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Abstract

This paper addresses stabilization and control issues in autonomous capture and
manipulation of non-cooperative space objects such as asteroids, space debris, and
orbital spacecraft in need of servicing. Such objects are characterized by unknown
mass-inertia properties, unknown rotational motion, and irregular shapes, which
makes it a challenging control problem. The problem is further compounded by
the presence of inherent nonlinearities, significant elastic modes with low damping,
and parameter uncertainties in the spacecraft. Robust dissipativity-based control
laws are presented and are shown to provide global asymptotic stability in spite of
model uncertainties and nonlinearities. It is shown that robust stabilization can be
accomplished via model-independent dissipativity-based controllers using thrusters
alone, while stabilization with attitude and position control can be accomplished
using thrusters and torque actuators.

1 Introduction

The proposed NASA asteroid redirect mission has created considerable excitement
and interest in the public as well as in the worldwide science and engineering com-
munities. A study by the Keck Institute [1] has concluded that it is feasible to
autonomously capture and return an entire 7-m diameter, 500,000-kg near-Earth
asteroid to a high lunar orbit. An alternate approach, consisting of picking a boulder
off of a larger asteroid, is also being studied. Investigations are in progress at NASA
and other organizations to conceive and develop alternative approaches and methods
for capture, manipulation, and transport of asteroids.

Another important challenge that is technically similar to asteroid capture is
orbital debris mitigation. The near-Earth as well as geostationary orbital debris
population is continuously growing and its growth is expected to continue in the
future due to ongoing space activities. On-orbit satellite explosions and collisions
(accidental or intentional) create even larger numbers of debris items. Space debris
poses a serious threat both to human-occupied vehicles and to commercial satellites.
Some suggested approaches for orbital debris mitigation would involve docking a
capture spacecraft with the debris or making a physical impact. This is a techno-
logically challenging task as most debris are non-cooperative and possibly tumbling
with unknown spin, precession, nutation, amplitude changes etc.

A third technically similar challenge is autonomous on-orbit capture and servic-
ing of defunct or functioning satellites. For example, on-orbit refuelling or repairs
can extend a satellite’s life at a fraction of the cost of constructing and launching a
new satellite. Also, with the rapid ongoing advancement of micro-component tech-
nologies, it may be desirable to replace components of older functioning satellites
with advanced components and significantly increase the capabilities. (For refuelling
or refurbishment of functioning satellites, the capture and manipulation should be
somewhat simpler since they would likely be cooperative objects).

A related problem is asteroid strike threat mitigation, which would involve chang-
ing an asteroid’s trajectory to avoid collision with Earth.
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The problems described above, i.e., asteroid capture, space debris mitigation, on-
orbit spacecraft servicing, and some methods for asteroid strike threat mitigation,
involve capture and manipulation of non-cooperative space objects (NCSOs) and
would require a common set of technologies.

The main technical problem in capture and manipulation of NCSOs is that they
have unknown mass-inertia properties and their dynamic state (such as angular ve-
locity vector- spin, precession, nutation) are unknown. Additionally, asteroids have
irregular shapes and composition (e.g., ranging from solid monolithic bodies to col-
lections of loose debris). Methods for capture and manipulation of non-cooperative
space objects would likely require capture spacecraft having large solar arrays, multi-
link manipulators, deployable bags, and/or other capture mechanisms. In addition to
uncertainties in the non-cooperative space object’s properties and state, the capture
spacecraft will likely have significant lightly damped elastic modes with uncertain
and varying modal parameters (frequencies and mode-shapes). Because of these
problems, capture, stabilization, and post-capture control of non-cooperative space
objects constitute a formidable technical challenge.

