraft data 

CADEO Controller Assistance for Departure Optimization 

CADRS combined arrival/departure runway scheduling 

CFMU central flow management unit 

ConOps concept of operations 

CTOT calculated take-off time 

DFS German Air Navigation Service Provider - Deutsche Flugsicherung GmbH 

DLR German Aerospace Center - Deutsches Zentrum fuer Luft-und Raumfahrt 

DMAN Departure Management System 

ETT earliest takeoff time 

FAA Federal Aviation Administration  

FAF final approach fix  

FFBD functional flow block diagram  

ICAO International Civil Aviation Organization 

IFR Instrument flight rules 
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NAS National Airspace System 

NASA National Aeronautics and Space Administration 

NMOC Network Management Operations Center 

RCM runway configuration management 

RNAV area navigation 

ROA route optimization algorithm 

RTA required time of arrival 

SESAR Single European Sky ATM Research Program 

SID standard instrument departure  

SMAN Surface Management System 

SORM System-Oriented Runway Management 

STAR standard terminal arrival route  

TLDT target landing times  

TOA time optimization algorithm 

TOBT target off-block time 

TRACC Taxi Routing of Aircraft: Creation and Controlling 

TRACON Terminal Radar Approach Control 

TRCM tactical runway configuration management 

TSAT target start-up approval time 

TTOT target take-off time 

TWR Air Traffic Control Tower  

VFR visual flight rules 

VTT variable taxi times  
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