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Abstract 
Traditional methods of control allocation optimization have shown difficulties in exploiting the full 
potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral 
networks are inspired by biological nervous systems and neurocomputing has successfully been 
applied to a variety of complex optimization problems. This project investigates the potential of 
applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body 
(HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while 
keeping system weights within acceptable limits.  

The main objective of this project is to develop a proof-of-concept process suitable to 
demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft 
featuring multiple independently actuated control surfaces. A Nastran® aeroservoelastic finite 
element model is used to generate a learning database of hinge moment and actuation power 
characteristics for an array of flight conditions and control surface deflections. An artificial neural 
network incorporating a genetic algorithm then uses this training data to perform control 
allocation optimization for the investigated aircraft configuration. The phase I project showed 
that optimization results for the sum of required hinge moments are improved by more than 12% 
over the best Nastran® solution by using the neural network optimization process. 
 

 

Nomenclature 
ANN = Artificial Neural Network 
DEP = Distributed Electric Propulsion 
FEM = Finite Element Model 
HWB = Hybrid Wing Body 
OREIO = Open Rotor Integration on a BWB Concept by Boeing 
S&C = Stability and Control 
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Purpose  
This project investigates the potential of applying artificial intelligence methods like 
neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) 
aircraft concepts. Researchers from NASA Langley, Virginia Tech, and Boeing Research and 
Technology are exploring the use of artificial neural networks to develop innovative control 
algorithms minimizing control power, hinge moments, and actuator forces to keep system 
weights within acceptable limits. 

HWB platforms feature multiple control surfaces, with large control surface geometries leading 
to large hinge moments and high control power demands. Due to the large number of control 
surfaces on an HWB, there is no unique relationship between control inputs and resulting 
aircraft response, i.e. different combinations of control surface deflections may potentially result 
in the same maneuver, but with large differences in control power.1 While traditional methods of 
control allocation optimization may have limitations in exploiting the full potential of controlling 
large arrays of control devices, artificial neutral networks (ANN) are inspired by biological 
nervous systems and have successfully been applied to a variety of complex optimization 
problems (see e.g. Refs. 2-4).  

This project employs a finite element based aeroelastic HWB model, as well as wind tunnel and 
flight test data from the Boeing X-48 flight demonstrator5 to build a database that can be used to 
train an artificial neural network (ANN) to perform control allocation optimization for tailless 
aircraft at the conceptual design level (Fig. 1). 

Background 
HWB aircraft concepts offer the potential to achieve significant fuel burn savings of over 25%, 
with resulting emissions reductions, as well as community noise benefits, therefore countering 
the impact of dramatic increases in future air traffic volume.6,7 Recent wind tunnel testing 
indicates that control authority issues still exist (e.g. stall recovery and three-dimensional 
coupling effects8). Stability augmentation and control power optimization for these aircraft 
concepts can be enablers for their success. 

The use of artificial intelligence to overcome the shortcomings of conventional methods for 
control allocation has not been explored to a significant extent in the open literature. A literature 
search yielded very few results, most of them not applicable to this critical need for HWB 
configurations. Artificial intelligence offers new ways to optimize control power while minimizing 
hinge moments and structural loads. 

The proposed concept applies to the design and development stages of future air vehicles. If 
the research proves successful, artificial intelligence will be used to develop optimized control 
laws in a much more efficient manner than by using traditional methods; and these optimized 

 
 
 
 
 

 
 
 
 

 

Figure 1: Boeing’s X-48 Blended Wing Body demonstrator (NASA Photo). 



5 

control laws are an enabler for an entire fleet of revolutionary aircraft. Although the control laws 
will be developed using artificial intelligence methods, there is no need to implement these tools 
on the aircraft itself; therefore, no certification issues are anticipated for such a solution. 

Approach 
The project applies artificial intelligence to the HWB control allocation problem to optimize 
control surface schedules and minimize control power. An aeroelastic finite element model 
(FEM) provides the baseline for stability and control (S&C) analyses. Boeing Research and 
Technology provided control surface data, actuator characteristics, and aeroservoelastic 
modeling support to generate an accurate representation of the HWB baseline. The FEM model 
has been used to generate a database of hinge moment and actuation power characteristics for 
an array of control surface deflections. 