This paper addresses some basic issues in capturing a non-cooperative space ob-
ject and stabilizing the combined spacecraft/object body during and after capture.
The capture spacecraft is assumed to be a generic multi-link manipulator having
a branched geometry configuration that includes a relatively large central body to
which multiple articulated branches are attached through single degree-of-freedom
(DOF) revolute joints. It is assumed that the object’s spin/tumble rate is relatively
small, so that pre-capture co-spin of the spacecraft (i.e., matching the object’s angu-
lar velocity vector) is not performed. It is also assumed that orbital dynamics do not
significantly impact the problem addressed in this paper, which will be the case when
the time duration of the capture maneuver is small compared to the orbital period.
For applications where orbital dynamics can significantly impact the system motion
(e.g., in low Earth orbits) the orbital dynamics will also have to be considered. This
paper presents in detail and extends the preliminary analyses and results presented
by the authors in [2] for which there was no written version.

1.1 Control Objectives

Prior to capture, it will be necessary to position the spacecraft at a desirable posi-
tion relative to the NCSO, with a desired posture (defined by the base body attitude
and the link joint angles) so that the end-effectors are appropriately positioned for
capture. During capture, it will be necessary to stabilize the spacecraft/NCSO com-
bination in the presence of unknown contact forces acting on the end effector. In
the post-capture stage, it will be necessary to stabilize the combined body, i.e., to
bring the rotational and translational motion as well as all elastic motion to rest.
It is assumed that the primary actuators on the spacecraft would be thrusters, pos-
sibly augmented by torque actuators such as control-moment-gyros (CMGs). It is
also assumed that each thruster can produce the commanded variable thrust (i.e.,
proportional thrust, e.g., see [3], [4]) rather than operating in an on/off mode. In
addition, each link joint is assumed to have a torque actuator. In the pre-capture
stage, the spacecraft dynamics are known to some extent (although uncertainties
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will still exist in the mass inertia properties and elastic mode dynamics). In the
mid-capture and post-capture stages, however, large unknowns and uncertainties
will exist in all aspects of the combined spacecraft/NCSO dynamics. Hence, ro-
bust stabilization during and after capture is a major technical challenge. In the
post-capture phase, the link joints would likely be locked, and the dynamics of the
combined spacecraft/NCSO can be represented by a single body. During capture,
the stabilizing control laws (which keep the velocities and elastic motion near zero)
would be in effect, so that the stabilized spacecraft subjected to contact forces (‘dis-
turbances’) would likely result in relatively small angular velocities that would be
eventually brought down to zero after the capture operation is completed. While at-
titude and posture of the spacecraft (represented by the base body attitude and the
link joint angles) are important in the pre-capture stage, the primary post-capture
control objective is to stabilize the combined body, i.e., bring it to rest. A secondary
objective is to achieve a desired attitude of the combined body in order to prepare
for transporting it to another location (such as a Lunar Lagrange point in the case
of asteroid capture).

1.2 Outline of the Paper

Section 2 addresses control of single-body spacecraft, such as a post-capture space-
craft/NCSO combination. Stabilization is addressed first, followed by attitude and
position control. Both rigid and flexible spacecraft are considered. Section 3 ad-
dresses stabilization as well as position, attitude, and posture control of multi-
body/multilink spacecraft. Section 4 presents concluding remarks.

2 Single-Body Spacecraft Stabilization and Control

2.1 Stabilization of Rigid Spacecraft

In the mid- and post-capture stages, the objective is to stabilize the combined space-
craft/NCSO, i.e., to eliminate the inertial translational and rotational velocities.
This can be accomplished by using thrusters alone, i.e., without the need for torque
actuators. The next subsection addresses the case when only thrusters are available.

2.1.1 Stabilization Using Thrusters

Suppose there are m bi-directional thrusters at locations r1, r2, . . . rm, (ri ∈ <3)
relative to the center of mass (c.m.) of the combined spacecraft/NCSO (if post-
capture), expressed in a body-fixed coordinate system and the ith thruster produces a
scalar force Fi in the direction di where di ∈ <3 is a unit vector. Thus, the ith thruster
produces the vector force diFi expressed in the body-fixed coordinate system. It
is assumed that r1, r2, · · · , rm are such that rank[r̃1d1, r̃2d2, . . . r̃mdm] is 3, where
overhead ∼ denotes the cross-product matrix of a vector, i.e., if ξ = [ξx, ξy, ξz]

T ,

ξ̃ =

 0 −ξz ξy
ξz 0 −ξx
−ξy ξx 0

 (1)
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The equations of motion are given by[
M 0
0 J

] [
v̇
ω̇

]
+

[
M(ω̃v)
ω̃Jω

]
=

[
d1 d2 . . . dm
r̃1d1 r̃2d2 . . . r̃mdm

]
F (2)

where M = m0I3, m0 being the mass (including the NCSO if post-capture), I3
denotes the 3× 3 identity matrix, J is the 3× 3 moment-of-inertia matrix, and v, ω
are the inertial translational velocity vector of the c.m. and the angular velocity
vector, expressed in the body-fixed coordinate system; F = [F1, F2, . . . Fm]T is the
m × 1 thrust vector. It is assumed that m ≥ 6 because at least 6 bi-directional
thrusters are needed to simultaneously control rotational and translational motion.

Denote

X = (vT , ωT )T , M =

[
M 0
0 J

]
, and Γ =

[
d1 d2 . . . dm
r̃1d1 r̃2d2 . . . r̃mdm

]
(3)

In the post-capture stage, the c.m. of the combined spacecraft/NCSO is unknown,
(as are M and J), therefore ris are not known. It is assumed that Γ continues
to have full rank (= 6) regardless of the unknown c.m. location of the combined
spacecraft/NCSO. (This can be ensured by analyzing scenarios for a range of NCSO
mass-inertia properties. It may also be desirable to include sufficient redundancy,
i.e., deploy more than 6 thrusters as needed).

Suppose inertial velocity sensors are placed at the thruster locations. (From a
practical viewpoint, placement of sensors near the thrusters would produce noisy
measurements and it may be necessary to use noise-reduction filters. However, it
would not affect closed-loop stability and would likely have a relatively small effect
on the closed-loop motion). The velocity measurement vfi in direction di at the
location of thruster i (ignoring sensor noise) is given by

vfi = dTi (v + ω̃ri) = dTi (v + r̃Ti ω) (4)

Therefore the velocity measurement vector yr ∈ <m is given by

yr = vf = ΓTX (5)

Consider the control law:

F = −Gryr; where Gr = GTr > 0, (6)

which yields the closed loop equation:

MẊ + [(Mω̃v)T (ω̃Jω)T ]T + ΓGrΓ
TX = 0 (7)

It is shown below that this control law provides closed-loop global asymptotic sta-
bility. Furthermore, the stability is robust to (0,∞)-sector actuator nonlinearities
as well as first-order actuator dynamics.
Theorem 1-The closed-loop system consisting of (2), (5), and (6) is globally asymp-
totically stable.
Proof- Consider the Lyapunov function

V (X) = XTMX (8)
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Because M = MT > 0, V is positive definite. Differentiation with respect to (w.r.t.)
time t and simplification utilizing properties of the cross product yields

V̇ = −2XTΓGrΓ
TX (9)

Because Γ has full rank, V̇ < 0 (negative definite), i.e., the closed-loop system is
globally asymptotically stable �

Note that, although the system comes to rest (v, ω → 0 as t → ∞), the final
inertial position and orientation (attitude) are arbitrary. An important feature of this
control law is that the knowledge of the parameters or the c.m. location (m0, J, ri),
is not needed, and therefore the stability is robust in spite of parameter errors or
lack of knowledge of the parameters.

The robust stability property also holds in the presence of (0,∞) sector actuator
nonlinearities, as well as first-order actuator dynamics, as shown next.