A sufficient amount of training data is a prerequisite for successfully training an ANN for control 
allocation and to determine the proper size and architecture of the ANN, both of which are 
crucial for the success of applying neurocomputing to the problem of control power optimization. 
Phase I of the effort focused on the development of a proof-of-concept process demonstrating 
the feasibility of using neurocomputing for actuation power optimization (Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Using an artificial neural network for control allocation optimization. 
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In the interest of maximizing the results and impact of the Phase I effort, some modeling 
simplifications were applied. While these limitations did not affect the validity of the Phase I 
results, they will be removed in the future to improve the value and practical usefulness of the 
approach. As will be described in the “Results” section, the total hinge moment sum from all 
active control surfaces was used as a proxy figure-of-merit to minimize actuation power. Future 
efforts will include the complete actuator dynamics developed by Boeing during the Phase I and 
therefore use actual actuation power as a figure of merit for the optimization. The Boeing 
actuator dynamics model was validated through X-48 wind tunnel and flight testing. The 
aeroelastic finite element analysis used a symmetric half model for an initial 2.5g pitch 
maneuver analysis. 

 

Accomplishments 
The main objective of the Phase I effort was to develop a proof-of-concept process suitable to 
demonstrate the potential of using neurocomputing to optimize actuation power for aircraft 
featuring multiple independently actuated control surfaces (see Fig. 3). All the proposed work 
tasks and milestones were completed on time and within budget. All deliverables from the 
project partners were received by the Principal Investigator and directly contributed to the 
success of the project. The project team successfully laid all the necessary groundwork to 
continue the initial research in a follow-on project.  

 

The key accomplishments from the Phase I project are outlined below: 

 Established a complete proof-of-concept aeroservoelastic neurocomputing process to 
optimize actuation power for a representative 2.5g symmetric pitch maneuver. 

 Developed a full aeroelastic model suitable for analyzing a representative HWB platform 
developed by Boeing. The non-proprietary Boeing OREIO (Open Rotor Engine Integration 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3: Proof-of-concept process to optimize actuation power through aeroservoelastic 

neurocomputing. 
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and Optimization on an HWB9) concept was chosen for this task (see Figs. 4 and 5). Boeing 
provided control surface geometries and developed actuator dynamics models based on a 
Simulink analysis model that was validated through X-48 wind tunnel and flight testing. 
Details regarding the structural and aeroelastic modeling of the OREIO configuration can be 
found in Refs. 10 and 11. 

 Generated an aeroelastic trim database containing up to 2,500 Nastran® aeroelastic TRIM12 
solutions. For this purpose, the baseline Nastran® model is used to perform a large number 
of maneuver-trim analyses with randomly generated linkage coefficients between the 
different control surfaces. Latin Hypercube Sampling is used to generate random Nastran® 
AELINK12 card coefficients for each individual Nastran SOL144 static aeroelastic TRIM 
analysis.13 A Matlab® script then reads trim variables, control surface deflections, and stores 
all this information for post-processing and optimization using artificial neural networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 

Figure 4: The Boeing OREIO features up to 25 control surfaces and high lift devices. 
(OREIO = Open Rotor Engine Integration and Optimization on an HWB9) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Finite element model of the Boeing OREIO used for the study. 
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 Investigated neural network topologies (number of layers/neurons) and learning algorithms to 
train the neural network using the aeroelastic trim database. A neural network with one 
hidden layer of up to 300 neurons was chosen as the network to perform the actuation power 
optimization. The hidden layer neurons were trained using a hyperbolic tangent sigmoid 
transfer function, while a single output neuron featuring a linear transfer function represents 
the required actuation power. 

 Optimized the neural network using a genetic algorithm to develop sets of control surface 
linkage coefficients minimizing the sum of all control surface hinge moments, which was the 
figure-of-merit used as a representation of total required actuation power. 

 Quantified the optimization results by demonstrating a more than 12% improvement over the 
best Nastran® solution by using the neural network optimization process. 

 

Results From the Seedling Phase I Effort:  
Figure 6 shows the probability density function of the training data generated by the FEM 
analysis for different numbers of test cases. During the network training process, the least 
squares error between the pre-computed results and ANN predictions is minimized through 
back-propagation by adjusting the weights and biases of the individual neurons. With each 
generation, the fitness value is reduced until it is flattening out after about 60 generations, 
indicating that the neural network is fully trained at this point. A genetic algorithm is used to 
minimize the absolute sum of the hinge moments. 

The AELINK control surface linkage coefficients in Nastran® define relationships between 
individual control surface deflections and an “independent” control surface, which in the present 
case is the center “elevator” surface in Fig. 7. For this study, the range of allowable control 
surface deflections has been limited to the [-1,1] interval, and the overall analysis data base for 
the 2.5g maneuver case included 2,500 samples. Future studies will further increase this 
interval to avoid extrapolation on the critical AELINK coefficients.  