Suppose the actuators have (0,∞)-sector nonlinearities, i.e., the actual actuator
force is given by

F = φ(−Gryr) (10)

where φ(.) = [φ1(.), φ2(.), . . . , φm(.)]T , and

σφi(σ) > 0 for σ 6= 0 and φi(0) = 0 for i ∈ [1, . . . ,m] (11)

φi(.) are assumed to be continuous functions.
Theorem 2- The control law in (10) provides global asymptotic stability of the
closed-loop system in the presence of (0,∞)-sector actuator nonlinearities provided
Gr is a diagonal matrix.
Proof- Let

ψi(σ) = −φi(−σ) for i ∈ [1, 2, . . . ,m] (12)

Then ψi also belong to the (0,∞)-sector. Proceeding with the Lyapunov function in
Theorem 1 yields

V̇ = −2XTΓψ(Gryr) = −2
m∑
i

yriGriiψi(yri) ≤ 0 (13)

Thus V̇ is negative semidefinite. Also V̇ ≡ 0 implies yr ≡ 0 (because of (11)),
therefore X ≡ 0 (because Γ is full rank). Therefore the closed-loop system is globally
asymptotically stable. �

It can be shown that this control law also retains global asymptotic stability in the
simultaneous presence of linear time-invariant (LTI) first-order actuator dynamics
followed by (0,∞)-sector actuator nonlinearities. The proof is along the lines of [5]
(Theorem 16 in Chapter 2) and is omitted.
Remark- As stated in Section 1.1, it is assumed throughout this paper that the
thrusters can produce proportional variable thrusts rather than operating in an
on/off mode. If the thrusters are operated in an on/off mode (that usually includes
a deadzone), it is expected that this control law would yield ultimate boundedness
(e.g., a limit cycle), although further analysis would be needed to investigate that
case.
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2.1.2 Stabilization Using Thrusters and Torque Actuators

When torque actuators are available in addition to thrusters, the equations of motion
can be written as:[

M 0
0 J

] [
v̇
ω̇

]
+

[
Mω̃v
ω̃Jω

]
=

[
Γ6×m

(
03×3

I3

)][
F
τa

]
(14)

wherein it is assumed for simplicity that a single 3-axis torque actuator is used to
produce control torque τa ∈ <3. In addition to velocity sensors, suppose angular
velocity sensors are available. Then the sensor output vector is given by

yr = [vTf ωT ]T = Γ
T
X (15)

where

Γ =

[
Γ6×m

(
03×3

I3

)]
(16)

Using the control law
u = −Gryr where Gr = GTr > 0 (17)

and following the same procedure as in Sec. 2.1.1, it can be shown that the closed-
loop system is globally asymptotically stable, and that the global asymptotic stability
is preserved (if Gr is a diagonal matrix) in the presence of (0,∞)-sector actuator
nonlinearities as well as simultaneous (0,∞)-sector actuator nonlinearities and first-
order actuator dynamics.

2.2 Attitude and Position Control of Rigid Spacecraft

Assuming both thrusters and torque actuators are available, the equations of motion
using quaternions to represent attitude are:

MR̈ = T TIBΣm
i=1F i

Jω̇ + ω × Jω = τ

α̇ =
1

2
[ω × α+ (β + 1)ω]

β̇ = −1

2
ωTα (18)

where R denotes the c.m. position in an inertial coordinate system, TIB denotes
the transformation matrix from inertial to body-fixed coordinate system, F i = diFi
denotes the ith vector thrust expressed in the body-fixed coordinate system, and the
quaternion parameters satisfy

α = [αT , α4]
T ; β = α4 − 1; (19)

α = [α1, α2, α3]
T ; αTα = 1. (20)

The control torque τ applied to the spacecraft consists of the moments generated
by the thrusters and the torque τa provided by the torque actuators such as control
moment gyros (CMGs).

τ = Σm
i=1(ri × F i) + τa (21)
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Consider the nonlinear attitude control law:

τ = −1

2
[(α̃+ α4I)Gp + ν(1− α4)I]α−Grω

= −1

2
[(α̃+ (β + 1)I)Gp − νβI]α−Grω (22)

where Gp, Gr are symmetric positive definite (3 × 3) matrices, and ν is a positive
scalar. The control law for translational motion may be designed using

T TIB[I3, I3, . . . , I3]F = T TIB[d1, d2, . . . , dm]F = −Gtransp R−Gtransr Ṙ (23)

where Gtransp , Gtransr are 3× 3 positive definite matrices.
It was shown in [6] that the rotational part of the closed-loop system has exactly

two equilibrium solutions: [α = ω = 0, β = 0] and [α = ω = 0, β = −2], which
correspond to the same equilibrium point in the physical space, i.e., the equilibrium
state is unique, defined as: R = 0, Ṙ = 0, α = 0, ω = 0, and β = 0. By following
the procedure in [6] with a minor modification (i.e., addition of the term (ṘTMṘ+
RTGtransp R) to the Lyapunov function), it can be shown that this control law globally
asymptotically stabilizes the physical equilibrium (the origin of the state-space). The
proof is based on Lyapunov analysis and LaSalle’s invariance principle.

The required control thrusts and torque can be obtained by using[
d1 · · · dm 03×3

r̃1d1 · · · r̃mdm I3

] [
F
τa

]
= Γ

[
F
τa

]
=

[
−TIB[Gtransp R+Gtransr Ṙ]

−1
2 [(α̃+ (β + 1)I)Gp − νβI]α−Grω

]
(24)

Γ is assumed to have full rank, therefore Γ also has full rank, and the minimum-norm
solution u is obtained as

u =

[
F
τa

]
= Γ

T
(ΓΓ

T
)−1

[
−TIB[Gtransp R+Gtransr Ṙ]

−1
2 [(α̃+ (β + 1)I)Gp − νβI]α−Grω

]
(25)

Suppose the inertial position RP and velocity vP , expressed along the body axes, are
measured at a point P that is fixed to the spacecraft at a location denoted by the
vector rP in the body-fixed coordinate system centered at the c.m. Then R and Ṙ
can be obtained as

R = T TIB(RP − rP ); Ṙ = T TIB[vP − ω̃rP ] (26)

for implementation in the right-hand side of (25).
If there are no torque actuators, τ must be produced by thrusters alone, i.e., it

is necessary to solve the following equation for F

ΓF =

[
−TIB[Gtransp R+Gtransr Ṙ]

−1
2 [(α̃+ (β + 1)I)Gp − νβI]α−Grω

]
(27)

Γ is assumed to have full rank, therefore the minimum-norm solution F can be
obtained similar to (25). Note that r1, · · · , rm, and rP (i.e., the c.m. location)
must be known for computing u in (25) or F from (27). This is possible in the pre-
capture stage because the spacecraft c.m. location is known reasonably accurately.

7



In the post-capture stage, the c.m. location is not known, therefore it is usually
not possible to implement this control law. However, while attitude and position
control are important in the pre-capture phase, the primary objective in the post-
capture phase is stabilization; therefore attitude and position control may not be
necessary post capture. If torque actuators are available, they can be used for post-
capture attitude control (without using the thrusters) for globally stable attitude
maneuvering using the nonlinear control law (22).

2.3 Stabilization of Flexible Spacecraft

The capture spacecraft would likely have significant elastic mode dynamics because
of long booms, solar arrays, and manipulator links. The problem of stabilization is
first considered i.e., the translational and angular velocities as well as elastic motion
of the post-capture spacecraft/NCSO need to be brought to zero.

2.3.1 Stabilization Using Thrusters

The equations of motion including elastic motion can be written as: M 0 0
0 J 0
0 0 Inq

 v̇
ω̇
q̈

+

 Mω̃v
ω̃Jω

Dq̇ + Λq

 =

 I3 I3 . . . I3
ρ̃1 ρ̃2 . . . ρ̃m
ΦT
1 ΦT

2 . . . ΦT
m

 F̄3m×1 (28)

where q(t) ∈ <nq is the modal amplitude; Λ = diag(ω2
1, ω

2
2, . . . , ω

2
nq) where ωi denotes

the natural frequency of the ith elastic mode; and D = DT > 0 (D ∈ <nq×nq) is the
damping matrix. ρi ∈ <3 represents the location of the ith thruster (including elastic
displacement) expressed in the body-fixed coordinate system (fixed to the nominal
rigid body), given by