 

 

 

 

 

 
 
 
 

 

 
 
 

 
 
 

Figure 6: Training data probability density function. 
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The neurocomputing process was applied to a symmetric half model of the Boeing OREIO, 
featuring eight actuated control surfaces, i.e. seven trailing edge flaps and the rudder (Fig. 7). 
To improve engine noise shielding, the OREIO vertical tails are highly canted,14 resulting in a 
significant amount of pitch authority for the rudder. To test the potential of the neurocomputing 
process, optimization of the neural network was performed using both, the AELINK control 
surface deflection coefficients and the direct values of the individual control surface deflection 
angles. The obtained control surface deflections minimizing the total hinge moment sum for both 
cases are highlighted in Fig. 7 and although quite similar, the deflections for both approaches 
are not identical, thus further highlighting the fact that different control surface deflection 
schedules may result in similar actuation power requirements. 
 
Table 1 shows that for both cases, the total sum of the hinge moments is less than the best 
Nastran solution, with more than 12% improvement when using the control surface deflection 
angles as the input parameter. As a validity check, both control surface deflection data sets 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: Optimized control surface deflections (in degrees) for a Boeing OREIO 2.5g 
symmetric pitch maneuver. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 1: 2.5g Maneuver optimization results for the total sum of hinge moments (in lb-in) 

as a proxy for actuation power. 
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were used as fixed values for a Nastran® SOL 144 aeroelastic trim solution to check whether 
Nastran would reproduce the results when using the predictions from the optimizer. Table 1 
shows that the Nastran FEM analysis for the actuation power proxy matched the neural network 
prediction within numerical accuracy. 

Potential Impact on NASA or National Aeronautics Challenges  
Reducing actuation power is an enabler for ultra-efficient commercial transport aircraft and 
therefore directly impacts the National Aeronautics Challenges of simultaneously reducing fuel 
consumption, emissions, and noise of future air traffic. HWB aircraft and other innovative 
concepts suitable for this research offer the potential to achieve significant fuel burn savings of 
over 25%, with resulting emissions reductions, as well as community noise benefits, therefore 
countering the impact of dramatic increases in future air traffic volume. As a result, the proposed 
research directly applies to three of the six ARMD Strategic Thrust areas: 

 Innovation in Commercial Supersonic Aircraft 

 Ultra-Efficient Commercial Transports 

 Transition to Low-Carbon Propulsion 

The process can easily be adapted to other innovative and unconventional configurations. 
Potential candidates currently under development by other NASA projects are shown below: 
 
Low Boom Supersonic Vehicles: These vehicles have proven to be extremely difficult to trim for 
cruise conditions, making this an even greater challenge for maneuvers (Fig. 8). In addition, 
their very thin airfoils require detailed structural and aeroservoelastic models for realistic 
analyses, which is generally beyond the scope of traditional flight controls models. 

 

Distributed Electric Propulsion (DEP) Vehicles: The control laws required to ensure a robust 
transition control in pitch, roll, and yaw, while achieving high cruise aerodynamic efficiency are 
depending on a new approach for control allocation. Actuation power optimization is crucial on 
these vehicles to satisfy their stringent power management requirements and weight savings 
goals. In addition, multiple distributed concentrated masses and control surfaces, combined with 
high structural flexibility and significant configuration changes make these concepts ideal 
candidates for the proposed neurocomputing process. An example of a DEP vehicle is shown in 
Fig. 9. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: NASA Low Boom Supersonic Transport Concept. 
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Changes to Current Concept of Operation for the Proposed Concept 
to Achieve Practical Application  
The proposed concept applies to the design and development stages of future air vehicles. If 
the research proves successful, artificial intelligence will be used to develop optimized control 
laws in a much more efficient manner than by using traditional methods; and these optimized 
control laws are an enabler for an entire fleet of revolutionary aircraft. The proposed approach 
reduces power requirements, hinge moments, structural loads, and therefore overall vehicle 
weight, therefore allowing us to exploit the full potential of innovative aircraft with multiple 
distributed control surfaces.  

The process is easily applicable to other innovative and unconventional configurations. Without 
the necessity to implement artificial intelligence on the aircraft itself, no certification issues are 
associated with such a solution. 

 

Conclusions 
During the course of this project the researchers developed a proof-of-concept process to 
demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft 
featuring multiple independently actuated control surfaces. A Nastran® aeroservoelastic finite 
element model was used to generate a learning database of hinge moments and actuation 
power characteristics for a symmetric 2.5G pull-up maneuver using various sets of control 
surface deflections. An artificial neural network incorporating a genetic algorithm then used this 
training data to perform control allocation optimization for the investigated aircraft configuration. 
The phase I project showed that optimization results for the sum of required hinge moments are 
improved by more than 12% over the best Nastran® solution by using the neural network 
optimization process. 
 

 

 

 

 

 

 

 
 
 
 
 
 

 
Figure 9: Greased Lightning (GL-10) Distributed Propulsion (DEP) Vehicle flight 

demonstrator. 
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