ρi = ri + Φiq (29)

where Φi ∈ <3×nq is the mode shape matrix at thruster i. (This formulation assumes
relatively small elastic deformations. For large elastic deformations, a fully coupled
rigid-elastic model would be appropriate). Velocity measurements at thruster lo-
cations in the thruster direction di, measured in the local coordinate system (that
includes local elastic deflections) are:

yri = dTi Θi(Ψiq)(v + ω̃ρi + Φiq̇) (30)

where Ψi ∈ <3×nq is the mode-slope matrix at the ith sensor location. Ψiq ∈ <3

represents the local relative attitude (with respect to the body-fixed coordinate sys-
tem) due to elastic modes, and Θi(Ψiq) ∈ <3×3 is the corresponding transformation
matrix. Scalar thrusts (denoted by Fi) are generated in the local coordinate systems.
The ith thruster force, expressed as a 3× 1 vector in the body-fixed system, is given
by

F̄i = ΘT
i (Ψiq)diFi (31)
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where Fi ∈ < is the thrust in the local coordinate system. Equation (28) can then
be written as

M

v̇ω̇
q̈

+

 Mω̃v
ω̃Jω

Dq̇ + Λq

 =

 I3 I3 · · · I3
ρ̃1 ρ̃2 . . . ρ̃m
ΦT
1 ΦT

2 . . . ΦT
m

Θ
T


F1

F2
...
Fm


:=

[
Γ̂

Φ̂T

]
F := BF (32)

where
Θ
T

= diag[ΘT
1 (Ψ1q)d1, ΘT

2 (Ψ2q)d2, · · · ,ΘT
m(Ψmq)dm]3m×m

Γ̂ =

[
I3, I3, · · · I3
ρ̃1, ρ̃2, · · · ρ̃m

]
Θ
T
, Φ̂T =

[
ΦT
1 ,Φ

T
2 , · · ·ΦT

m

]
Θ
T

(33)

M = diag(M, J, Inq) ∈ <(nq+6)×(nq+6), Θ ∈ <m×3m, Γ̂ ∈ <6×m, Φ̂ ∈ <m×nq . As
in the rigid spacecraft case, it is assumed that m ≥ 6. It can be shown that the
velocities at thruster locations in the local coordinate systems are given by

yr = BTX = [Γ̂T Φ̂]X (34)

where X = (vT , ωT , q̇T )T . Note that this system is highly nonlinear and time-varying
because of cross-product terms and transformation matrices that are functions of
the modal amplitude. The system is also unknown and uncertain because M, J
are unknown, modal amplitudes q(t) cannot be measured and the modal parame-
ters (natural frequencies, mode shapes, damping) are never accurately known. In
addition, the number of modes (infinite in theory) can be very large, resulting in
unmodeled modes. In spite of these problems, the closed-loop system can be shown
to be globally asymptotically stable. It is assumed that Γ̂ has full row rank (= 6)
for all t. Consider the control law:

F = −Gryr; Gr = GTr > 0 (35)

The closed-loop system is given by

MẊ +

 Mω̃v
ω̃Jω

Dq̇ + Λq

+ BGrBTX = 0. (36)

Theorem 3- The closed-loop system consisting of (32), (34), (35) is globally asymp-
totically stable, i.e., v(t), ω(t), and q(t)→ 0 as t→∞.
Proof- Consider the Lyapunov function

V (X) = XTMX + qTΛq (37)

Differentiation w.r.t. t and simplification yields

V̇ = −2XTBGrBTX − 2q̇TDq̇ (38)
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Thus, V̇ is negative semidefinite. Also, V̇ ≡ 0 only when q̇ = 0 and yr = 0, i.e., v =
ω = 0 (because Γ̂ has full row rank), F = 0, and q = 0 (from (32)). Therefore the
system is globally asymptotically stable. 2

The significance of this result is that robust stabilization can be accomplished
using thrusters in spite of time-variation, unmodeled elastic mode dynamics, nonlin-
earities, and parametric uncertainties.

Similar to the rigid spacecraft case, it can be shown that the global asymptotic
stability is preserved in the presence of (0,∞)-sector actuator nonlinearities. How-
ever, additional analysis will be needed to investigate stability in the simultaneous
presence of actuator nonlinearities and actuator dynamics.

2.3.2 Stabilization Using Thrusters and Torque Actuators

When torque actuators are available in addition to thrusters, (32) is modified as

MẊ +

 Mω̃v
ω̃Jω

Dq̇ + Λq

 =

B
 03×3

ΘT
t (Ψtq)
ΨT
t

[F
τa

]
:= Bu (39)

wherein u = [FT , τTa ]T and it is assumed that three axis torque τa ∈ <3 is produced
by a torque actuator; Ψt ∈ <3×nq is the mode-slope matrix at the torque actuator
location, and Θt ∈ <3×3 is the transformation matrix from body-fixed coordinates
to local coordinates at the torque actuator location.

Assuming collocated sensors and actuators, the sensor output yr consists of in-
ertial velocities vf ∈ <m at the thruster locations and the angular velocity ωt ∈ <3

at the torque actuator location, all in local coordinates. It can be shown that

yr =

[
vf
ωt

]
= BTX (40)

Using the control law

u = −Gryr (41)

where Gr is positive definite and symmetric, and proceeding as in the previous
subsection, it can be shown that the closed-loop system is globally asymptotically
stable, and that this stability property is preserved in the presence of (0,∞)-sector
actuator nonlinearities when Gr is a diagonal matrix.

2.4 Attitude and Position Control of Flexible Spacecraft

When it is required to control attitude and position, it was seen in Section 2.2
for rigid spacecraft that the knowledge of the thruster locations w.r.t. the c.m.
was needed. This is generally not possible in flexible spacecraft because of elastic
motion unless additional instrumentation is used. One approach to position and
attitude control would be to first achieve the desired translation (c.m. position)
using thrusters (while ensuring no net moment, i.e.,

∑
ρi × F̄i ≈ 0), and then use

the torque actuators to achieve the desired attitude. If non-zero moment generated
due to uncertainties causes significant non-zero angular velocity, it will be necessary
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to stabilize the spacecraft first (Sections 2.3.1 and 2.3.2) and then perform attitude
control using torque actuators. Attitude control (using a 3-axis torque actuator and
collocated attitude and rate sensors) is considered in this section.

Following [7], the rotational motion can be modeled as

M(p)p̈+ C(p, ṗ)ṗ+Dṗ+Kp = BT τa (42)

where ṗ = (ωT , qT )T , M(p) ∈ <(nq+3)×(nq+3) is a symmetric positive definite ma-
trix, C(p, ṗ), D ∈ <(nq+3)×(nq+3) corresponds to Coriolis and centrifugal forces and
damping terms respectively.

K =

[
03×3 03×nq
0nq×3 K̂nq×nq

]
, D =

[
03×3 03 × nq
0nq×3 D̂nq×nq

]
(43)

From [7], K̂, D̂ are symmetric positive definite matrices, and

S(p, ṗ) = Ṁ(p)− 2C(p, ṗ) (44)

is skew-symmetric. The attitude is measured at the torque actuator location and is
expressed in the quaternion form as in (18). Using the control law as in (22),

τa = −1

2
[(α̃+ (β + 1)I)Gp − νβI]α−Grω (45)

where Gp, Gr are symmetric positive definite and 0 < λM (Gp) ≤ 2ν (where λM (.)
denotes the largest eigenvalue), it can be shown (as in [7]) that there are two closed-
loop equilibrium solutions that are physically identical, i.e., the equilibrium is unique.
The closed-loop global asymptotic stability can be established by using a procedure
similar to [7] and the Lyapunov function

V = ṗTM(p)ṗ+ qT K̂q + αTGpα+ νβ2 (46)

3 Multi-body Spacecraft Stabilization and Control

In multi-body spacecraft such as space-based manipulators with multiple articulated
joints, stabilization can be performed by locking the joints first, which essentially
results in a single-body spacecraft. The methods in Sections 2.1.1, 2.1.2 and 2.3.1,
2.3.2 can then be used for rigid spacecraft and flexible spacecraft. For position and
attitude control of multi-body spacecraft, one approach would be to first achieve
the desired translation (c.m. position) with joints locked, using the thrusters while
ensuring minimum net moment, and subsequently use the torque actuators and the
joint torques to achieve the desired attitude and posture. If the translation maneuver
results in significant angular velocity, stabilization can be performed prior to the
attitude/posture control. Therefore only attitude/posture control results for flexible
multi-body spacecraft are presented below.

Following [7], the flexible multi-body system consists of a central body having
multiple articulated appendages connected through nθ revolute joints. All bodies are
assumed to be flexible. The dynamics are described by (42) where ṗ = (ωT , θ̇T , q̇T )T ;
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θ ∈ <nθ is the joint angle vector; M(p) ∈ <(nq+nθ+3)×(nq+nθ+3) is symmetric positive
definite; C(p, ṗ), D ∈ <(nq+nθ+3) corresponding to Coriolis and centrifugal forces
and damping terms respectively, are similar to (43). The input vector is

u =

[
τa
τθ

]
(47)

where τa ∈ <3 is the attitude control torque and τθ ∈ <nθ consists of the articu-
lated joint torques. As in the previous cases, the attitude and angular velocity are
measured at the attitude control torque actuator locations. Define

yp =

[
α
θ

]
; yr =

[
ω

θ̇

]
(48)

In [7], the following control law was presented:

u = −
[
1
2{(α̃+ I3(β + 1)Gp1 + νβI3} 0

0 Gp2

]
yp −Gryr (49)

where Gp1 ∈ <3×3, Gp2 ∈ <nθ×nθ , Gr ∈ <(nθ+3)×(nθ+3) are symmetric positive defi-
nite. It was shown in [7] that, if 0 < λM (Gp1) ≤ 2ν, there exists a unique equilibrium
in the physical space, and that this equilibrium is globally asymptotically stable.
Thus, the control law provides globally asymptotically stable large-angle maneuver-
ing and posture control which can be used prior to capture to attain the desired
end-effector positioning.

4 Concluding Remarks

Stabilization and control issues in capture and control of non-cooperative space ob-
jects were addressed. The capture spacecraft was assumed to consist of a multi-link
manipulator characterized by a base body with articulated appendages. The main
problem of post-capture stabilization of the combined spacecraft/captured object
was considered using proportional (variable-thrust) thrusters and combinations of
thrusters and torque actuators. Control laws that asymptotically eliminate all rota-
tional and translational velocities as well as all elastic motion, were presented. The
control laws provide global asymptotic stability in spite of unknown mass-inertia
properties of the captured object, as well as nonlinearities, unmodeled elastic modes,
and uncertainties. The stability was shown to be preserved in the presence of (0,∞)-
sector actuator nonlinearities (such as saturation). Combined attitude, position, and
posture control was also considered using nonlinear quaternion-based feedback con-
trol laws, which were shown to provide global asymptotic stability. An important
issue that needs to be addressed is control during the capture stage when unknown
contact forces are exerted on the capture spacecraft. Because the stabilizing control
laws would be in effect during capture, the contact forces would act as bounded dis-
turbances on the closed-loop system and would likely result in bounded rotational
and translational velocities of the spacecraft, which would eventually reduce to zero
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after capture is complete. However, this issue needs to be investigated further us-
ing concepts such as input-to-state stability. It is also desirable to investigate the
use of on/off (rather than proportional) thrusters, which would be expected yield
ultimate boundedness (e.g., a limit cycle) rather than asymptotic stability. Further
research is also needed on control gain design and optimization, estimation methods
for the object’s state, contact forces, and possibly mass-inertia properties, control
methods for safe transportation of the object to another location, as well as detailed
simulation studies and laboratory experiments.
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